EFFECT OF THE DENSITY OF INUNDATION WATER ON TSUNAMI RUN-UP

Hideo Matsutomi'

Aiming for the advancement of historical and/or prospective tsunami scale evaluations, and focusing on the tsunami
run-up, series solutions to the tip position a(f), velocity U (=da/dr) and acceleration da/df* in the tip region of
inundation flow (unsteady flow) with sediment over a uniformly sloping bottom under the condition that the friction
factor K is not linked to the density p of inundation water, and analytical solutions to a(f), U(f), d*a/df, the maximum
run-up distance a,, and height R,, under the condition that K is linked to p are derived, and effects of p on them and
run-up process are theoretically examined. It is indicated that (1) in the run-up analysis (including numerical
simulation) of tsunami with sediment under the condition of a constant K, even if a, and R, can be predicted
accurately, there is a possibility of evaluating the run-up duration time inaccurately and vice versa, and (2) linking K
to p is necessary to solve this matter. An expression for the relationship between K and p is also presented. Moreover,
it is verified that the derived series and analytical solutions are useful to discuss the effects of p on the run-up of
tsunami with sediment through a comparison between the experimental and theoretical maximum run-up distances.
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INTRODUCTION

Aiming for the advancement of the tsunami load, and historical and/or prospective tsunami scale
evaluations, the dependency of the density p of inundation water on hydraulic quantities such as
incident Froude number F,;, and the dependencies of the maximum tsunami run-up distance, sediment
deposit distance, etc. on p were examined through a small-scale hydraulic experiment (Matsutomi and
Konno 2019). However, scale effects are feared, as is usual with a small-scale experiment. A solution to
this matter is to examine target problems theoretically.

In this study, focusing on the tsunami run-up, solutions to the tip position a(f), velocity U(t), run-up
height R,, and so on of inundation flow (unsteady flow) with sediment over a uniformly sloping bottom
are derived theoretically, effects of p on them and run-up process of inundation flow are examined, and
knowledge concerning them is enhanced as a result.

THEORY
Initial condition (incident bore condition at a shoreline) of objective tsunami inundation flow and
the definition of main symbols are shown in Figure 1. The incident inundation flow is Shen ef al.'s
(1963) and Peregrine et al.'s (2001) dam break flow which can express tsunami or wave run-up and
backwash processes and has been utilized for, e.g., evaluations of the volume of wave overtopping
(Peregrine et al. 2001) and sediment movement in the swash zone (Kelly et al. 2010). Hydraulic
resistance is introduced after Whitham (1955) to take sediment in the tip region (=a(¢)-(f). See Figure
1), and inundation flow velocity U (=da/dt) in the tip region is assumed to be a function of time alone.
The conservation law of mass M in the tip region of inundation flow with the bottom friction (or
sediment) could be expressed as follows (refer to Matsutomi 1985):
dM _ xd(ph,) dé _d 1
dt_-[f 7 dx ('Dhr;’d Ip (1)
where ¢ is the time, x the distance axis along the slope, x,(7) and hy(?) the tip position and local water
depth of inundation flow without sediment respectively, &(¢) and p the rear position and the density of
inundation water of the tip region of inundation flow with sediment respectively. Although inflow mass
from the rear position &(¢) into the tip region is that of water without sediment, it is assumed in this
model that density of the inflow water becomes the same as the density p of inundation water in the tip
region immediately after the inflow by taking sediment from the bottom (a movable bed) and the same
volume of water without sediment as volume of sediment taken from the bottom is left on the bottom.
When K is a friction factor of inundation flow on a movable bed (Matsutomi 2019), the
conservation law of momentum P in the tip region of inundation flow could be expressed as follows:
ar _, 4 2 2
" —Udtf ph dx +— pugH —igM — pKU*(a - &) 2)
where p,, is the density of water without sedlment, g the gravitational acceleration, H(#) the inundation
water depth at &(7), i the bottom slope and a(?) the tip position of inundation flow with sediment. In
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Figure 1. Initial condition and definition of main symbols.

Equation (2), the right side first term includes inflow of momentum originated from the bottom
sediment. As the right side second term is a total hydrostatic pressure of inundation water without
sediment, a discontinuity of total hydrostatic pressure at &(f) may be imagined. In this study, it is
assumed that as the density p of inundation water in the tip region is a space averaged, the total
hydrostatic pressure at &(¢) is continuous.
Using the relation P=MU derived from the stated assumption that inundation flow velocity U(¥) in
the tip region is a function of time alone, Equations (1) and (2) become
Ug" hpdx]aii—lt]=%%gH2—igUg\thx]—KUz(a—ff) (3)
Inundation water depth /, and inundation flow velocity u, of Shen et al.'s and Peregrine et al.'s
dam break flow at an arbitrary time ¢ and position x are expressed as follows:
2
h - 9;(2 _j_;igf) ) 0, - g( +j_,-gz) 5)
where 01:\/gh1 and /; an initial constant stored water depth at a dam (an incident bore height at a
shoreline). Therefore, the inundation water depth H(¢) and inundation flow velocity U(f) at the rear
position &(¢) of the tip region of inundation flow become
2
" =1[zcl _f_ligt) ©) U:z(cl +§—igt) (1)
9g t 2 3 t
From Equations (4) and (7), the tip position x, of inundation flow without sediment and the rear
position &(¢) of inundation flow with sediment are expressed as follows:

x, =2t~ %igt2 (8) E= [;U —-c + igtjt 9

Therefore, the basic equation for the tip position a(#) of inundation flow with sediment becomes

lda 1. Y d*a 1p, lda 1. Y
C—————= gt | t—5——— ¢ —————— gt
2dt 2 ar* 2 p 2dt 2 (10)

+i c—l@—lit3t+1{ a— éﬂ—cﬂ'tl @2—0
97 2a 2% O Ga T\

Equation (10) is final basic equation to be solved in this study and is solved under two different
conditions that the friction factor K is not linked (series solution) and is linked (analytical solution) to
the density p of inundation water, without introducing a threshold of sediment movement.

When inundation flow has no sediment, p/p,=1 and Equation (8) is derived from Equation (10).

SERIES SOLUTIONS

After Whitham (1955), let us introduce the following new variables to solve Equation (10) without
linking the density p of inundation water to the friction factor K of inundation flow with sediment on a
movable bed:

0:=K(2qt—1igt2—a) (11 r= |5k (12)
hy 2 Iy

where 0>0 and indicates a dimensionless distance between the tip position of inundation flow without
and with sediment. By introducing these new variables, Equation (10) becomes

3/ .0 4 . 2
(daj do; T+1pw(daj +8 a—éd—ar (Z—IT—MJ =0 (13)
dr )\ dr 4 p\dr 2drt K dr
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Further, let us introduce the following variable conversions after Whitham (1955):
d
p=de (14) A (15)
dr dp
where p (0<p<2) indicates a dimensionless flow velocity. These variable conversions lead to the
following relations:
da_ 1 (16) df (17)
aec_ a=np _
dt  d*f/dp® P
Therefore, Equation (13) becomes the following ordinary differential equation for f{p):

1 1 ) " 1 ’ ) 1 ? "
Pr —8{f+pf}(2—lf —pj /=0 (18
Yol 2 K
Let us assume that the dependent variable f{p) can be expanded into a power series of p as follows:
f(P)=2b,p" (19)
n=0

From the initial condition that a=do/d=0 at =0 (=0, p=0), by=b;=0 is obtained. Substituting
Equation (19) into Equation (18), b,=b;=0 and the following identical equation are obtained:

(4b4 +5bsp +6b,p* +7b,p’ +....)p6 +p“’(3b4 +5b5p+1?5b6p2 +%b7p3 +....jp6
P

(20)
115267 +192(17b,b, — 652 )p +32(9b7 —102b,b, +138,b, + 70 )p’
6
+ 16(5 1b,b; — 276b,b, +360b,b, —140b; +370b,b, — 288}{1;3) P+ P
Solving this identical equation, Equations (21) to (25) are obtained as the coefficients b, to bg:
2 2 2
b= (432) @) 4o 11525 @) - 64(9b7 ~102b,5 +70b2) (23
1,152 P (3,264b, -5-5p,/p) (12+15p,/p—8,832b,)
. 32(51b,b, — 276b,b, — 140b2 +370bb, — 2885} i/K) (24)
7 (14+21p,/p—11,520b,)

. 8(69b,b, —360b,b, +35b2 —370b,b, +474b.b, + 2407 +24b2(6b, — 495, )i/ K) 25)

8

(4+7p,/p-3,648b,)

From the above results, the following series solutions to the tip position a(#), velocity U(f) and
acceleration d’a/df* of inundation flow with sediment on a movable bed are obtained for any iy, i, K:

a= 2clt—%ig12 —%(3b4p4 +4b,p* +5b,p° +6b,p’ +) (26)

U=%=2cl—igt—clp 27

da_ . Kg (28)
dr’ 12b,p> +20b,p* +30b,p* +42b,p° +....

t=11<\/§(4b4p3+5b5p4+6b6p5+7b7p6+....) (29)

Examples of Series Solutions and Discussions

Figure 2 shows an example of convergence of Equations (26) and (29) which are the series solution
to the tip position a(¢) of inundation flow with sediment, where the friction factor K is not linked to the
density p of inundation water. From the figure, it can be seen that adopting the 5™ order approximate
solution to the coefficient bg, the series solution to a(f) converges with enough accuracy, e.g., the
difference between the 4™ and 5™ order approximate solutions to the maximum run-up distance a,, is
around 4.6%. Therefore, the 5™ order approximate solutions are adopted below. Figure 2 also indicates
that the trajectory of the tip position a(¢) in the run-up and backwash processes is not axisymmetric.

Figures 3 and 4 show the dependencies of the tip position a(f) evaluated from the 5™ order
approximate solution on the friction factor K and the density p (or p/p,,), respectively. From the figures,
it can be seen that (1) not only the maximum run-up distance a,, but also the time required for the
maximum run-up distance and the duration time of a(f)>0 depend on the friction factor K, (2) when
only the density p changes independently of the friction factor K, influence of the density p on the
maximum run-up distance a,, is small, compared with the experimental results (Matsutomi and Konno
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Figure 2. A convergence example of the series solution to the tip position a(f) of inundation flow.
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Figure 3. Dependency of the tip position a(t) on the friction factor K of inundation flow (5th order approximation).
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Figure 4. Dependency of the tip position a(f) on the density p of inundation water (5th order approximation).

2019) (see Figure 8 discussed later). The latter (2) strongly suggests that linking the friction factor K to
the density p is important in the estimation of the tip position a(#) of inundation flow with sediment over
a movable bed.

Figures 5 to 7 show examples of time histories of the tip position a(f) and rear position &(¢) of the
tip region, inundation water depth H(z) at &(¢), inundation flow velocity U() and acceleration d’a/df* in
the tip region and incident Froude number F,; (which is always positive, but is displayed considering the
direction of U(7)) at &(f), evaluated from the 5™ order approximate solutions. Although the time histories
of F,; and d’a/dr’ at early stage are omitted in Figure 7, they asymptotically approach oo respectively.
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Figure 5. Time histories of the tip position a(t) and rear position §(t) of the tip region (5th order approximation).
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Figure 6. Time history of the inundation water depth H(t) at the rear position §(t) (5'h order approximation).

L;..: \ —:U
&S 4N - : dPalde
E \\ —-:F,;
- 2 N S~ 4
s =
T , 1T I S
=2 | 7,=0.09 m -
IO i=0.05
E 4 K=0.008
> Ip,~1.1
“ plp
0 1 2 3 4
t(s)

Figure 7. Time histories of the inundation flow velocity U (=da/df) and acceleration d’aldf in the tip region,
and incident Froude number F,; at the rear position §(f) (5th order approximation).

From the figures, it can be seen that rapidly, (1) the tip region (=a(#)-&(¢)) expands, (2) inundation water
depth H(f) at &(f) increases in a upward convex curved shape, (3) acceleration d°a/df* and incident
Froude number F,; decrease and gradually approach to -ig and -oo respectively in the series solutions.

ANALYTICAL SOLUTIONS
In the preceding chapter, it was pointed out that linking the friction factor K to the density p of

inundation water was important in the run-up analysis of inundation flow with sediment on a movable bed.
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According to Matsutomi (2019), the density p of inundation water can be estimated by both the
friction factor K of inundation flow with sediment on a movable bed and incident Froude number
F,; of inundation flow as shown in Equation (30):

Py (30)
1-KF;
Therefore, discussion of the density p of inundation flow with sediment on a movable bed is nothing but
that of the friction factor K of inundation flow.

In this study, incident Froude number F,; is defined by adopting inundation flow velocity U(?) in

the tip region and long wave celerity C at the rear position £(7) of the tip region as shown in Equations
(31) and (32).

p:

F U (1) C= el 21(261_5_1ig,) (32)
C 3 t 2
Equation (33) is derived from Equations (31), (32) and (9):
- (33)
2¢,-U —igt

Therefore, the friction factor K can be expressed as follows:
. 2
K= 1_& izz 1_& (2c1—U2—1gt) (34)
F; P 4U
Substituting Equation (34) into Equation (10), Equation (35) is obtained as the basic equation,
without having the friction factor K, to be solved in this chapter:

( lda 1. jdza lpw( lda 1. jz
C—————= gt ft———— o—————= gt
2dt 2 - 2 p 2dt 2 (35)
. lda 1. o) 3 da .
+igl e ————— A —| =——c¢ +igtt;=0
T R N O i)

After the preceding chapter, let us introduce the following new variables without having the friction
factor K of inundation flow with sediment on a movable bed to solve Equation (35):

o =1(201t—1igt2 —a) (36) r= & (37)
h, 2 h
Using these new variables, Equation (35) becomes
2 2
dadgﬁlpw(daj +21_pw(a_3dafj=0 (38)
dr dr 4 p\dr P 2drt

Introducing the variable conversions of Equations (14) and (15) as the preceding chapter, Equation
(38) becomes
pf’+1”“pzf"—Z[l—"WJ(fﬂpf'jf" =0 (39)
4 p P 2
Equation (39) is solved assuming a series solution of p as Equation (19).
From the initial condition that a=da/d=0 at =0 (=0, p=0), by=b;=0 is obtained. Substituting
Equation (19) into Equation (39), the following identical equation is obtained:

(26, +3b,p +4b,p* +5b,p* +6b,p* +....)p"
(40)

+% P (2b, + 6y p+12b,p* +20b,p° +30b,p* +...)p°
Yol

2(1 pwj 4B +17b,b,p +(30b,b, +15b7 )p* + (47b,b, +48b,5,)p* .

- —_—— p =
P \+(68b,b, +71b,b, + 366 )p* +....

Solving the above identical equation, Equations (41) and (42) are obtained as the coefficients of series

solution:

_1(+p/p) (41) by=b, =b=b; =...=0 (42)
16 (1-p,/p)

These results indicate that analytical solution can be derived without assuming the series solution to f{p).

Therefore, the tip position a(f) of inundation flow with sediment is expressed as follows:

a= 2011—%igt2 —hl(bzpz) (43) t=h/g(2b,p) (44)

2
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From the above results, the following analytical solutions to the tip position a(#), velocity U(¢) and
acceleration d’a/df* of inundation flow with sediment on a movable bed are obtained for any /; and i

Lo (=p/p) > (45)
a=2ct——igt- —4——"L ot
b2 (4+p,/p)
Uzﬁzzcl_igt_gw " (46)
di (@+p,/p)
da_ . g(l-p./p) 47)
dr* (@+p,/p)

When the density p is a constant, trajectories of the tip position a(#) and inundation flow velocity U(¢)
are a parabola and a linear decreasing monotonically, respectively.

From Equations (6), (9) and (46), the following is obtained as the inundation water depth H(¢) at
the rear position ¢ (7) of the tip region, which is a parabola and discussed later:

2
H= 16[1-/%/PJ at? (48)
4+p,/p
The following analytical solutions to the maximum run-up distance a,, and height R,, of inundation
flow with sediment on a movable bed are also obtained for any /4, and i:
ia, _R, _ 2 (49)
b by 1+ @)1= p,/0)/ 4+ p,/p)

Examples of Analytical Solutions and Discussions

Figure 8 shows the dependency of the tip position a(f) evaluated from the analytical solution
(Equation (45)) on the density p (or p/p,) of inundation water. In reality, the density p as well as the
friction factor K of inundation flow depends on the time ¢. In the figure, the solid line is nothing but
Equation (8) for the tip position x; of frictionless inundation flow which cannot take in sediment from a
movable bed. The figure tells that as the density p becomes high, not only the maximum run-up distance
a,, of inundation flow but also the time required for the maximum run-up distance a,, and the duration
time of a(#)>0 become short. These tendencies are the same as those in case of that the friction factor K
increases as shown in Figure 3. It can be also seen through a comparison with the results shown in
Figure 3, which are obtained by adopting the friction factor K having a constant value averaged over the
whole process of run-up and backwash of inundation flow, that the results shown in Figure 8§ indicate
the run-up duration time becomes short for the maximum run-up distance a,,. This suggests that it is
necessary to adopt friction factor K changing every moment in accordance with the situation of
inundation flow with sediment.

Figure 9 shows the dependency of the dimensionless run-up height R,/h; evaluated from the
analytical solution (Equation (49)) on the density p (or p/p,,) of inundation water, using the bottom slope
i as a parameter. The figure tells that the dimensionless run-up height R, /A, strongly depends on both
the density p and the bottom slope i.

Figures 10 to 12 show examples of time histories of the tip position a(f) and rear position &(¢) of the
tip region, inundation water depth H(z) at &(#), inundation flow velocity U() and acceleration d’a/df* in
the tip region and incident Froude number F,; at &(f), evaluated from the analytical solutions. In these
time histories, there is an attention point that the time history of the inundation water depth H(¢) at &(¢)
is a downward convex curved shape (a upward convex curved shape in the series solution) and the
inundation water depth H(f) becomes a physically impossible large value after a midway of backwash
process of inundation flow. One of the reasons for such a tendency of the inundation water depth H(¢)
lies in the introduction of Equation (30). When average density over the run-up process of inundation
flow is adopted as the density p in Equation (30), the friction factor K (<1/F,?) in Equation (30)
becomes small (large) with increase (decrease) of incident Froude number F,;. Therefore, compared
with the case of the series solutions in which the friction factor K is a constant value, the inundation
flow velocity U(¢) in the tip region is large in early stage of run-up process and is quickly decreased
near the maximum run-up distance a,, (see Figures 7 and 12), and as the result, the time history of
inundation water depth H(f) becomes a downward convex curved shape. As seen from the fact that
trajectory of the tip position a(#) is a parabola (see Equation (45)), the above situation of inundation
flow velocity U(f) is the same even in the backwash process. For this reason, when inundation flow
velocity U(¢) decreases from 0 in the backwash process, inundation water depth H(f) increases as
expressed in Equation (48) in response to the decreasing inundation flow velocity U(f).
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Figure 8. Dependency of the tip position a(f) of inundation flow on the density p (or p/py) of inundation water
(analytical solution).
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Figure 9. Dependency of the dimensionless run-up height Rn,/h1 on the density p (or p/py) and bottom slope i
(analytical solution).
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Figure 10. Time histories of the tip position a(t) and rear position §(f) of the tip region (analytical solution).

From the above, although the application range of the analytical solutions is restricted to a midway
of backwash process of inundation flow, the application limit just hinder a part of the aims of this study.
However, further improvements of both this approximate model of the tip region and operation of
Equation (30) are expected.

VERIFICATION OF SOLUTIONS
A verification of validity of the series and analytical solutions is carried out through a comparison
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Figure 11. Time history of the inundation water depth H(t) at the rear position §(f) (analytical solution).
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Figure 12. Time histories of the inundation flow velocity U (=da/dt) and acceleration d’aldf in the tip region,
and incident Froude number F,; at the rear position §(f) (analytical solution).

with experimental data. However, the verification is not strict because of lacks of experimental data

under the same condition as the solutions.

Matsutomi and Konno (2019) presented some experimental data on the maximum run-up distance

a,, of inundation flow with or without sediment. Table 1 and Figure 13 show a part of the experimental

conditions and data, and outline of flume used in the experiments, respectively. In the table, the

experimental case number is the same as that used in the reference (Matsutomi and Konno 2019), Ap the
bottom height of water storage tank from the ground level, L the length of water storage tank, % the
initial stored water depth in the water storage tank, /7 the initial thickness of soil layer spread in the

horizontal flume, Lg the initial length of the spread soil region, /g the height of the first short mild

upward slope end from the ground level, i (=S; in Figure 13) the bottom slope of the second long mild

upward slope where inundation flow with or without sediment runs up.

Concrete verification procedure consists of the following three steps:

Step 1: Estimate the stored water depth /; from Equation (49) by adopting the values of p/p,=1.122
(average value of four times), bottom slope i=0.127, maximum run-up distance a,=R,/i=Lz=
1.06 m (average value of four times), where the definition of the experimental maximum run-up
distance Ly is presented in Figure 13.

Step 2: Estimate friction factor K in the case that inundation flow without sediment on a fixed bed under
the condition of /; estimated in Step 1 runs up the slope, on which sand with grain size 0.85 mm
to 2 mm is pasted, used in the experiment (Matsutomi and Konno 2019).

Step 3: Examine whether the maximum run-up distance Lgy is longer than Lz=1.06 m or not, where Lz
is estimated by substituting p/p,=1.0, i=0.127, h; estimated in Step 1 and K estimated in Step 2
into the series solution (Equations (26) and (29)) of 5th order approximation to the maximum
run-up distance a,, of inundation flow without sediment. This examination can also be regarded
as an integrity verification of the analytical and series solutions.
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Table 1. Experimental conditions and results on the run-up of
inundation flow with sediment (Matsutomi and Konno 2019).

hp | Lu hy hr Ls hs o P Lr
©ase | (m) | (em) | (em) | (em) | (m) | (em) | =5* | (grem®) | (cm)
2-2 1.092 117
2-4 1.102 101
26 1.2 30 25 6 1.55| 23 | 0.127 1136 95
2-8 1.158 111
Mean | - - - - - - - 1.122 106
o Ly o
Y G?te
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Figure 13. Outline of experimental flume (sidewalls are omitted), its frontal view (right side), arrangement of
measuring instruments and definition of symbols.

As the estimated value of /; in Step 1, 0.162 m can be obtained.

As friction law for inundation flow (unsteady flow) without sediment is mostly unknown even on a
fixed bed, the estimation of friction factor K in Step 2 is a very difficult problem. In this study, at first,
friction factor K for a steady flow without sediment on a fixed bed is estimated using a conventional
friction law for a steady flow without sediment on a fixed bed, and then targeted friction factor K is
estimated considering a correction coefficient for unsteadiness of inundation flow to Kj,.

The following is adopted as a conventional friction law for a steady flow without sediment in a
wide rectangular open channel with a rough fixed bed:

K, =[6.0+5.75log, (1, /k,)]* (50)
where 4; is the water depth of steady flow and £ the equivalent sand grain roughness.

When the maximum inundation water depth (=4/4,/9=0.0718 m) at x=0 in the run-up process of
inundation flow as 4; and representative grain size 1.0 mm (which corresponds to the median particle
diameter) of sand pasted on the second long mild upward slope as k, are adopted in Equation (50),
Ky=0.0036 can be obtained.

The ratio of friction factor of inundation flow with sediment to that of a steady flow with sediment
on a movable bed when acquiring the experimental data of the maximum run-up distance Ly adopted in
this study was 1.2 to 2.6 (Matsutomi 2019). Therefore, although it is unclear whether correction
coefficient for unsteadiness in inundation flow with sediment is the same as that without sediment or not,
let us adopt 0.0043 to 0.0094 obtained by multiplying Ky by 1.2 to 2.6 times as friction factor K of
inundation flow without sediment in this study.

Figure 14 shows the verification result in Step 3. In the figure, the filled circle (@) is the ratio
Lpy/Ly of the maximum run-up distance Lyy of inundation flow without sediment evaluated from the
series solution of 5™ order approximation every friction factor K to the maximum run-up distance Ly of
inundation flow with sediment obtained by the run-up experiment, the solid line is a smooth curve
connecting the filled circles, and the range of friction factor K estimated in Step 2 is also presented.
From the figure, it can be seen that contrary to expectation that the maximum run-up distance a,, of
inundation flow without sediment is longer than that with sediment as seen from Figure 8, the series
solution to the maximum run-up distance gives slightly shorter (88%) to longer (106%) than the
experimental maximum run-up distance Lg. Using the series solution of higher order approximation, the
maximum run-up distance becomes longer. Therefore, although the maximum run-up distance estimated
from the series solution is slightly shorter than expected, it would be said that the validity of both the
series and analytical solutions derived in this study is confirmed.



COASTAL ENGINEERING PROCEEDINGS 2020 11

2.5
h,=0.162 m
2.0 — =0.127
pip,=1.122
= 1.5 T
S
>
~ 1.0
p
K
0.5 | Estimated range of K
in the experiment
0.0
0.000 0.002 0.004 0.006 0.008 0.010 0.012
K

Figure 14. Ratio Lru/Lr of the maximum run-up distance Lgw of inundation flow without sediment evaluated
every K (p/pw=1.0. 5% order approximation) to the maximum run-up distance L obtained by experiment.

As reasons for that the series solution to the maximum run-up distance a,, gives shorter than

expected, it would be considered that (1) friction factor K is kept constant in the run-up process, (2)
accuracy of the estimated value of K and the experimental values adopted are low. Now, I strongly
realize the necessity of experimental data more suitable for comparison with the solutions derived in
this study.

CONCLUSIONS

1.

Main results obtained by this study are that:

Series solutions to the tip position a(f) (Equations (26) and (29)), velocity U (=da/df) and
acceleration d’a/d* in the tip region of inundation flow with sediment on a movable bed uniformly
sloped under the condition that the friction factor K was not linked to the density p of inundation
water, and analytical solutions to a(¢) (Equation (45)), U(¢) (Equation (46)), d°a/dt* (Equation (47)),
the maximum run-up distance a,, and height R, (Equation (49)) under the condition that X was
linked to p were derived, and effects of p on them and run-up process were examined (Figures 3 to
12).

It was indicated that in the run-up analysis (including numerical simulation) of tsunami with
sediment on a movable bed under the condition of a constant K, even if the maximum run-up
distance a,, and run-up height R, could be predicted accurately, there was a possibility of
evaluating the run-up duration time inaccurately and vice versa (Figures 3 and 8), and linking K to
p was necessary to solve this matter. An expression for the relationship between K and p was also
presented (Equation (30)).

It was verified that the derived series and analytical solutions were useful to discuss the effects of p
on the run-up of tsunami with sediment on a movable bed through a comparison between the
experimental and theoretical maximum run-up distances.
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