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Wave monitoring is a time consuming and costly endeavour which, despite best efforts, can be subject to occasional
periods of missing data. This paper investigates the application of machine learning to create ”virtual” wave height
(Hs), period (Tz) and direction (Dp) parameters. Two supervised machine learning algorithms were applied using long
term wave parameter datasets sourced from four wave monitoring stations in relatively close geographic proximity.
The machine learning algorithms demonstrated reasonable performance for some parameters through testing, with
Hs performing best overall followed closely by Tz; Dp was the most challenging to predict and performed relatively
the poorest. The creation of such ”virtual” wave monitoring stations could be used to hindcast wave conditions, fill
observation gaps or extend data beyond that collected by the physical instrument.
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INTRODUCTION
Recording and understanding wave conditions is important for many ocean and coastal activities, from

recreational fishing and boating, to shipping, disaster management and renewable energy. Long term wave
monitoring is also important for understanding the wave climate which can help inform coastal engineering
design and beach management. Wave monitoring is a costly and time-consuming exercise and despite best
efforts can suffer from data loss due to instrument malfunction or damage. In some cases, near real-time
wave condition data loss can be of immediate concern to the data user, depending on the application, for
example safe ship transit (Barnes et al. (2015)). Often, wave monitoring sites provide in-situ data used
for high-resolution wave model verification or data assimilation (e.g. WAVEWATCH Tolman and Group
(2014), SWAN Booij et al. (1999)). Such models can supplement wave monitoring networks, forecast
conditions, and provide estimates of conditions for a large spatial area, but they require observations for
calibration and validation. Short-term wave monitoring deployments are also common, they can range
in time from a few days to years depending on the requirements of the user. Some applications may
include coastal engineering works, scientific investigations, dredging or ship-to-ship transfer. Short-term
deployments can be necessary if there are no long-term monitoring sites nearby, or in nearshore areas where
islands and reefs affect wave conditions.

The aim of this work is to investigate whether machine learning (ML) approaches can be used to help
fill gaps, extend datasets, and create virtual monitoring sites to continue estimating wave conditions after
physical monitoring has ceased. A merit of ML approaches is, unlike physics-based approaches, they do not
necessarily need other datasets such as bathymetry to develop them. The effective application of such ML
approaches could also help inform future monitoring site positioning as discussed in Londhe and Panchang
(2007). The use of ML for estimating wave conditions has been the subject of some research, particularly
in recent years, as it has grown in popularity. Several papers have focused on reconstruction or correlation
using ML algorithms, with reasonable results (Abhigna et al. (2018), Berbić et al. (2017)). This work
aims to build on that research and establish the suitability of such techniques in the context of nearshore
applications and for developing virtual wave monitoring sites. In general, the application of ML techniques
in this field has been focused on providing forecasts, particularly for the growing renewable energy sector
(Hatalis et al. (2014), Cornejo-Bueno et al. (2016)). Increasingly more complex ML approaches are being
applied as different techniques are leveraged to improve performance (Salah et al. (2016)) or facilitate more
widescale applicability (Pirhooshyaran and Snyder (2020)).

The specific objective of this work is to establish whether offshore long-term monitoring sites can be
used as inputs into ML models to provide accurate estimates of wave conditions at nearshore monitoring
sites (virtual wave monitoring). An application of these techniques is also presented by creating a virtual
wave monitoring site for a short-term nearshore dataset, extending it beyond the deployment of the physical
wave monitoring device.

STUDY AREA & DATA
The study area is located on the South East Queensland Coast, Australia (Figure 1). The region has

several wave monitoring sites both long and short-term, operated by state governments. All the sites are
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situated on the continental shelf, several in shallow waters near the coast (< 25m depth) and two in deeper
water (> 50m), the approximate depth of long-term monitoring sites is outlined in Table 1.

Figure 1: Map depicting wave monitoring locations in the study area with available wave data.

Table 1: Long-term monitoring sites approximate depth (short-term monitoring site depth is unknown).

Monitoring Site Depth (m)
Brisbane 80
Byron Bay 62
Tweed Heads 25
Gold Coast 16

The wave monitoring data includes the following wave parameters: zero up-crossing significant wave
height (Hs), mean wave period (Tz), maximum wave height (Hmax), peak wave period (Tp) and spectrally
derived peak wave direction (Dp). Each of the wave monitoring sites collects data using a directional wave
rider buoy developed by Datawell in the Netherlands (DES (2018)). Although some sites may use a slightly
different measurement technology (i.e. GPS or accelerometer), differences outside of gross errors are typi-
cally minimal (Andrews and Peach (2019)). The data used for analysis was between 2000 and 2019. Quality
control was undertaken to remove erroneous data and consisted of three key elements: automated identi-
fication of spikes, inter-site comparison, and visual inspection. Spikes were identified using a threshold,
above which values are likely to be erroneous. This threshold was established by multiplying the standard
deviation for a given month of Hs parameter data by five, as used by the Queensland Government wave
monitoring program (Andrews and Peach (2019)). Comparisons between monitoring sites were undertaken
both for quality control and to analyse the wave climate (discussed in the next section). After quality con-
trol, the final dataset used for ML was a coincident time series of data at 1-hour frequency interval between
all the monitoring sites. Approximately 64% of the possible data (assuming no instrument outages) over
a period of 17 years was usable for training the ML models and is displayed in Figure 2. This period was
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selected since all wave monitoring data at the chosen sites recorded wave direction, and it is a desirable
parameter. In addition, wave parameters for the time period selected are all recorded at approximately a 30
minute or 1-hour frequency, whereas some of the older historical data has a variable frequency thus making
comparison more challenging. For consistency a 1-hour frequency interval was used to develop the ML
models.

Figure 2: Timeseries of wave parameters used for training, after quality control.

METHODOLOGY
The methodology outlined below is broken down into several components in the order they were con-

ducted. Put simply, the objective is to ’map’ wave parameters from various source locations to a parameter
at a single target location, an example configuration is depicted in Figure 3. Notice that parameters from the
two source locations (in this case the monitoring locations of Byron Bay and Brisbane) are the input and a
single parameter (Hs) as Tweed Heads is the output. An initial investigation demonstrated that predicting
a single parameter performs better, which is corroborated in the literature (Berbić et al. (2017), Rao et al.
(2013)).

Brisbane
(Hs, Tz,
Tp, Dp)

Source

Byron Bay
(Hs, Tz,
Tp, Dp)

Tweed
Heads
(Hs)

Target

Figure 3: Diagram and data flow from Source locations to Target locations, an example for Tweeds Heads,
using the Brisbane and Byron Bay monitoring sites.

Wave Climate Analysis
Wave climate analysis was undertaken for Hs, Tz and Dp wave parameters, to establish the appropriate

machine learning techniques and help with data quality control. Specifically, this analysis helps understand
some of the key differences between the various parameters at different locations, informing which ML
techniques might be suitable. Figure 4 shows the normalised distributions for three wave sites; two offshore
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(Brisbane and Byron Bay) and one nearshore (Tweed Heads). As we might expect the distributions for the
offshore monitoring sites are more similar than the nearshore due to the effect of the changing bathymetry
on waves as they approach the coast. The Tweed Heads monitoring site is in shallower water and there-
fore waves measured at that monitoring location are subject to transformations due to varying depth (e.g.
shoaling and refraction). This location also has an island and reef system to the south, which provides some
sheltering from waves arriving from that direction. The Tz parameter is more similar across all the sites, this
is expected as wave period is theoretically constant from offshore to nearshore, however some differences
occur due to each site’s position (as each could feasibly be impacted by slightly different, localised forcing
conditions). Wave direction is perhaps one of the most important parameters, especially when considering
nearshore locations in shallow water.

Figure 4: Wave parameter normalized distributions

Feature Engineering
One of the first steps in choosing the type of ML approach to consider is the type of data used when

training a ML model. Often data will need to be transformed or transposed to a format suitable for ML and
to promote a good result, this process is referred to as Feature Engineering. In this case our objective is to
create numerical predictions, therefore regression ML algorithms were selected. Wave parameter values for
training typically need to be standardised or normalised, to allow comparisons of the differing parameters
which have different units (e.g. metres to seconds), and doing so can improve gradient descent performance



COASTAL ENGINEERING PROCEEDINGS 2020 5

and therefore speed of convergence (Pedregosa et al. (2011)). There are also some specific considerations
for directional parameters, for example wave direction can often be an issue for data driven techniques due
to its circular nature (north is both 0 and 360 degrees). It was therefore necessary to convert the angles into
vectors, making wave direction two parameters (cosine(Dp) and sine(Dp)).

Machine Learning Model Selection and Training
Two ML models were selected based on a review of the available literature, with consideration of the

available data and wave climate; a neural network (Deo et al. (2001), Londhe and Panchang (2007), Berbić
et al. (2017)) and decision trees (James et al. (2017), Pirhooshyaran and Snyder (2020)). Both approaches
have both been applied with some success, in this case using a regression . The Multilayer Perceptron
(MP) neural network was applied using the scikit-learn python library (Pedregosa et al. (2011)), in the
configuration in Figure 5. It was necessary to use more than one hidden layer as this is required for non-
linear problems, a final configuration was selected through iterative testing of a 3-year subset of the data.
The best performing configuration was 5 hidden layers each containing 50 weights (Hn in Figure 5), had
the best overall skill metrics as discussed in detail in the results section.
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Figure 5: Neural Network Configuration. Where In represent the input parameters from the source moni-
toring sites, Hn the hidden weights and O the single output parameter at the target site.

The Random Forest (RF) regression decision tree approach was also applied using the scikit-learn
Python library (Pedregosa et al. (2011)). Model parameters were chosen iteratively by testing a 3-year
subset of the data, this helped to quickly identify the best model configurations before undertaking training
on the full dataset. For the RF approach the number of estimators was established at 200 per validation
iteration. Typically, more estimators produces a better result, but there is often a point of diminishing
returns where the model size is too large making training times prohibitively long.

Cross-Validation
The entire available timeseries (where all three monitoring sites had overlapping data) was split, and an

independent timeseries (excluded from testing and training) of approximately 6 months was kept aside for
assessing model performance. Time series split cross-validation was used for model training, this approach
does not treat the data as identically distributed as other cross-validation like Kfolds approaches (Pedregosa
et al. (2011)). Time series split cross-validation trains the model for a discrete period of data (e.g. 1 month
at a time) and then iterates through the data by a defined period until the dataset is exhausted. Through
testing, 3 months was chosen as the cross-validation time window; this was selected as a balance between
the minimum number of data points required by the model to train, and consideration of seasonal variability.
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RESULTS AND DISCUSSION
When assessing model performance, an important consideration is model overfitting, this can often

lead to ML models that predict closer to the mean of the training data than intended, affecting performance.
To help assess this, storm conditions were identified in the independent data used for assessment. They
provide a good test of performance as they often have values that deviate from the mean. Storm conditions
were identified using a threshold defined by the monitoring site operator (Queensland Government) for
the target wave monitoring site (e.g. records where Hs is greater than 2.5 meters at Tweed Heads, DES
(2017)). This threshold is defined by an assessment of historical wave conditions at the monitoring location.
Assessing performance during storms also helps assess the suitability of such ML techniques to predict
those conditions; some data users are also particularly interested in storm conditions.

Several performance metrics were selected to assess model performance, these are based on those com-
monly used in the literature for assessing numerical model performance (Alexandre et al. (2015), Saulter
(2012), James et al. (2017)).

BIAS =
1
N

N∑
i=1

(Oi − S i) (1)

RMS E =

√√√
1
N

N∑
i=1

(Oi − S i)2 (2)

Where:
O = Observed
S = Simulated

Overall Performance Long Term Wave Site
Overall performance is important in the context of developing a virtual wave monitoring site for mul-

tiple parameters, as this can provide an indication of confidence in a particular wave parameter in reference
to another. In other words, you might have more confidence in the prediction of one parameter over an-
other. The normalized Taylor diagram in Figure 6 displays a comparison of overall performance. Both ML
modelling algorithms performed comparably, with Hs predictions outperforming the others. Peak wave
direction is noticeably the worst performing parameter.

Figure 6: Normalized Taylor diagram comparing the performance of different parameters, storm condi-
tions are denoted with an s. Red markers denote Hs, Orange Tz, and Grey Dp. The RF models are denoted
by circles and MP with triangles.
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Table 2: Machine Learning Model Performance for Tweed Heads.

Model Hs (m) Hs (m), Storm Tz (s) Tz (s), Storm Dp (◦) Dp (◦), storm
MP (BIAS) 0.02 -0.05 -0.06 0.0 -0.21 -1.38
RF (BIAS) 0.01 -0.08 -0.06 -0.03 -0.13 -0.49
MP (RMSE) 0.16 0.26 0.49 0.46 14.77 12.42
RF (RMSE) 0.17 0.3 0.51 0.47 14.75 12.93

Hs is often one of the better performing parameters from similar research (Londhe and Panchang
(2007)), which was also present in this study. The overall model performance is good, with the MP approach
slightly outperforming the RF as shown in Table 2. The overall performance statistics (Table 2) also include
storm conditions observed in the month of February associated with the passage of tropical cyclone (TC)
Oma.

Model performance for storm conditions during TC Oma was slightly reduced, both MP and RF
demonstrated similar performance. One consideration worth further exploration is the instability of ob-
servations for wave height, in other words the noise in the wave statistic calculated from the instrument and
can be observed in late February in Figure 7. Performance may yet improve further if a 3 hourly average
was used instead of 1 hourly observations.

Figure 7: (left) A timeseries plot of the observed Hs, MP and RF for Tweed Heads. (right) A scatter plot
depecting a comparison between each ML model and the observed Hs for Tweed Heads.

Performance of the two ML approaches is again similar for mean wave period with comparable RF
and MP. Consideration should be given to the negative bias present in overall results, which may suggest
some slight overfitting, but this theory is counteracted somewhat by improved performance during storm
conditions. Notably there is a very slight improvement in performance for storm conditions as outlined
in Table 2 and can be observed at the end of February in Figure 8. This slight improvement may be due
to waves caused by the storm conditions dominating the measured wave periods that make up the hourly
average, but it is difficult to infer too much as the difference to the overall performance is small.

Figure 8: (left) A timeseries plot of the observed Tz, MP and RF time series for Tweed Heads. (right) A
scatter plot depecting a comparison between each ML model and the observed at Tweed Heads.

Wave direction is a challenging parameter to predict, mean wave direction would have been a preferred
parameter as it is notably more ’stable’ (less prone to sudden shifts by its nature). Peak wave period is based
on the direction of the peak wave energy, which can fluctuate, especially in multimodal sea conditions.
However, mean wave direction was not available for all wave monitoring sites as a parameter and therefore
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could not be used. In addition, as previously mentioned, it was necessary to encode the direction as two
parameters, and predicting two output labels in ML can be more challenging than a single parameter.

Model performance for wave direction was perhaps not as good as for some of the other parameters,
but is still reasonably close to the observations, with an RMSE of less than 15 degrees. For reference
the quoted resolution of directional wave monitoring by the manufacturer is between 0.1 and 1.5 degrees
depending on the instrument used (Datawell (2012a), Datawell (2012b), Datawell (2012c)). Performance
suffered most during periods when the peak direction fluctuated over a short period of time, in particular
this can be observed during May 2019 in Figure 9.

Figure 9: (left) A timeseries plot of the observed Dp, MP and RF time series for Tweed Heads. (right) A
scatter plot depicting a comparison between each ML model and the observed at Tweed Heads.

Performance during storm conditions is markedly improved, this is expected as wave energy from
storms typically dominate the directional wave spectrum. However, of particular interest in the assessment
of storm conditions, is an apparent leading of the ML model results to the observations (a change in direction
is seen in the prediction prior to being seen in the observations). This is potentially a result of time not
being explicitly included in either of the ML approaches used here and where it has been included in
cross validation, it was only during a 3-month time window. Therefore, it is likely not granular enough to
accommodate sudden shifts in peak wave direction.

An application of ML to extend a short term deployment
For comparison ML models were also developed for a short-term monitoring site (Bilinga in Figure

1). The methodology is similar to that previously outlined, except for the time cross-validation period,
which was reduced to 3 days due to the limited availability of data. Also due to the limited data, the
entire timeseries was used for the training dataset with the nearby Tweed Heads monitoring site used for
comparison and validation. The ML models were used to extend the Bilinga wave site data for 3 years, wave
heights for the Tweed Heads monitoring site are generally slightly larger than those for Bilinga (Figure 10),
despite this it offers a reasonable proxy for wave conditions at Bilinga, due to its close geographic proximity.

Figure 10: A time series of the virtual wave monitoring results for Bilinga, extending the Hs parameter and
compared with Tweed Heads Hs for the same period.

The performance of the ML models in Figure 11 below show that generally the MP model outperformed
the RF model, with a wider margin than demonstrated in the previous comparison with the long-term mon-
itoring site at Tweed Heads. Clear differences can be observed where wave heights were greater than 3
metres between the Tweed Heads observations and RF model. This is a symptom of one of the limitations
of the RF regression method, it is unable to predict values outside of the training data range, in this case
it is limited to wave heights just over 3 metres. This phenomenon was not observed in the model con-
structed from the long-term wave monitoring site, likely because a much larger range of possible values
was available, but it is a significant consideration when constructing models for short term sites.
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Figure 11: (A) A scatter plot comparing overlapping observations of Hs between Bilinga and Tweed Heads.
(B) A comparison of simluated Hs at Bilinga using the MP and RF approach compared with observations
at Tweed Heads (Note: The data used in A is a different time to B).

CONCLUSIONS
Although ML models typically require a reasonable size dataset to develop, they don’t necessarily re-

quire other datasets, such as bathymetry or wind and current information required by the physics-based
models, like SWAN or WAVEWATCH. They are also considerably more computationally efficient, taking
seconds to produce results once trained as opposed to the equivalent high-resolution physics-based model
which could take minutes or hours with the same computational power. However, there are specific require-
ments to this type of approach such as; several wave monitoring sites in reasonably close proximity (in a
similar wave climate), with coincident dataset lengths of several months as a minimum, and ideally with a
reasonable estimate of the possible range of conditions.

The application of ML techniques to develop virtual wave monitoring sites shows promise for this
region and for the translation of waves from offshore monitoring sites to nearshore ones. However, whether
the performance of these ML approaches meets a user’s need will depend on the application of the user.
These types of ML approaches do show promise in being able to considerably extend the capability of
existing wave monitoring networks; by developing virtual wave monitoring sites through careful application
of short-term deployments. This could in turn prove useful as input for high-resolution physics-based
models that may be developed at a later stage. Future work could include using each of the wave monitoring
sites in Figure 1 to develop a network of virtual monitoring sites. Due to the computational efficiency of
the ML approaches applied, these virtual wave monitoring sites could produce results in near real-time.

ACKNOWLEDGEMENTS
The authors express their gratitude to: the Queensland Government Hydraulics Laboratory, Depart-

ment of Environment and Science Wave Monitoring Program and the Manley Hydraulics Laboratory, NSW
Coastal Data Network Program managed by the NSW Department of Planning, Industry and Environment
(CCSD). They provided wave monitoring data without which this work would not have been possible.

References
P. Abhigna, S. Jerritta, R. Srinivasan, and V. Rajendran. Analysis of feed forward and recurrent neural

networks in predicting the significant wave height at the Moored Buoys in Bay Of Bengal. In Proceedings
of the 2017 IEEE International Conference on Communication and Signal Processing, ICCSP 2017,
volume 2018-Janua, pages 1856–1860. Institute of Electrical and Electronics Engineers Inc., feb 2018.
ISBN 9781509038008. doi: 10.1109/ICCSP.2017.8286717.

E. Alexandre, L. Cuadra, J. C. Nieto-Borge, G. Candil-García, M. Del Pino, and S. Salcedo-Sanz. A



10 COASTAL ENGINEERING PROCEEDINGS 2020

hybrid genetic algorithm-extreme learning machine approach for accurate significant wave height re-
construction. Ocean Modelling, 92:115–123, 2015. doi: 10.1016/j.ocemod.2015.06.010. URL
http://dx.doi.org/10.1016/j.ocemod.2015.06.010.

E. Andrews and L. Peach. Wave Monitoring Equipment Comparison: A comparison be-
tween in-situ wave measurement equipment. Technical report, Queensland Government,
Department of Environment and Science, Brisbane, Queensland, 2019. URL https:
//www.publications.qld.gov.au/dataset/a719a64a-bbaf-4c02-9f33-39d2ab737c90/
resource/4b9a79fd-7245-42cb-b60e-c83f84d82011/fs{_}download/
wave-monitoring-equipment-comparison.pdf.

M. Barnes, I. Teakle, P. Wood, and C. Voisey. Assessment of capital works options to mit-
igate shoaling at Mooloolaba Harbour Entrance. Technical report, nov 2015. URL http:
//eisdocs.dsdip.qld.gov.au/SunshineCoastAirportExpansion/EIS/VolumeBchapters/
ChapterB4-Coastalprocesses18Sep14.pdf.

J. Berbić, E. Ocvirk, D. Carević, and G. Lončar. Application of neural networks and support vector machine
for significant wave height prediction. Oceanologia, 59(3):331–349, 2017. ISSN 23007370. doi: 10.
1016/j.oceano.2017.03.007.

N. Booij, R. C. Ris, and L. H. Holthuijsen. A third-generation wave model for coastal regions: 1. Model
description and validation. Journal of Geophysical Research, 104(C4):7649–7666, 1999. ISSN 0148-
0227. doi: 10.1029/98JC02622. URL http://doi.wiley.com/10.1029/98JC02622.

L. Cornejo-Bueno, J. C. Nieto-Borge, P. García-Díaz, G. Rodríguez, and S. Salcedo-Sanz. Significant
wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm -
Extreme Learning Machine approach. Renewable Energy, 97:380–389, nov 2016. ISSN 18790682. doi:
10.1016/j.renene.2016.05.094.

Datawell. Directional Waverider MkIII Datawell-Oceanographic Instruments The Directional Waverider
DWR-MkIII: Over three years of continuous operation. Technical report, Datawell, Haarlem, Nether-
lands, 2012a. URL www.datawell.nl.

Datawell. Directional Waverider GPS Datawell-Oceanographic Instruments Measuring waves with GPS.
Technical report, Datawell, Haarlem, Netherlands, 2012b. URL www.datawell.nl.

Datawell. DWR4 with ACM Datawell-Oceanographic Instruments. Technical report, Datawell, Haarlem,
Netherlands, 2012c. URL www.datawell.nl.

M. C. Deo, A. Jha, A. S. Chaphekar, and K. Ravikant. Neural networks for wave forecasting. Ocean
Engineering, 28(7):889–898, 2001. ISSN 00298018. doi: 10.1016/S0029-8018(00)00027-5.

DES. Wave Monitoring Annual Summary 2016 - 2017. Technical Report November 2016, Department
of Environment and Science, Queensland Governemnt, Brisbane, Queensland, 2017. URL https:
//www.publications.qld.gov.au/dataset/a719a64a-bbaf-4c02-9f33-39d2ab737c90/
resource/ee424256-7a47-482c-9cd5-795663db65f4/download/
annual-wave-report-2016-17-final.pdf.

DES. Queensland wave climate, wave monitoring annual summary, November 2016-October 2017. Tech-
nical report, Queensland Government, Department of Environment and Science, 2018.

K. Hatalis, P. Pradhan, S. Kishore, R. S. Blum, and A. J. Lamadrid. Multi-step forecasting of wave power
using a nonlinear recurrent neural network. In IEEE Power and Energy Society General Meeting, volume
2014-Octob. IEEE Computer Society, oct 2014. doi: 10.1109/PESGM.2014.6939370.

S. C. James, Y. Zhang, and F. O’Donncha. A Machine Learning Framework to Forecast Wave Conditions.
Coastal Engineering, 2017.

S. N. Londhe and V. Panchang. Correlation of wave data from buoy networks. 2007. doi: 10.1016/j.ecss.
2007.05.003. URL www.elsevier.com/locate/ecss.

http://dx.doi.org/10.1016/j.ocemod.2015.06.010
https://www.publications.qld.gov.au/dataset/a719a64a-bbaf-4c02-9f33-39d2ab737c90/resource/4b9a79fd-7245-42cb-b60e-c83f84d82011/fs{_}download/wave-monitoring-equipment-comparison.pdf
https://www.publications.qld.gov.au/dataset/a719a64a-bbaf-4c02-9f33-39d2ab737c90/resource/4b9a79fd-7245-42cb-b60e-c83f84d82011/fs{_}download/wave-monitoring-equipment-comparison.pdf
https://www.publications.qld.gov.au/dataset/a719a64a-bbaf-4c02-9f33-39d2ab737c90/resource/4b9a79fd-7245-42cb-b60e-c83f84d82011/fs{_}download/wave-monitoring-equipment-comparison.pdf
https://www.publications.qld.gov.au/dataset/a719a64a-bbaf-4c02-9f33-39d2ab737c90/resource/4b9a79fd-7245-42cb-b60e-c83f84d82011/fs{_}download/wave-monitoring-equipment-comparison.pdf
http://eisdocs.dsdip.qld.gov.au/Sunshine Coast Airport Expansion/EIS/Volume B chapters/Chapter B4 - Coastal processes 18Sep14.pdf
http://eisdocs.dsdip.qld.gov.au/Sunshine Coast Airport Expansion/EIS/Volume B chapters/Chapter B4 - Coastal processes 18Sep14.pdf
http://eisdocs.dsdip.qld.gov.au/Sunshine Coast Airport Expansion/EIS/Volume B chapters/Chapter B4 - Coastal processes 18Sep14.pdf
http://doi.wiley.com/10.1029/98JC02622
www.datawell.nl
www.datawell.nl
www.datawell.nl
https://www.publications.qld.gov.au/dataset/a719a64a-bbaf-4c02-9f33-39d2ab737c90/resource/ee424256-7a47-482c-9cd5-795663db65f4/download/annual-wave-report-2016-17-final.pdf
https://www.publications.qld.gov.au/dataset/a719a64a-bbaf-4c02-9f33-39d2ab737c90/resource/ee424256-7a47-482c-9cd5-795663db65f4/download/annual-wave-report-2016-17-final.pdf
https://www.publications.qld.gov.au/dataset/a719a64a-bbaf-4c02-9f33-39d2ab737c90/resource/ee424256-7a47-482c-9cd5-795663db65f4/download/annual-wave-report-2016-17-final.pdf
https://www.publications.qld.gov.au/dataset/a719a64a-bbaf-4c02-9f33-39d2ab737c90/resource/ee424256-7a47-482c-9cd5-795663db65f4/download/annual-wave-report-2016-17-final.pdf
www.elsevier.com/locate/ecss


COASTAL ENGINEERING PROCEEDINGS 2020 11

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Wiess, V. Dubourg, and J. Vanderplas. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12(1):1–5, 2011. ISSN 0717-6163. doi: 10.1007/s13398-014-0173-7.2. URL
https://scikit-learn.org/.

M. Pirhooshyaran and L. V. Snyder. Forecasting, hindcasting and feature selection of ocean waves via
recurrent and sequence-to-sequence networks. Ocean Engineering, 207, 2020. ISSN 00298018. doi:
10.1016/j.oceaneng.2020.107424. URL https://doi.org/10.1016/j.oceaneng.2020.107424.

A. D. Rao, M. Sinha, and S. Basu. Bay of Bengal wave forecast based on genetic algorithm: A comparison
of univariate and multivariate approaches. Applied Mathematical Modelling, 37(6):4232–4244, mar
2013. ISSN 0307904X. doi: 10.1016/j.apm.2012.09.001.

P. Salah, A. Reisi-Dehkordi, and B. Kamranzad. A hybrid approach to estimate the nearshore wave charac-
teristics in the Persian Gulf. Applied Ocean Research, 57:1–7, 2016. doi: 10.1016/j.apor.2016.02.005.
URL http://dx.doi.org/10.1016/j.apor.2016.02.005.

A. Saulter. Current and future verification of operational wave models. (June):25–27, 2012. URL www.
globwave.org.

H. L. Tolman and W. D. Group. User manual and system documentation of WAVEWATCH III version 4.18.
NOAA / NWS / NCEP / MMAB Technical Note, (333):311, 2014.

https://scikit-learn.org/
https://doi.org/10.1016/j.oceaneng.2020.107424
http://dx.doi.org/10.1016/j.apor.2016.02.005
www.globwave.org
www.globwave.org

	Introduction
	Study Area & Data
	Methodology
	Wave Climate Analysis
	Feature Engineering
	Machine Learning Model Selection and Training
	Cross-Validation
	Results and Discussion
	Overall Performance Long Term Wave Site
	An application of ML to extend a short term deployment

	Conclusions


	Acknowledgements

