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PHYSICS-INFORMED DEEP LEARNING OF NEARSHORE WAVE PROCESSES 

Qin Chen1, Nan Wang1 and Zhao Chen1 

The paper introduces the NWnets, a physics-informed deep learning model for reconstructing nearshore wave fields 
and mapping bathymetry. The physics encoded into the deep neural networks are the wave energy balance equation 
and dispersion relation. Insights into the model capability are gained through application of the NWnets to a laboratory 
experiment of wave transformation over a circular shoal. If the bathymetry and discrete measurements of wave height 
are available, the NWnets model is capable of simulating nearshore wave transformation. Moreover, the extended 
NWnets can be used for depth inversion if the bathymetry is unknown. Two methods for simultaneously estimating 
water depths and surface waves are presented. If surface wave number and limited wave height measurements are 
available from remote sensing platforms, the first method employs wave numbers and scarce measurements of wave 
height as training data. The second method utilizes scarce wave height and limited water depth measurements as 
training points to reconstruct bathymetry and wave fields. The results show that both methods are capable of 
simultaneously mapping the bathymetry and waves when the locations of training points are appropriately distributed.  

Keywords: Depth inversion; physics-informed neural network; deep learning; wave transformation; bathymetry 
mapping; wave field reconstruction  

INTRODUCTION 
 Numerical models solving the conservation laws of fluid motion and field observations from in-
situ or remote sensing platforms have played an important role in understanding nearshore processes. 
Data assimilation techniques allow for the combination of field data with physics-based models to 
further our understanding of coastal processes and improve forecast skills of numerical models. In the 
past several years, a new approach that integrates the conservation laws with observations using 
scientific machine learning or deep learning (DL) has emerged. One of the new methods is the 
Physics-informed (or guided) Neural Network (PINN). Compared with conventional machine 
learning models, PINNs encode prior scientific knowledge (e.g. conservation laws) during the 
training process of the neural networks, which constrains and compensates for the insufficiency or 
scarcity of field observations in many applications (Karniadakis et al., 2021; Jin et al., 2021; Wang et 
al., 2022). Models based on PINNs have the potential to provide accurate predictions consistent with 
the physical laws even with inaccurate or missing data as an input (e.g. Chen et al. 2021). The 
objective of this study is to demonstrate the suitability and utility of PINNs for coastal research by 
introducing the nearshore wave nets (NWnets) for reconstruction of nearshore wave fields, inversion 
of wave height and bathymetry from remotely sensed data, and discovery of new knowledge 
(parameterizations) from physics-guided deep learning of laboratory or field observations.  
 The paper is organized as follows. First, we introduce the conservation law encoded into the 
neural network as well as the algorithm and model setup for the PINNs. Next, the performance of the 
NWnets is demonstrated by modeling wave transformation over a three-dimensional circular shoal 
based on measurements from a laboratory experiment. After that, we present results of simultaneously 
mapping bathymetry and reconstructing nearshore wave fields using the extended NWnets followed 
by a discussion on future research of PINNs and concluding remarks on this study.  
 
METHODOLOGY 
 
Energy Balance Equation for Wave Transformation in the Nearshore 

 In principle, all conservation laws of mass, momentum, and energy that govern the nearshore 
wave processes can be encoded into DL models. In this study, we focus on integral wave parameters 
such as significant wave height and mean wave direction, and directional distribution of wave energy 
of a stationary wave field. Wave shoaling, refraction, and depth-limited breaking are the dominant 
processes in the nearshore. Thus, the governing equations encoded into the fully connected neural 
networks are the wave energy balance equation and dispersion relation. The effect of amplitude 
dispersion (i.e., nonlinear dispersion relation) on depth inversion and wave field reconstruction is also 
included. For water waves, the energy balance equation can be expressed as: 

 

 
 

(1) 

                                                        
 
1 Department of Civil and Environmental Engineering, and Department of Marine and Environmental Sciences, 

Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA. 



 COASTAL ENGINEERING 2022 
 
2 

where e is  the wave energy density in each directional bin, cg is the group velocity, 𝜃 represents the 
angle of incidence with respect to the x-axis, and dw is the dissipation of energy density caused by 
wave breaking. The Janssen and Battjes (2007) formulation for wave breaking is used to compute dw. 
In addition to the linear dispersion relation, the nonlinear dispersion relation proposed by Kirby and 
Dalrymple (1986) is utilized to examine the effects of amplitude dispersion on depth inversion and 
wave field mapping. Details about the governing equations encoded in the deep neural network can 
be found in Chen et al. (2023).  

Physics-Informed Neural Networks (PINN) 
A novel composite PINN model is developed to find the solutions to the phase-averaged and 

depth-integrated conservation law, i.e. energy balance equation (EBE), for mapping nearshore 
bathymetry and wave transformation. The corresponding residuals from the EBE are used as 
restraints for the training of the NWnets to generate physically consistent predictions. Moreover, the 
NWnets are also constrained to fit the available measurements scattered in the computational domain.  
Because the wave energy density function varies in the horizonal plane and the directional space, 
while wave number only changes in x and y space, composite neural networks are utilized.  

Figure 1 shows the schematic representation of the algorithm for simultaneous mapping of 
nearshore bathymetry (depth inversion) and wave field. The loss function consists of two parts. The 
first part corresponds to the collocation points (i.e., residual loss), where the physical constraints are 
imposed to encourage that the energy balance equation and dispersion equation are satisfied. In 
general, the collocation points can be grid points or random points inside the computational domain 
(Lu et al., 2021), and the former one is chosen in this study. Automatic differentiation is used to 
calculate the partial derivatives in the residual expression (Kissas et al., 2020). The second part 
encourages the outputs of PINNs to match wave parameters obtained from field or lab observations 
(i.e., measurement loss). Therefore, the total loss function for mapping nearshore bathymetry and 
waves is the summation of the residual loss of encoded physics and the measurement loss owing to 
the errors between the model prediction and the observations. Minimizing the total loss function leads 
to the solutions that nearly satisfy the energy balance equation and match the measurements. 

 

 
 
Figure 1. A schematic representation of NWnets for reconstructing nearshore wave field and bathymetry.  

 
PINN models have been developed to solve a wide range of scientific problems recently, such as 

fluid flows (Jin et al., 2021; Sun et al., 2020; Gao et al., 2021), cardiovascular flows (Kissas et al., 
2020), vortex-induced vibrations (Raissi et al., 2019), and reconstruction of surface wave field (Wang 
et al., 2022). By infusing the governing equations into the deep neural networks, PINNs can bridge 
the gap between ML-based methods and scientific computations and deduce solutions involving 
partial differential equations.  

We assess the performance of the NWnets for solving the EBE and dispersion relation by 
reconstructing the wave field over a submerged circular shoal. Wave measurements from Chawla and 
Kirby (1996) are used for training, validating, and testing. We apply relatively simple feedforward 
neural networks without additional regularization. Hyperbolic tangent is used as the activation 
function. All the networks are initialized with Xavier initialization. Normalization is carried out to 
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keep the input and output between -1 and 1, and the EBE is also normalized by the same factor. Thus, 
network weights and biases have values of similar magnitudes, and the negative impact of the large 
difference between various parameters is avoided. The influence of network structures on the 
performance of the NWnets is tested. Details can be found in Wang et al. (2022). 

Experimental Design for Mapping Nearshore Bathymetry and Waves 
Recent advances in remote sensing technologies capable of observing a broad spatiotemporal 

range of geophysical parameters enable real-time monitoring of the nearshore, such as video cameras, 
radar, infrared, and LiDAR on shore-based towers or airborne platforms (e.g. Wilson et al., 2014). In 
this study, we take a simplified approach by using synthetic model data instead of actual remotely-
sensed data to demonstrate the model performance of PINN. We assume that the free surface 
parameters derived from remote sensing data are sufficiently accurate in this work. Two methods are 
proposed to map the bathymetry and wave field based on the availability of field observations.  

Method A: We assume that the surface wave celerity (or wave number) and limited wave height 
measurements are available from various remote sensing platforms. Then, the bathymetry and wave 
fields are determined by the inverse PINNs developed with wave number and scarce wave height 
measurements as the training data. The performance of this method is investigated by solving the 
depth inversion problem over a  three-dimensional (3D) barred beach with the simulation data from 
XBeach (Roelvink et al., 2009). Furthermore, we examine the effects of amplitude dispersion (i.e., 
nonlinear dispersion relation) on depth inversion and wave prediction using waves over an alongshore 
uniform barred beach as an example. 

Method B: When the wave number or wave celerity data are unavailable, PINN models can still 
be utilized to simultaneously map the bathymetry and reconstruct wave fields if wave heights and 
water depths at limited locations are partially known. The second method uses the scarce 
measurements of wave height and water depth to train the PINNs for mapping nearshore bathymetry 
in the absence of wave celerity or wave number measurements. The model performance is 
investigated by solving the depth inversion problem over the 3D barred beach under field conditions 
at Duck, NC, USA. Although this test case is the same as the one used for examining Method A, the 
training data and network structures are different from those in Method A. 
 
RESULTS 
 
Reconstruction of Wave Field Over a Circular Shoal by NWnets 

A series of laboratory experiments on wave propagation over a circular shoal were carried out by 
Chawla and Kirby (1996) in a directional wave basin at the University of Delaware. In this study, test 
case 4 of the laboratory experiments with the directional random wave input is utilized as the testbed 
to examine the performance of NWnets.  

Figure 2 shows the model results produced by the NWnets. The top panel illustrates the modeled 
spatial distribution of Hrms normalized by the incident wave height over the circular shoal in the 
Chawla and Kirby’s (1996) physical experiment when all of the 126 wave measurements are 
employed as the training data. It is seen that the reconstructed wave field captures not only wave 
focusing and defocusing by the shoal, but also the combined effect of wave refraction and diffraction, 
or wave interference. By contrast, if a quarter of the measurements are used as the training data, as 
shown in the bottom panel, although the focusing and defocusing of wave energy is captured well by 
the model, wave diffraction or wave interference is absent in the modeled wave field because the 
wave energy balance equation does not include wave diffraction. This suggests that the NWnets could 
be used to discover the missing mathematical terms in the energy balance equation to account for 
wave interference if sufficiently dense wave measurements are available.  

Figure 3 shows the comparisons between the PINN-simulated and experimental data over the 
circular shoal. Solid lines represent the outputs from the NWnets, and circles are the measurements in 
the laboratory. The experimental data used for training and validating the PINN models are shown by 
the red- and black-filled circles, respectively. The hollow circles represent the testing data for the 
model. When half of the wave height measurements are used for training (i.e., 63 training data), good 
agreement was found between the experimental and simulated wave heights. The simulation accuracy 
decreases when a quarter of the wave height measurements (i.e., 31 training points) are used as 
training data, but the NWnets can still capture the focusing and defocusing of wave energy caused by 
the bathymetric variations. Unsurprisingly, a better simulation performance can be obtained with 
more experimental data employed as training points. Note that the water depth is known in this test 
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case. The only training data are wave height measurements. No wave number or wave celerity is 
required for the training of the NWnets when only reconstruction of the wave field is desired.  
 

 
 
Figure 2. Reconstructed wave fields over a submerged shoal (red circle) by the NWnets. Left: using all the 
measurements (red dots) from Chawla and Kirby (1996) as training data; Right: using 1/4 measurements as 
training data. Waves propagate from left to right.  
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Figure 3. Comparisons of experimental and PINN-simulated wave heights with half of the wave height 
measurements used as training data. 
 
Simultaneous Mapping of Bathymetry and Waves on a Barred Beach with Method A 
 We use the beach profile survey data from the US Army Corps of Engineers Field Research 
Facility (FRF) at Duck, NC to construct the 3D barred beach for testing. The wave condition offshore 
of the barred beach is set as Hrms=1 m with a peak wave period of 8 s. The peak wave period remains 
constant over the entire computational domain. The computational domain extends from x = 0 to 980 
m in the cross-shore direction and from y = 20 to 480 m in the alongshore direction (FRF 
coordinates) with a resolution of 10 m. The resolution of directional spreading of waves is set to be 
10° in both XBeach and PINN models, and the lower and upper directional limits are defined as -90° 
to 90°, respectively. A total of 4653 collocation points are uniformly distributed from x = 0-980 m 
and y = 20-480 m to constrain the deep learning for generating physically consistent predictions. The 
outputs from XBeach and PINNs are compared to determine the feasibility of using PINNs to 
estimate water depth and reconstruct wave fields over a 3D barred beach with Method A.  
 Figure 4 shows the comparison between the PINNs and XBeach outputs. The contour plot in the 
left panel depicts the simulation error of PINN-predicted water depth with the white dots showing the 
locations of Hrms training points. It can be observed that PINNs have good skills for estimating water 
depths with small errors (maximum error = 1.6%). The 3D plot in Figure 4 presents the PINN-
simulated wave heights which is in good agreement (RMSE = 5 mm) with the numerical results from 
XBeach. Overall, the developed PINN model has a promising ability to simultaneously estimate 
water depths and reconstruct wave fields over a 3D barred beach with known wave numbers and 
scarce wave heights (synthetic data from XBeach) applied as the training data. 
 

 
 
Figure 4. Comparison between the XBeach and PINN outputs over the barred beach. Left: contour plot shows 
the simulation errors of the PINN-predicted depth. The white dots represent the locations of wave height 
training points; Right: spatial variation of the PINN-predicted wave heights. 
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Effects of Amplitude Dispersion on Depth Inversion  
One advantage of using PINNs to estimate nearshore bathymetry from remotely sensed data is 

that nonlinear dispersion relation can be embedded in the model. To test the PINNs’ ability to 
account for the effect of wave nonlinearity in depth inversion (e.g. Grilli, 1998; Yoo et al., 2011), we 
use the nonlinear dispersion relation instead of the linear dispersion relation to reconstruct the wave 
field and estimate the bathymetry over an alongshore uniform barred beach with known wave 
numbers. Fig. 5 (left) shows that the PINN outputs are in good agreement with the numerical 
solutions to the EBE with the nonlinear dispersion relation embedded in the model. Such synthetic 
data are called “reference data.” We also estimate the nonlinear wave field with the linear PINN 
model. It can be seen that the skills of the PINN model encoded with the linear dispersion relation 
deteriorate in the surf zone (Fig. 5-right). In other words, the PINN model embedded with the linear 
dispersion relation is not capable of learning the effect of nonlinear waves on wave propagation. This 
finding indicates that selecting an appropriate physical constraint in PINN is crucial for solving depth 
inverse problems and reconstructing wave fields with sufficient accuracy. For field applications 
where the observed wave number vectors are strongly influenced by wave nonlinearity, it is expected 
that the PINN model embedded with the nonlinear dispersion relation will give a more accurate 
estimate of water depth in the surf zone than do existing methods. 

 

 
Figure 5. Comparisons between reference and PINN-simulated wave height and water depth with nonlinear 
dispersion relation (left) and linear dispersion relation (right). 

 

Simultaneous Mapping of Bathymetry and Waves on a Barred Beach with Method B  
In field experiments or monitoring programs, nearshore bathymetric data are routinely collected 

along multiple cross-shore transects spaced about 50 m apart, such as the Field Research Facility 
(FRF) in Duck, NC. Normally, these surveys are then interpolated linearly in the cross-shore and 
alongshore directions to obtain the bathymetry of the entire area of interest, which is then used as an 
input to physics-based numerical models (e.g., Chen et al., 2003) to simulate the nearshore wave 
processes. To reconstruct the bathymetry and map the wave field with Method B, we use the 
measured data of water depth along the cross-shore transects and wave heights scattered between 
adjacent transects as training points. The resolution of measured bathymetric data in the alongshore 
and cross-shore directions is set as 50 m (or 110 m) and 10 m, respectively. The measured wave 
height locations are randomly selected inside the domain with more data placed nearshore (i.e., x = 
800-980 m). The PINN-predicted wave height and water depth are then compared to the true data to 
examine the performance of Method B. In this study, the synthetic data from XBeach are used as the 
“observational data” for demonstration purposes. Testing of the inverse PINN models against real 
field observations will be carried out in future studies. 

In this study, we examine the performance of Method B by estimating the water depth based on 
measured bathymetry along cross-shore transects and wave heights scattered between adjacent 
transects, an analog to the long-term nearshore surveys at FRF in Duck, NC. Figure 6 shows the 
spatial distributions of the simulation errors in the PINN-predicted water depths. The results indicate 
that bathymetry and wave height (not shown) can be well estimated by the developed PINN models 
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with measured water depths along a limited number of cross-shore transects and scarce wave height 
measurements applied as training data (without wave number data). Compared to linear interpolation, 
the inverse PINN models provide a more accurate way to determine the water depths over the entire 
domain, because small-scale bathymetry changes between the cross-shore survey transects can be 
captured by the limited wave height measurements used to train the inverse PINN model. 

 

 
 

 
Figure 6. Simulation errors of the PINN-predicted water depths with 10 cross-shore transects of 50m apart (top) 
and 5 cross-shore transects of 110 m apart (bottom) as training data. The red and white dots represent the 
locations of the training points for water depth and wave height, respectively. 

 
 

CONCLUSIONS 
 We introduce the NWnets, a composite physics-informed neural network deep learning model for 
nearshore research. The physics encoded into the deep neural networks are the wave energy balance 
equation and dispersion relation. Insights into the capability of PINNs are gained through application 
of the NWnets to a well-documented laboratory experiment of wave transformation over a submerged 
circular shoal. If the bathymetry and discrete measurements of wave height are available, the NWnets 
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model is capable of reconstructing a complex wave field. The nearshore wave processes, such as 
wave shoaling, refraction, diffraction, and depth-limited breaking, are well captured by the NWnets 
even wave diffraction is absent in the energy balance equation. This is attributed to the large amount 
of wave height data available for training, suggesting the potential of PINN to discover missing 
physics in the encoded equation (e.g. energy balance equation) from measurements. 
 To extend the NWnets for depth inversion if the bathymetry is unknown, we introduce two 
methods to simultaneously estimate the water depth and wave field. Assuming surface wave number 
and limited wave height measurements are available from various remote sensing platforms or 
synthetic data from a physics-based model, the first method employs wave numbers and scarce 
measurements of wave height as training data. The second method utilizes scarce wave height and 
limited water depth measurements as training points to reconstruct bathymetry and wave fields. The 
results show that both methods are capable of simultaneously mapping the bathymetry and wave 
fields when the locations of scarce training points are appropriately distributed.  
 Although physics-informed deep learning models are promising, more studies are definitely 
needed to test the performance of the NWnets under field conditions. Furthermore, other conservation 
laws, such as the continuity and momentum equations, ought to be encoded into deep neural networks 
trained with remotely-sensed phase-resolving data to further our understanding of nearshore wave 
processes.     
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