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EFFECT OF THE DENSITY OF INUNDATION WATER ON TSUNAMI RUN-UP 

Hideo Matsutomi1 

Aiming for the advancement of historical and/or prospective tsunami scale evaluations, and focusing on the tsunami 
run-up, series solutions to the tip position a(t), velocity U (=da/dt) and acceleration d2a/dt2 in the tip region of 
inundation flow (unsteady flow) with sediment over a uniformly sloping bottom under the condition that the friction 
factor K is not linked to the density ρ of inundation water, and analytical solutions to a(t), U(t), d2a/dt2, the maximum 
run-up distance am and height Rm under the condition that K is linked to ρ are derived, and effects of ρ on them and 
run-up process are theoretically examined. It is indicated that (1) in the run-up analysis (including numerical 
simulation) of tsunami with sediment under the condition of a constant K, even if am and Rm can be predicted 
accurately, there is a possibility of evaluating the run-up duration time inaccurately and vice versa, and (2) linking K 
to ρ is necessary to solve this matter. An expression for the relationship between K and ρ is also presented. Moreover, 
it is verified that the derived series and analytical solutions are useful to discuss the effects of ρ on the run-up of 
tsunami with sediment through a comparison between the experimental and theoretical maximum run-up distances. 
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INTRODUCTION 
Aiming for the advancement of the tsunami load, and historical and/or prospective tsunami scale 

evaluations, the dependency of the density ρ of inundation water on hydraulic quantities such as 
incident Froude number Fri, and the dependencies of the maximum tsunami run-up distance, sediment 
deposit distance, etc. on ρ were examined through a small-scale hydraulic experiment (Matsutomi and 
Konno 2019). However, scale effects are feared, as is usual with a small-scale experiment. A solution to 
this matter is to examine target problems theoretically. 

In this study, focusing on the tsunami run-up, solutions to the tip position a(t), velocity U(t), run-up 
height Rm and so on of inundation flow (unsteady flow) with sediment over a uniformly sloping bottom 
are derived theoretically, effects of ρ on them and run-up process of inundation flow are examined, and 
knowledge concerning them is enhanced as a result. 

THEORY 
Initial condition (incident bore condition at a shoreline) of objective tsunami inundation flow and 

the definition of main symbols are shown in Figure 1. The incident inundation flow is Shen et al.′s 
(1963) and Peregrine et al.′s (2001) dam break flow which can express tsunami or wave run-up and 
backwash processes and has been utilized for, e.g., evaluations of the volume of wave overtopping 
(Peregrine et al. 2001) and sediment movement in the swash zone (Kelly et al. 2010). Hydraulic 
resistance is introduced after Whitham (1955) to take sediment in the tip region (=a(t)-ξ(t). See Figure 
1), and inundation flow velocity U (=da/dt) in the tip region is assumed to be a function of time alone. 

The conservation law of mass M in the tip region of inundation flow with the bottom friction (or 
sediment) could be expressed as follows (refer to Matsutomi 1985): 
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where t is the time, x the distance axis along the slope, xs(t) and hp(t) the tip position and local water 
depth of inundation flow without sediment respectively, ξ(t) and ρ the rear position and the density of 
inundation water of the tip region of inundation flow with sediment respectively. Although inflow mass 
from the rear position ξ(t) into the tip region is that of water without sediment, it is assumed in this 
model that density of the inflow water becomes the same as the density ρ of inundation water in the tip 
region immediately after the inflow by taking sediment from the bottom (a movable bed) and the same 
volume of water without sediment as volume of sediment taken from the bottom is left on the bottom. 

When K is a friction factor of inundation flow on a movable bed (Matsutomi 2019), the 
conservation law of momentum P in the tip region of inundation flow could be expressed as follows: 
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where ρw is the density of water without sediment, g the gravitational acceleration, H(t) the inundation 
water depth at ξ(t), i the bottom slope and a(t) the tip position of inundation flow with sediment. In 
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Figure 1. Initial condition and definition of main symbols. 

 
Equation (2), the right side first term includes inflow of momentum originated from the bottom 
sediment. As the right side second term is a total hydrostatic pressure of inundation water without 
sediment, a discontinuity of total hydrostatic pressure at ξ(t) may be imagined. In this study, it is 
assumed that as the density ρ of inundation water in the tip region is a space averaged, the total 
hydrostatic pressure at ξ(t) is continuous. 

Using the relation P=MU derived from the stated assumption that inundation flow velocity U(t) in 
the tip region is a function of time alone, Equations (1) and (2) become 
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Inundation water depth hp and inundation flow velocity up of Shen et al.′s and Peregrine et al.′s 
dam break flow at an arbitrary time t and position x are expressed as follows: 
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where c1=√gh1 and h1 an initial constant stored water depth at a dam (an incident bore height at a 
shoreline). Therefore, the inundation water depth H(t) and inundation flow velocity U(t) at the rear 
position ξ(t) of the tip region of inundation flow become 
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From Equations (4) and (7), the tip position xs of inundation flow without sediment and the rear 
position ξ(t) of inundation flow with sediment are expressed as follows: 
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Therefore, the basic equation for the tip position a(t) of inundation flow with sediment becomes 
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Equation (10) is final basic equation to be solved in this study and is solved under two different 
conditions that the friction factor K is not linked (series solution) and is linked (analytical solution) to 
the density ρ of inundation water, without introducing a threshold of sediment movement. 

When inundation flow has no sediment, ρ/ρw=1 and Equation (8) is derived from Equation (10). 

SERIES SOLUTIONS 
After Whitham (1955), let us introduce the following new variables to solve Equation (10) without 

linking the density ρ of inundation water to the friction factor K of inundation flow with sediment on a 
movable bed: 
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where α 0 and indicates a dimensionless distance between the tip position of inundation flow without 
and with sediment. By introducing these new variables, Equation (10) becomes 
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Further, let us introduce the following variable conversions after Whitham (1955): 

d
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where p (0≤p≤2) indicates a dimensionless flow velocity. These variable conversions lead to the 
following relations: 
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Therefore, Equation (13) becomes the following ordinary differential equation for f(p): 
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Let us assume that the dependent variable f(p) can be expanded into a power series of p as follows: 
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From the initial condition that α=dα/dt=0 at τ=0 (t=0, p=0), b0=b1=0 is obtained. Substituting 
Equation (19) into Equation (18), b2=b3=0 and the following identical equation are obtained: 
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Solving this identical equation, Equations (21) to (25) are obtained as the coefficients b4 to b8: 
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From the above results, the following series solutions to the tip position a(t), velocity U(t) and 
acceleration d2a/dt2 of inundation flow with sediment on a movable bed are obtained for any h1, i, K: 
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Examples of Series Solutions and Discussions 
Figure 2 shows an example of convergence of Equations (26) and (29) which are the series solution 

to the tip position a(t) of inundation flow with sediment, where the friction factor K is not linked to the 
density ρ of inundation water. From the figure, it can be seen that adopting the 5th order approximate 
solution to the coefficient b8, the series solution to a(t) converges with enough accuracy, e.g., the 
difference between the 4th and 5th order approximate solutions to the maximum run-up distance am is 
around 4.6%. Therefore, the 5th order approximate solutions are adopted below. Figure 2 also indicates 
that the trajectory of the tip position a(t) in the run-up and backwash processes is not axisymmetric. 

Figures 3 and 4 show the dependencies of the tip position a(t) evaluated from the 5th order 
approximate solution on the friction factor K and the density ρ (or ρ/ρw), respectively. From the figures, 
it can be seen that (1) not only the maximum run-up distance am but also the time required for the 
maximum run-up distance and the duration time of a(t)>0 depend on the friction factor K, (2) when 
only the density ρ changes independently of the friction factor K, influence of the density ρ on the 
maximum run-up distance am is small, compared with the experimental results (Matsutomi and Konno 
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Figure 2. A convergence example of the series solution to the tip position a(t) of inundation flow. 

 

 
 

Figure 3. Dependency of the tip position a(t) on the friction factor K of inundation flow (5th order approximation). 

 

 
 

Figure 4. Dependency of the tip position a(t) on the density ρ of inundation water (5th order approximation). 

 
2019) (see Figure 8 discussed later). The latter (2) strongly suggests that linking the friction factor K to 
the density ρ is important in the estimation of the tip position a(t) of inundation flow with sediment over 
a movable bed. 

Figures 5 to 7 show examples of time histories of the tip position a(t) and rear position ξ(t) of the 
tip region, inundation water depth H(t) at ξ(t), inundation flow velocity U(t) and acceleration d2a/dt2 in 
the tip region and incident Froude number Fri (which is always positive, but is displayed considering the 
direction of U(t)) at ξ(t), evaluated from the 5th order approximate solutions. Although the time histories 
of Fri and d2a/dt2 at early stage are omitted in Figure 7, they asymptotically approach ±∞ respectively. 
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Figure 5. Time histories of the tip position a(t) and rear position ξ(t) of the tip region (5th order approximation). 

 

 
 

Figure 6. Time history of the inundation water depth H(t) at the rear position ξ(t) (5th order approximation). 

 

 
 

Figure 7. Time histories of the inundation flow velocity U (=da/dt) and acceleration d2a/dt2 in the tip region, 
and incident Froude number Fri at the rear position ξ(t) (5th order approximation). 

 
From the figures, it can be seen that rapidly, (1) the tip region (=a(t)-ξ(t)) expands, (2) inundation water 
depth H(t) at ξ(t) increases in a upward convex curved shape, (3) acceleration d2a/dt2 and incident 
Froude number Fri decrease and gradually approach to -ig and -∞ respectively in the series solutions. 

ANALYTICAL SOLUTIONS 
In the preceding chapter, it was pointed out that linking the friction factor K to the density ρ of 

inundation water was important in the run-up analysis of inundation flow with sediment on a movable bed. 
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According to Matsutomi (2019), the density ρ of inundation water can be estimated by both the 
friction factor K of inundation flow with sediment on a movable bed and incident Froude number 
Fri of inundation flow as shown in Equation (30): 

21 ri

w

KF
                                                                  (30) 

Therefore, discussion of the density ρ of inundation flow with sediment on a movable bed is nothing but 
that of the friction factor K of inundation flow. 

In this study, incident Froude number Fri is defined by adopting inundation flow velocity U(t) in 
the tip region and long wave celerity C at the rear position ξ(t) of the tip region as shown in Equations 
(31) and (32). 
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Equation (33) is derived from Equations (31), (32) and (9): 
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Therefore, the friction factor K can be expressed as follows: 

2

2
1

2 4
2111

U
igtUc

F
K w

ri

w                                           (34) 

Substituting Equation (34) into Equation (10), Equation (35) is obtained as the basic equation, 
without having the friction factor K, to be solved in this chapter: 
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After the preceding chapter, let us introduce the following new variables without having the friction 
factor K of inundation flow with sediment on a movable bed to solve Equation (35): 
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Using these new variables, Equation (35) becomes 
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Introducing the variable conversions of Equations (14) and (15) as the preceding chapter, Equation 
(38) becomes 
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Equation (39) is solved assuming a series solution of p as Equation (19). 
From the initial condition that α=dα/dt=0 at τ=0 (t=0, p=0), b0=b1=0 is obtained. Substituting 

Equation (19) into Equation (39), the following identical equation is obtained: 
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Solving the above identical equation, Equations (41) and (42) are obtained as the coefficients of series 
solution: 
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These results indicate that analytical solution can be derived without assuming the series solution to f(p). 
Therefore, the tip position a(t) of inundation flow with sediment  is expressed as follows: 
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From the above results, the following analytical solutions to the tip position a(t), velocity U(t) and 
acceleration d2a/dt2 of inundation flow with sediment on a movable bed are obtained for any h1 and i: 
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When the density ρ is a constant, trajectories of the tip position a(t) and inundation flow velocity U(t) 
are a parabola and a linear decreasing monotonically, respectively. 

From Equations (6), (9) and (46), the following is obtained as the inundation water depth H(t) at 
the rear position ξ (t) of the tip region, which is a parabola and discussed later: 
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The following analytical solutions to the maximum run-up distance am and height Rm of inundation 
flow with sediment on a movable bed are also obtained for any h1 and i: 
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Examples of Analytical Solutions and Discussions 
Figure 8 shows the dependency of the tip position a(t) evaluated from the analytical solution 

(Equation (45)) on the density ρ (or ρ/ρw) of inundation water. In reality, the density ρ as well as the 
friction factor K of inundation flow depends on the time t. In the figure, the solid line is nothing but 
Equation (8) for the tip position xs of frictionless inundation flow which cannot take in sediment from a 
movable bed. The figure tells that as the density ρ becomes high, not only the maximum run-up distance 
am of inundation flow but also the time required for the maximum run-up distance am and the duration 
time of a(t)>0 become short. These tendencies are the same as those in case of that the friction factor K 
increases as shown in Figure 3. It can be also seen through a comparison with the results shown in 
Figure 3, which are obtained by adopting the friction factor K having a constant value averaged over the 
whole process of run-up and backwash of inundation flow, that the results shown in Figure 8 indicate 
the run-up duration time becomes short for the maximum run-up distance am. This suggests that it is 
necessary to adopt friction factor K changing every moment in accordance with the situation of 
inundation flow with sediment. 

Figure 9 shows the dependency of the dimensionless run-up height Rm/h1 evaluated from the 
analytical solution (Equation (49)) on the density ρ (or ρ/ρw) of inundation water, using the bottom slope 
i as a parameter. The figure tells that the dimensionless run-up height Rm/h1 strongly depends on both 
the density ρ and the bottom slope i. 

Figures 10 to 12 show examples of time histories of the tip position a(t) and rear position ξ(t) of the 
tip region, inundation water depth H(t) at ξ(t), inundation flow velocity U(t) and acceleration d2a/dt2 in 
the tip region and incident Froude number Fri at ξ(t), evaluated from the analytical solutions. In these 
time histories, there is an attention point that the time history of the inundation water depth H(t) at ξ(t) 
is a downward convex curved shape (a upward convex curved shape in the series solution) and the 
inundation water depth H(t) becomes a physically impossible large value after a midway of backwash 
process of inundation flow. One of the reasons for such a tendency of the inundation water depth H(t) 
lies in the introduction of Equation (30). When average density over the run-up process of inundation 
flow is adopted as the density ρ in Equation (30), the friction factor K (<1/Fri

2) in Equation (30) 
becomes small (large) with increase (decrease) of incident Froude number Fri. Therefore, compared 
with the case of the series solutions in which the friction factor K is a constant value, the inundation 
flow velocity U(t) in the tip region is large in early stage of run-up process and is quickly decreased 
near the maximum run-up distance am (see Figures 7 and 12), and as the result, the time history of 
inundation water depth H(t) becomes a downward convex curved shape. As seen from the fact that 
trajectory of the tip position a(t) is a parabola (see Equation (45)), the above situation of inundation 
flow velocity U(t) is the same even in the backwash process. For this reason, when inundation flow 
velocity U(t) decreases from 0 in the backwash process, inundation water depth H(t) increases as 
expressed in Equation (48) in response to the decreasing inundation flow velocity U(t). 



 COASTAL ENGINEERING PROCEEDINGS 2020 
 
8

 

 
 

Figure 8. Dependency of the tip position a(t) of inundation flow on the density ρ (or ρ/ρw) of inundation water 
(analytical solution). 

 

 
 

Figure 9. Dependency of the dimensionless run-up height Rm/h1 on the density ρ (or ρ/ρw) and bottom slope i 
(analytical solution). 

 

 
 

Figure 10. Time histories of the tip position a(t) and rear position ξ(t) of the tip region (analytical solution). 

 
From the above, although the application range of the analytical solutions is restricted to a midway 

of backwash process of inundation flow, the application limit just hinder a part of the aims of this study. 
However, further improvements of both this approximate model of the tip region and operation of 
Equation (30) are expected. 

VERIFICATION OF SOLUTIONS 
A verification of validity of the series and analytical solutions is carried out through a comparison 
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Figure 11. Time history of the inundation water depth H(t) at the rear position ξ(t) (analytical solution). 

 

 
 

Figure 12. Time histories of the inundation flow velocity U (=da/dt) and acceleration d2a/dt2 in the tip region, 
and incident Froude number Fri at the rear position ξ(t) (analytical solution). 

 
with experimental data. However, the verification is not strict because of lacks of experimental data 
under the same condition as the solutions. 

Matsutomi and Konno (2019) presented some experimental data on the maximum run-up distance 
am of inundation flow with or without sediment. Table 1 and Figure 13 show a part of the experimental 
conditions and data, and outline of flume used in the experiments, respectively. In the table, the 
experimental case number is the same as that used in the reference (Matsutomi and Konno 2019), hD the 
bottom height of water storage tank from the ground level, LU the length of water storage tank, hU the 
initial stored water depth in the water storage tank, hT the initial thickness of soil layer spread in the 
horizontal flume, LS the initial length of the spread soil region, hS the height of the first short mild 
upward slope end from the ground level, i (=S3 in Figure 13) the bottom slope of the second long mild 
upward slope where inundation flow with or without sediment runs up. 

Concrete verification procedure consists of the following three steps: 
Step 1: Estimate the stored water depth h1 from Equation (49) by adopting the values of ρ/ρw=1.122 

(average value of four times), bottom slope i=0.127, maximum run-up distance am=Rm/i=LR= 
1.06 m (average value of four times), where the definition of the experimental maximum run-up 
distance LR is presented in Figure 13. 

Step 2: Estimate friction factor K in the case that inundation flow without sediment on a fixed bed under 
the condition of h1 estimated in Step 1 runs up the slope, on which sand with grain size 0.85 mm 
to 2 mm is pasted, used in the experiment (Matsutomi and Konno 2019). 

Step 3: Examine whether the maximum run-up distance LRW is longer than LR=1.06 m or not, where LRW 
is estimated by substituting ρ/ρw=1.0, i=0.127, h1 estimated in Step 1 and K estimated in Step 2 
into the series solution (Equations (26) and (29)) of 5th order approximation to the maximum 
run-up distance am of inundation flow without sediment. This examination can also be regarded 
as an integrity verification of the analytical and series solutions. 
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Table 1. Experimental conditions and results on the run-up of 
inundation flow with sediment (Matsutomi and Konno 2019). 

Case hD 
(m) 

LU 
(cm) 

hU 
(cm) 

hT 
(cm) 

LS 
(m) 

hs 
(cm) i=S3 

ρ 
(g/cm3) 

LR 
(cm) 

2-2 

1.2 30 25 6 1.55 23 0.127 

1.092 117 
2-4 1.102 101 
2-6 1.136 95 
2-8 1.158 111 

Mean - - - - - - - 1.122 106 
 
 

 
 

Figure 13. Outline of experimental flume (sidewalls are omitted), its frontal view (right side), arrangement of 
measuring instruments and definition of symbols. 

 
As the estimated value of h1 in Step 1, 0.162 m can be obtained. 
As friction law for inundation flow (unsteady flow) without sediment is mostly unknown even on a 

fixed bed, the estimation of friction factor K in Step 2 is a very difficult problem. In this study, at first, 
friction factor K0 for a steady flow without sediment on a fixed bed is estimated using a conventional 
friction law for a steady flow without sediment on a fixed bed, and then targeted friction factor K is 
estimated considering a correction coefficient for unsteadiness of inundation flow to K0. 

The following is adopted as a conventional friction law for a steady flow without sediment in a 
wide rectangular open channel with a rough fixed bed: 

2
100 log75.50.6 si khK                                                     (50) 

where hi is the water depth of steady flow and ks the equivalent sand grain roughness. 
When the maximum inundation water depth (=4h1/9=0.0718 m) at x=0 in the run-up process of 

inundation flow as hi and representative grain size 1.0 mm (which corresponds to the median particle 
diameter) of sand pasted on the second long mild upward slope as ks are adopted in Equation (50), 
K0=0.0036 can be obtained. 

The ratio of friction factor of inundation flow with sediment to that of a steady flow with sediment 
on a movable bed when acquiring the experimental data of the maximum run-up distance LR adopted in 
this study was 1.2 to 2.6 (Matsutomi 2019). Therefore, although it is unclear whether correction 
coefficient for unsteadiness in inundation flow with sediment is the same as that without sediment or not, 
let us adopt 0.0043 to 0.0094 obtained by multiplying K0 by 1.2 to 2.6 times as friction factor K of 
inundation flow without sediment in this study. 

Figure 14 shows the verification result in Step 3. In the figure, the filled circle (●) is the ratio 
LRW/LR of the maximum run-up distance LRW of inundation flow without sediment evaluated from the 
series solution of 5th order approximation every friction factor K to the maximum run-up distance LR of 
inundation flow with sediment obtained by the run-up experiment, the solid line is a smooth curve 
connecting the filled circles, and the range of friction factor K estimated in Step 2 is also presented. 
From the figure, it can be seen that contrary to expectation that the maximum run-up distance am of 
inundation flow without sediment is longer than that with sediment as seen from Figure 8, the series 
solution to the maximum run-up distance gives slightly shorter (88%) to longer (106%) than the 
experimental maximum run-up distance LR. Using the series solution of higher order approximation, the 
maximum run-up distance becomes longer. Therefore, although the maximum run-up distance estimated 
from the series solution is slightly shorter than expected, it would be said that the validity of both the 
series and analytical solutions derived in this study is confirmed. 
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Figure 14. Ratio LRW/LR of the maximum run-up distance LRW of inundation flow without sediment evaluated 
every K (ρ/ρw=1.0. 5th order approximation) to the maximum run-up distance LR obtained by experiment. 

 
As reasons for that the series solution to the maximum run-up distance am gives shorter than 

expected, it would be considered that (1) friction factor K is kept constant in the run-up process, (2) 
accuracy of the estimated value of K and the experimental values adopted are low. Now, I strongly 
realize the necessity of experimental data more suitable for comparison with the solutions derived in 
this study. 

CONCLUSIONS 
Main results obtained by this study are that: 

1.     Series solutions to the tip position a(t) (Equations (26) and (29)), velocity U (=da/dt) and 
acceleration d2a/dt2 in the tip region of inundation flow with sediment on a movable bed uniformly 
sloped under the condition that the friction factor K was not linked to the density ρ of inundation 
water, and analytical solutions to a(t) (Equation (45)), U(t) (Equation (46)), d2a/dt2 (Equation (47)), 
the maximum run-up distance am and height Rm (Equation (49)) under the condition that K was 
linked to ρ were derived, and effects of ρ on them and run-up process were examined (Figures 3 to 
12). 

2.     It was indicated that in the run-up analysis (including numerical simulation) of tsunami with 
sediment on a movable bed under the condition of a constant K, even if the maximum run-up 
distance am and run-up height Rm could be predicted accurately, there was a possibility of 
evaluating the run-up duration time inaccurately and vice versa (Figures 3 and 8), and linking K to 
ρ was necessary to solve this matter. An expression for the relationship between K and ρ was also 
presented (Equation (30)). 

3.     It was verified that the derived series and analytical solutions were useful to discuss the effects of ρ 
on the run-up of tsunami with sediment on a movable bed through a comparison between the 
experimental and theoretical maximum run-up distances. 
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