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STUDY OF DETERMINING RISK LEVEL REGARDING SWIMMING CONDITION 
ON BATHING BEACH USING AI 

Haruki Toguchi1, Ryo Shimada1, Toshinori Ishikawa2 and Tsutomu Komine3 

In Japan, 2,000 to 3,000 drowning accidents occur every summer season at major bathing beaches. In order to prevent 
drowning accidents, beachgoers themselves need to be aware of the dangers and avoid them. As a way to do this, bathing 
beaches provide daily risk levels regarding swimming conditions to beachgoers using three levels of beach safety flags. 
However, the risk levels are determined subjectively and empirically by lifesavers and beach administrators based on 
weather and sea conditions. The characteristics of past drowning accidents are not taken into account. In this study, we 
suggest an objective method of determining the risk levels based on the probability of drowning accidents. We have 
created an AI model that can predict the probability of drowning accidents with high accuracy using a total of 53 features 
such as usage, weather and sea conditions of a study beach in Japan. This method enables appropriate judgment of 
swimming conditions to prevent many drowning accidents. The reliability of the model was examined using XAI, and 
it was found that time series of rescue factors were important in predictions. On the other hand, the accuracy decreased 
when the created AI model was applied to other beaches. It was thought to be caused by differences in the natural 
environment such as waves and wind. 
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INTRODUCTION  
In Japan, 2,000 to 3,000 drowning accidents occur every summer season at major bathing beaches 

(Ishikawa et al. 2014). Before the drowning accidents, lifesavers or beach administrators provide risk 
levels for beachgoers. After the drowning accidents, lifesavers rescue and provide first aid to the 
drowning person, and hand over this person to emergency services. If lifesavers provide first aid, survival 
rates for a person with cardiac arrest are more than three times higher than if paramedics do so on arrival 
(Komine et al. 2015). So, lifesavers play an important role in saving drowning people. However, the most 
effective way to prevent drowning accidents is for beachgoers themselves to recognize the danger and 
avoid it. As a way to do this, bathing beaches provide daily risk levels regarding swimming conditions 
to beachgoers using three levels of beach safety flags as shown in Fig. 1. Blue, yellow, and red flags 
which indicate whether there is a good condition, warning condition, or prohibited condition, respectively. 
In particular, since beachgoers are not allowed to enter the water, red has a direct effect on preventing 
drowning accidents. These risk levels are determined subjectively and empirically by lifesavers and 
beach administrators based on weather and sea conditions, but the characteristics of past drowning 
accidents are not taken into account. In this study, we suggest an objective method of determining the 
risk levels based on the probability of drowning accidents. 

 

 
Figure 1. Risk level regarding swimming condition on bathing beaches. 

STUDY BEACH 
The study beach is Onjuku Chuo beach in Chiba, Japan  as shown in Fig. 2. At this beach, lifesavers 

determine swimming conditions. According to the patrol logs, in which lifesavers record daily sea 
conditions, the total number of beachgoers per season is about 80,000. As an example of the busiest days, 
7 to 11 lifesavers were active for 9,200 beachgoers. Many drowning accidents occurred at this beach 

 
 
1 Civil and human engineering, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan 
2 Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan 
3 Integrated Science and Engineering for Sustainable Society, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-

8551, Japan 



 COASTAL ENGINEERING 2022 
 

2 

when the swimming condition was yellow as shown in Table 1. The reason for this seems to be rip 
currents, which are the main cause of drowning accidents at this beach as shown in Fig. 3. Rip currents 
are likely to occur during this condition due to relatively high wave heights (Ishikawa et al. 2014) as 
shown in Fig. 4. Furthermore, we assumed that there were a large number of rescues when there were 
many beachgoers, but there was no correlation between the two of them as shown in Fig. 5. On the other 
hand, when the swimming condition was red, the drowning accidents did not occur as shown in Table 1. 
This suggests that drowning accidents can be prevented by appropriately judging when the swimming 
condition is red. In this study, we determined the risk levels were based on the probability of drowning 
accidents as shown in Fig. 6. Also, Figure 7 shows the details of the creation of the AI model. 

 

 
Figure 2. Study beach. 

 
Table 1. Actual drowning accidents at the study beach. 

Study beach (2014-2019) Number of drowning accidents 

Swimming 
condition 

Red 0 
Yellow 135 
Blue 39 

 

 
Figure 3. Outbreak factors of drowning accidents at the study beach (2014-2019). 

 

 
Figure 4. Swimming conditions corresponding to rescue and wave height. 
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Figure 5. Correlation between number of rescuers and number of beachgoers. 

 

 
Figure 6. How to determine the beach safety flags in this study. 

 
Figure 7. Creation of AI model. 

 

CREATION OF AI MODEL 

Data preparation 
Data preparation consists of two components: data collection and data preprocessing.  
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Data collection 
In order to accurately predict the probability of drowning accidents, it is necessary for AI to learn 

past conditions of users, weather, and sea data. By inputting the day's conditions of users, weather and 
sea data into trained AI, the probability of drowning accidents on the day can be predicted with a high 
accuracy as shown in Fig. 8.  

The objective feature of the AI model was the occurrence or non-occurrence of drowning accidents 
at 9:00, 12:00, and 15:00 during the swimming period which was in July and August from 2014 to 2019. 
The occurrence of drowning accidents was extracted from the rescue records of patrol logs in which 
lifesavers recorded their daily activities. Rescues are divided into emergency care and preventive action 
for conscious drowning. We set the rescue when there were one or more rescues during a day from the 
logs.  

The explanatory feature of the AI model were 53 features from five points as shown in Fig. 9, 
including 36 features related to usage conditions, weather conditions, wave and tide conditions, and 
actual rescue operations, and 17 features created by feature engineering as shown in Table 2. Drowning 
accidents at beaches are caused by the interaction of various features, including natural factors such as 
rip currents and longshore currents, and human factors such as beach management systems and usage 
conditions. Therefore, we thought that a model that could learn such relationships would be able to 
predict drowning accidents with high accuracy, so we collected various data from relevant institutions in 
the following five exploratory manners. First, related to drowning accidents references to previous 
studies. Second, trusted institutions such as the Japan Meteorological Agency and other government 
agencies. Third, objective data such as obtained and numerical analyses data. Fourth, on or near the study 
beach. Fifth, the data is historical and will be updated in the future. This is because it was necessary to 
assume that the model we created would be used.  

 

 
Figure 8. AI Model Training and Prediction 

 

 
Figure 9. Locations where data was collected 
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Table 2. Features used to create the AI model 
Conditions Feature Source 

USAGE 
CONDITIONS 

Weather, Temperature, Water temperature, Number of beachgoers, Number of 
lifesavers, Number of rescuers the previous day*, Cumulative number of 
rescuers *, Rescues the previous day*, Number of beachgoers per lifesaver* 

Patrol Log 

WAVE/TIDE 
CONDITIONS 

Wave height, Wave period, Wave direction, East-West wind speed at sea, North-
South wind speed at sea 

Coastal Wave 
Numerical 
Prediction 
Model GPV 

Tide level, High tide level, Low tide level, Tide name*, Tidal range* 
Japan 
Meteorological 
Agency 

WEATHER 
CONDITIONS 

Temperature, Wind Speed, Wind direction, Sunshine hours, Weather, Local 
pressure, Sea Level Pressure, Precipitation, Visibility, Total precipitation of the 
previous day* 
Sea pressure correction, Ground pressure, Temperature, Relative humidity, 
Cloudiness (lower, middle, upper, and full clouds), Precipitation (9-10, 10-11, 
11-12, 12-13, 13-14, 14-15, 9-12*, 12-15*, 9-15*), Total precipitation of the 
previous day* 

Meso 
Numerical 
Prediction 
Model GPV 

− Month*, Day*, Hour*, Day of the Week*, Weekends and holidays*, holidays* Set value 

* Features added so that the AI model can take into account features of drowning accident occurrence. 
 
Data Preprocessing 

When using the data of prohibited swimming conditions, it is not possible to create a proper model, 
such as predicting that drowning accidents are less likely to occur even in high waves. For that reason, 
we excluded the collected data when the swimming conditions were red. The collected and created data 
were split after preprocessing these into training data with data from 2014 to 2018 and test data with data 
of 2019, as shown in Figure 10. In addition, the training data was split into train data from 2014 to 2016 
and validation data from 2017 to 2018. Also, the test data had added 31 drowning accidents in data 
generated by an oversampling technique (Chawla et al. 2002). 

 

 
Figure 10. Data splitting 

 

Modeling 

Model training 
We created various AI models using train data and calculated the AUC using validation data. The 

AUC takes values between 0 and 1, with values closer to 1 indicating higher accuracy (Akobeng. 2007). 
AI models are required to be able to predict the probability of drowning accidents on test data with high 
AUC, but overfitting must be prevented. Overfitting is when a model overfits the training data, resulting 
in a loss of AUC for the test data. We addressed this problem by using models trained on various 
hyperparameters to predict the probability of drowning accidents for validation data, finding 
hyperparameters that can predict with high AUC and using these to predict test data. Bayesian 
optimization (Snoek et al. 2012) was used for hyperparameter optimization. As a result, LightGBM (Ke, 
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Guolin et al. 2017) was the most accurate among the many models and was adopted as the model used 
in this study as shown in Fig. 11. 

 

 
Figure 11. AUC of each model when predicting validation data. 

 

Calculation of thresholds 
A threshold for classifying LightGBM’s predictions into three beach safety flags was calculated 

using Youden's index (Youden, William J. 1950). Specifically, the probability of drowning accident was 
predicted for the validation data using the model created from the training data and hyperparameters, and 
the threshold value was calculated using Youden's index. It is a method to calculate a threshold that 
emphasizes both the fact that the model can correctly judge that swimming is prohibited for data with 
drowning accidents and that the model can correctly judge that swimming is good or cautionary for data 
without drowning accidents. The threshold is the probability of the point where the value obtained by 
adding sensitivity (recall) and specificity-1 is the largest.  

  (1)  

Recall is the value obtained by dividing TP by TP+FN and is the percentage of data with drowning 
accidents that the model correctly judged as no-swimming as shown in Table 3.  

  (2)  

Specificity is TN divided by FP+TN and is the percentage of data without drowning accidents that 
the model correctly determines are not prohibited from swimming as shown in Table 3.  

  (3)  

The ROC curve is represented by a line connecting all the points plotted on the x and y coordinates 
as shown in Fig. 12. Area under the ROC curve is an index (AUC) used to measure the accuracy of the 
model in this study, and its value ranges from 0.5 to 1, with a value closer to 1 indicating a higher 
accuracy of the model. Figure 13 shows the calculation results of the threshold values. The probability 
of drowning was 0.5 at the point where Youden’s index was the largest, and the data above 0.5 could be 
classified as red and below 0.5 as yellow or blue. The threshold for classifying the data as yellow or blue 
was calculated in the same way for data less than 0.5, and the result was 0.12. Based on these results, we 
classified the probability of drowning accidents in the test data as follows: 0 ≤ p < 0.12 as blue, 0.12 ≤ p 
< 0.5 as yellow, and 0.5 ≤ p ≤ 0.1 as red. 
 

Table 3. Accuracy indicators in ROC curves. 

 
Actual drowning accidents 
Occurred Not Occurred 

AI prediction 
Red TP FP 

The others FN TN 
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Figure 12. AUC of AI model for validation data. 

 

 
Figure 13. Calculation of threshold values for classifying swimming conditions. 

 

Model testing 
The accuracy of the model was evaluated by the AUC of the test data. The usefulness of this method 

was evaluated by classifying the predicted values of the test data into three beach safety flags.  

The accuracy of the model 
Figure 14 shows the AUC of AI model for test data, the probability of drowning was predicted with 

high AUC.  
 

 
Figure 14. AUC of AI model for each dataset. 

 

The usefulness of this method 
Table 4 and Fig. 15 shows a comparison of prediction results by using this study method and actual 

drowning accidents in test data. The AI determined 36 of the 109 cases of test data to be red, 3 to be 
yellow, and 70 to be blue by the set threshold from the prediction results of the model. All 31 cases of 
actual drowning accident data were classified as red. This result means that many drowning accidents 
were prevented by the AI model because beachgoers are not allowed to enter the water in red. However, 
the AI determined 5 of the 78 cases of not drowning accident data to be red. This result means that there 
were more days when swimmers were not allowed to enter the water. 
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Table 4. Comparison of prediction results by this study method and actual 
drowning accidents in test data. 

 
Actual drowning accidents 

Occurred Not Occurred Total 

AI prediction 

Red 31 5 36 
Yellow 0 3 3 
Blue 0 70 70 
Total 31 78 109 

 

 
Figure 15. Comparison of prediction results by this study method and actual drowning accidents in test data. 

 

 Interpretation of the model 
As the scope of AI application has been rapidly expanding in recent years, national governments are 

required to ensure the reliability of AI. In Japan, the AI utilization guidelines issued by the Ministry of 
Internal Affairs and Communications (MIC) specify two principles for considering the reliability of AI: 
the principle of transparency and the principle of accountability. The former is to pay attention to the 
accountability of the results of AI decisions. The latter is that AI users should strive to be accountable to 
their stakeholders. Furthermore, the principles of fairness, accountability, and transparency are clearly 
stated in the Principles for a Human-Centered AI Society issued by the Cabinet Office. Other countries 
have also developed guidelines, such as the Ethically Adjusted Designs published by the IEEE in the U.S. 
and the EU General Data Protection Regulation (GDPR) adopted in the EU. These principles are 
considered to be aimed at preventing the problem of operating AI as a black box. On the other hand, the 
learning algorithm of the AI created by the authors uses LightGBM, which improves prediction accuracy 
by combining multiple decision trees, and therefore, a black box problem is pointed out. Explainable AI 
(XAI) has been proposed for the black box problem of AI with complex internals. So, an increasing 
number of studies have attempted to interpret AI constructed using XAI (Arrieta et al. 2020). We 
investigated the reliability of XAI to deal with the black box problem by attempting to interpret AI 
created using XAI.  

In order to solve the black box problem of AI with complex internals, we have used SHAP (Scott 
Lundberg et al. 2017) which is one of the explainable AI methods to identify which features the created 
AI emphasizes in the process of prediction. It is possible to determine the contribution of each feature to 
the predicted value of each piece of data by SHAP values. Specifically, we interpreted which features 
the AI model we created focused on when predicting the probability of drowning accidents. Furthermore, 
the relationship between the model predictions and features were analyzed using SHAP and compared 
quantitatively with the characteristics of the occurrence of rip current accidents based on statistical 
analysis. In this study, TreeSHAP (Scott Lundberg et al. 2018) was used to efficiently calculate SHAP 
values. 

SHAP values for one of the training data 
Figure 16 shows the SHAP values for one of the training data at 12:00 on July 16, 2014. The average 

predicted value 𝐸 𝑓 𝑥  for all data is 0.277, and the predicted value 𝑓 𝑥  for this data is 0.837. The 
difference between this predicted value and the average is broken down into SHAP values for each 
feature, arranged in descending order starting with the feature with the largest absolute SHAP value. For 
example, when the number of rescuers the day before is 3, that increases the predicted value by 0.24. But 
when the number of users is 150, it decreases the predictive value by 0.03. The combination of a decrease 
and an increase finally resulted in a predicted value of 0.837, which was determined to be red.  

On the other hand, Figure 17 shows the SHAP values for one of the training data at 12:00 on July 
19, 2014. The predicted value of 𝑓 𝑥  for this data is 0.798. In the case of this data, the number of 
rescuers on the previous day was 0.24, which is a large positive factor for the predicted value of this data. 
In contrast, the precipitation between 12:00 and 15:00 is 0.11, which is a negative factor. The results in 
a predicted value was 0.798, which was determined to be red. Thus, by using the SHAP value, the 
contribution of each feature to the predicted value of each piece of data can be determined.  
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Figure 16. SHAP values for one of the training data at 12:00 on July 16, 2014. 

 

 
Figure 17. SHAP values for one of the training data at 12:00 on July 19, 2014. 

 

Features of importance 
The average contribution of each feature called feature importance can be interpreted by calculating 

the average of the absolute values across the data for each feature.   
The reason for taking absolute averages is that it allows us to see the degree of influence of the 

feature, whether it increases or decreases the predicted value. Figure 18 shows the top 10 features of 
importance calculated by SHAP. Red is the time-series factor of the rescue factor, blue is the natural 
factor of sea conditions, green is that of weather conditions and yellow is the personal factor of status of 
use. It was newly found that time-series rescue factors were emphasized, which had not been considered 
as a factor in the occurrence of drowning accidents and that are not related to the main cause of drowning 
accidents on the study beaches, rip currents as shown Fig. 3.  

 

 
Figure 18. Top 10 feature importance by SHAP. 
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Relationship between the predicted values 
In Figure 19, the relationship between the predicted values and features were examined by plotting 

the value of the feature on the x-axis and the SHAP value on the y-axis for each of the data. When the 
SHAP value increases with the value of the feature of interest, an increase in the value of the feature 
contributes to an increase in the probability of drowning, and when the SHAP value decreases with an 
increase in the value of the feature, an increase in the feature contributes to a decrease in the predicted 
value. The interval of the SHAP values on the vertical axis is aligned so that we can compare the 
magnitude of the variance, but the cumulative number of rescues and the number of rescues on the 
previous day had a large vertical variation. This suggests that these features influenced each other with 
other features.  

These areas mean that they contribute to the increase in the predicted value. In the time series factors, 
the SHAP value was higher where the cumulative number of rescuers was between 80 and 120 and where 
the number of rescuers the day before was between 5 and 11. In the natural factors, the SHAP values 
were higher where the wave direction was between southeast to south southeast, where the wave period 
was between 10 to 11 s, where the temperature was at 25°C, where the wave height was between 1.1 to 
1,3 m and the high tide level was between 1.2 to 1.3 m. In the personal factors, the SHAP values were 
higher where the holidays and Obon were Yes, where the number of beachgoers were between 400-1,500, 
and where the day of the week was Sunday. 

According to a previous study that investigated the factors that cause the occurrence of rip current 
accidents through statistical analysis, rip current accidents are more likely to occur when the wave height 
is 1.5 to 2 m, the period is 10 to 11 s, the wave direction is S, SE, and the number of beachgoers is 500 
or more (Shimada, R. et al., 2019). Therefore, focusing on the SHAP values corresponding to these 
conditions, we found that wave heights of 1.1 to 1.3 m, wave periods of 10 to 11 s, wave directions of 
135 to 160 degrees (SE to SSE), and the number of beachgoers is 500 to 1,500 contributed significantly 
to the increase in the model's predicted values. These results indicate that the conditions for the 
occurrence of drowning accidents based on statistical analysis and the conditions for increasing the 
probability of drowning accidents based on AI are similar. 

 

 
Figure 19. Relationship between the predicted values. 

 

Investigation of model versatility 
It was tested whether the probability of drowning accidents could be predicted with high AUC and 

whether drowning accidents could be prevented at the two beaches which are verification beach A and 
B on either side of the study beach as shown Fig. 2. 

Accuracy of the model 
Figure 20 shows the AUC of AI model for each verification beach, beach B was able to predict the 

probability of drowning accidents with a high AUC, but beach A could not. 
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Figure 20. AUC of AI model for each verification beach. 

 

Usefulness of the method 
Table 5,6 and Fig. 21, 22 shows the comparison between the prediction results and the actual 

drowning accidents. The model mostly predicted the test data with drowning accidents being red. 
Especially on beach B, many drowning accidents were prevented. There was a large amount of data 
showing that AI predicted the swimming condition was red even though no drowning accidents had 
occurred at either of the two beaches. 
 

Table 5. Comparison of prediction results by this study method and actual 
drowning accidents at verification beach A. 

 
Actual drowning accidents 

Occurred Not Occurred Total 

AI prediction 

Red 7 49 56 
Yellow 1 26 27 
Blue 7 417 424 
Total 15 492 507 

 
Figure 21. Comparison of prediction results by this study method and actual drowning accidents at 
verification beach A. 
 

Table 6. Comparison of prediction results by this study method and actual 
drowning accidents at verification beach B. 

 
Actual drowning accidents 

Occurred Not Occurred Total 

AI prediction 

Red 12 35 47 
Yellow 0 23 23 
Blue 3 371 374 
Total 15 429 444 

 
Figure 22. Comparison of prediction results by this study method and actual drowning accidents at 
verification beach B. 
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Cause analysis of results 
The reason for the decreased accuracy of the model was identified by investigating the features that 

were working for prediction using SHAP. Figure 23, 24 shows the top 10 features of importance 
calculated by SHAP at verification beaches. It was found that personal factors, which were not often 
taken into account when predicting test data, were given more importance. The results show that the 
time-series trend of drowning accidents at these validation beaches differ from that of the train data at 
the study beach. The ratio of data where a drowning accident occurred to data where no drowning 
accident occurred was 1:2.603 for the training data, but 1:32.8 for verification beach A and 1:28.6 for 
verification beach B. Regarding the much less accurate verification beach A, it is possible that the 
cumulative number of rescuers may not have had much of a predictive. Furthermore, it was thought to 
be caused by differences in the natural environment such as waves and wind. 

Figure 25, 26 shows the relationship between the predicted values at verification beaches. Compared 
to the train data from the study beaches, the data from these beaches had fewer drowning accidents, and 
the smaller cumulative number of rescues and the number of rescues the previous day were considered 
to have influenced the prediction. 
 

 
Figure 23. Top 10 feature importance by SHAP at verification beach A. 

 

 
Figure 24. Top 10 feature importance by SHAP at verification beach B. 

 

 
Figure 25. Relationship between the predicted values at verification beach A. 
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Figure 26. Relationship between the predicted values at verification beach B. 

 

CONCLUSIONS 
In this study, we examined a method for objectively determining swimming conditions based on the 

probability of drowning accidents. Test data was applied to the constructed model to verify the accuracy 
of the prediction results and the usefulness of the method. As a result, the probability of drowning was 
predicted with high accuracy (AUC = 1.0). For the determination of swimming conditions using the 
probability of drowning accidents, a threshold was calculated using Youden's index. As a result of using 
this threshold, swimming conditions were determined appropriately. So, it was suggested that the beach 
safety flags could be set appropriately and that drowning accidents could be prevented by applying this 
method to the study beach. 

Furthermore, the black box problem of the AI model created using SHAP, was examined. It was 
investigated that there was an importance of features in predicting the probability of drowning accidents. 
As a result, it was newly found that time-series rescue factors were emphasized, which had not been 
considered as a factor in the occurrence of drowning accidents. Therefore, in order to prevent drowning 
accidents, lifesavers need to pay attention not only to weather and ocean conditions and usage conditions, 
but also to time-series rescue records. Analysis of the relationship between the predicted values of the 
AI model and the features showed that the conditions that increase the probability of drowning accidents 
are similar to the conditions for the occurrence of rip current accidents based on statistical analysis. In 
the actual operation of AI, it is necessary to consider accident prevention measures in light of the new 
findings revealed in this study. 

Finally, in order to inbestigate model versatility, we applied created AI to other beaches, the AUC 
decreased, and the usefulness of the method was not confirmed. In the future, it is needed to create a 
generic AI by doing A and B. 

 

APPENDIX 
Hyperparameters of the model with the highest accuracy in the validation data as shown Table 7. 

 
Table 7. Results of optimizing the hyperparameters of each model. 

Model Hyperparameters 

LightGBM 
colsample_bytree = 0.901，max_depth = 8，min_child_samples = 58, min_child_weight = 2.22，
num_leaves = 20，subsample = 0.933，subsample_freq = 13, random_state = 0 

XGBoost 
colsample_bytree = 0.383，max_depth = 8，min_child_weight = 2.07，random_state = 0， 
subsample = 0.615, random_state = 0 

Random Forest 
class_weight = 0，criterion = 1，max_depth = 5，max_leaf_nodes = 14，min_samples_leaf = 58，
min_samples_split = 10，n_estimators = 10, random_state = 0 

Decision Tree max_depth = 8，min_samples_leaf = 82，min_samples_split = 2, random_state = 0 

MLP 
activation = 1, alpha = 882，batch_size = 88，hidden_layer_sizes = 1, Learning_rate = 0, max_iter = 46, 
solver = 2, early_stopping = True, random_state = 0 

K-NN leaf_size = 56，n_neighbors = 30，p = 1 

SVC C = 0, max_iter = 108, random_state = 0 

Logistic Regression C = 1.62，fit_intercept = 0，intercept_scaling = 9.54，max_iter = 3.0, random_state = 0 
* Other hyperparameters are default values 
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