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Nowadays, maritime transportation has expanded rapidly, involving the need to enhance several navigation-related 

issues, particularly concerning the safety of navigation, which is significantly impacted by weather conditions. In this 

regard, creating a wave forecasting system could facilitate vessel movement at the harbour entrance or inside the 

sheltered area. Wave characteristics are usually estimated using numerical models, which generally require high 

computational costs, making them inadequate for nowcasting and forecasting wave climate. The current study describes 

the implementation of a forecasting methodology for the port area of Augusta (Sicily) based on an Artificial Neural 

Network (ANN) that attempts to deliver a trustworthy response and the numerical model but with a significant reduction 

in the computational time. 
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INTRODUCTION 

The marine industry is the primary mode of transportation for both goods and people. Indeed, it 

powers nearly 90% of world trade, and over the past ten years, it has grown consistently at a rate of about 

3% each year, stopped only by the COVID-19 pandemic in 2020 (UNCTAD/RTM, 2022). Therefore, 

ports play a strategic role in world trade, provided that some few well-known pressing challenges remain 

unsolved due to the continuous expansion of maritime traffic, such as reduced intermodality, poor 

digitalisation of processes, complexity of administrative procedures, backwardness of the development 

of green ports with a view to sustainability and, above all, limited safety of infrastructures. Indeed, the 

rise in ship numbers (Perera & Soares, 2017) and sizes (Tchang, 2020) that result from the increased 

maritime traffic also increases the risk of marine accidents. For example, ship collisions are the most 

common type of accident in ports, with an increased expected trend (Ozturk & Cicek, 2019). Risk 

analysis of maritime transport is receiving increasing attention to identify mitigation strategies (Marino 

et al., 2023). The statistical analysis shows that more than 80% of maritime accidents occur in the 

proximity of ports and are due to human errors (Sánchez-Beaskoetxea et al., 2021) and external causes, 

such as complex navigation environment, equipment failures and adverse weather conditions (Yu et al., 

2021) that can generate problems related to the manoeuvrability of the ships (Zhou et al., 2020). 

Additionally, each port has unique physical and logistical factors, such as traffic density, bathymetry, or 

the current metocean conditions, influencing the various accident risk scenarios. In this framework, the 

availability of forecasting models, able to provide local weather and sea conditions well in advance and 

with sufficient precision, is undoubtedly helpful in mitigating the risk of accidents in port areas. 

Complex numerical models, based on spectral approaches or Boussinesq or the mild slope equations, 

are usually used to define the wave climate in the proximity and within harbour areas. However, such 

models imply high computational costs and are unfit for forecasting and nowcasting systems (Salah et 

al., 2016). Artificial Intelligence algorithms, such as Artificial Neural Networks (ANNs), can be adopted 

to overcome this limit. Indeed, neural networks trained with data from the previously mentioned models 

can instantly provide the required meteomarine information. ANNs have been applied recently in several 

studies to forecast or hindcast sea states (Peres et al., 2015; Duan et al., 2020; Ma et al., 2021), storm 

surge (Kim et al., 2019; Qiao & Myers, 2021) or extreme waves (Dixit & Londhe, 2016; Fan et al., 2020).  

The present work aims to show the results related to the implementation of ANNs for estimating the 

wave climate at specific points inside and outside the port of Augusta (Sicily), one of the most important 

Italian ports.  

DESCRIPTION OF THE PORT OF AUGUSTA 

The port of Augusta is placed on the East coast of Sicily, bounded to the North by a rocky headland 

and to the South by the Magnisi peninsula. The port presents a sheltered area of about 23 km2, protected 

by 6.5 km of breakwaters and two port entrances: Levante and Passo Sud, exposed to the wave climate 

from the first and the second quadrant. The entrance of Levante has a width of about 480 meters, whereas 

Passo Sud has a width of about 260 meters. The average depth of the sheltered area is around 15 m, with 

a maximum draft of 21.8 m in the central area of the roadstead and an average depth at the operative 

piers of approximately 10 m. The wide harbour extent allows a maximum length of fetch of about 4.5 
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km along the East-West direction and about 8 km along the North-South direction. Such large fetches 

within the harbour area, jointly with the action of local winds, can produce nonnegligible wave generation 

inside the harbour and additional threats for manoeuvring and moored ships. 

Moreover, the maritime traffic inside the sheltered area of Augusta is intense, and official port 

accident reports show that 40% of accidents are due to the impact against elements such as buoys or 

docks, 25% are due to the collision between ships, and 30% is due to sinking and grounding. Adverse 

weather conditions are one of the leading causes of those accidents. Indeed, due to the sheltered area’s 

muddy bottom and high wind speed from specific directions, adverse weather conditions frequently result 

in the displacement of anchored or moored ships, which causes collisions with other ships. 

RECONSTRUCTION OF WAVE CLIMATE CHARACTERISTICS IN THE PORT AREA 

The dataset adopted to train the neural networks were built using the numerical model SWAN 

(Simulating Wave Nearshore). It is a third-generation wave model, developed at Delft University of 

Technology, that computes random and short-crested wind-generated waves in coastal regions and inland 

waters (Booij et al., 1999) and that can simulate a variety of coastal processes, including wave breaking, 

wave shoaling, nearshore currents and wave-current interaction (Faraci et al. 2021). 

The present study adopts an unstructured mesh to describe the computational domain. This type of 

mesh provides the opportunity to increase the mesh resolution in places of interest, such as close to or 

inside the harbours, and offers a far better depiction of complex boundaries than cartesian grids. 

Additionally, compared to cartesian grids, unstructured grids make it easier to describe the model area 

while maintaining high accuracy (Iuppa et al., 2015). Figure 1 shows the generated unstructured 

calculation grid of 30,080 triangular cells connected by 15,607 nodes. 

 
 

Figure 1. Computational domain of SWAN. 

The European Centre for Medium-Range Weather Forecasts (ECMWF) and the Copernicus Marine 

Environment Monitoring Service (CMEMS) databases were used to gather information about wind and 

wave data without direct measurements. In particular, ECMWF wind data and CMEMS wave data are 
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used here. The likely offshore scenarios have been defined as a result of examining these datasets to 

evaluate the characteristics of the wind and waves close to the port of Augusta. A synthetic overview of 

the two datasets is shown in Figure 2. 

 

 
 

Figure 2. Analysis of the wind and wave data provided by the ECMWF and CMEMS respectively: a) wind 
direction as a function of the wind velocity; b) wave direction as a function of the significant wave height; c) 
comparison between the peak wave period estimated with Boccotti (2000) and that provided by the CMEMS; 
d) wind velocity as a function of the significant wave height. 

According to Iuppa et al. (2022), 146875 scenarios were simulated with SWAN changing both the wind 
characteristics (velocity V and direction Dirwind) and the wave characteristics (significant wave height Hs, 
mean direction Dirwave, and peak period Tp). In particular, the analysis conducted by Iuppa et al. (2022) for 
the selected area showed that wave directions between 0 and 180°N (i.e. waves coming from the open sea) 
appear uncorrelated with local wind direction (Case 1), while wave directions greater than 180° (i.e. wave 
coming from the land) shows a significant correlation with local wind direction (Case 2).  

The peak wave period was defined according to the relationship proposed by Boccotti (2000): 

𝑇𝑝 = 8.5 ∙ 𝜋√
𝐻𝑠

4 ∙ 𝑔
 

where g is the gravity acceleration [m/s2]. However, such a formula is strictly valid for the peak of a 

wave storm (Castro et al., 2022). Therefore, to consider other wave conditions, two other values obtained 

by increasing by 25% and 50% the value obtained with such a relationship were considered (see Figure 

2 c).  

For each simulated scenario, the execution time of each simulation was about 10 minutes using a 

computer with a RAM of 32 GB and an Intel(R) Xeon(R) Silver 4214 CPU @2.20 GHz.  

 
Table 1 summarises the wind and wave characteristics provided as input for the numerical model 

SWAN. 



 COASTAL ENGINEERING 2022 

 

4 

Table 1. Wind and wave characteristics provided as input for the 
numerical model SWAN. 

Case Variables Range Step 

Case 1 -wind 
direction 

coming from 
0 to 360°N 

   

Dirwind 0-360°N 10° 

V 5 to 20 m/s 2.5 m/s 

Hs 0.5 to 7 m 0.5 m 

Dirwave 15 – 155 °N 10° 

Case 2 -wind 
direction 
coming from 
180 to 360°N 
 

   

Dirwind 180-360 10° 

V 5 to 15 m/s 2.5 m/s 

Hs - - 

Dirwave - - 

CALIBRATION OF NEURAL NETWORKS 

A set of feed-forwards MLP Multilayer Perceptron neural networks with one hidden layer was 

developed and trained with the back-propagation algorithm. Specifically, a neural network was built to 

evaluate wave climate generated by the wind that blows inside the sheltered area. A second one was 

created to forecast the wave climate near the port entrances.  

The ANNs implemented on MATLAB using the Deep Learning Toolbox received the same input 

data as SWAN. Significant wave height (Hs), peak wave period (Tp), and mean wave direction (Dir) 

were extracted at the nodes of the calculation grid shown in Figure 3. In particular, among the nodes of 

the calculation grid, nodes E1, E2, E3, E4, E5, E6, E7 and E8 were selected as representative of the wave 

conditions outside the port. These nodes were identified in correspondence with the Xifonio port (E1, 

E2), the eastern entrance of the port (E3, E4, E5), the southern entrance of the port (E6, E7) and in the 

correspondence of the Seno di Priolo (E8). Furthermore, four nodes within the port were selected. Node 

I1 is close to Augusta’s commercial and military ports. Nodes I2 and I4 are close to the industrial port. 

Finally, node I3 is located near the eastern entrance of the port. The data relating to the O1 node were 

used to define the input data for the neural networks. 

The whole dataset was divided into three sub-datasets: 75% for the training of the network, 15% for 

the validation and 15% for the test. The first two were adopted in the calibration phase of the neural 

network; the last one was used to compare different configurations of the ANN. In this application, the 

calibration was carried out using the Bayesian regularisation method, with the hyperbolic tangent as 

activation function in the input layer and the sigmoid one for the output layer.  

The number of neurons in the hidden layer was changed from 1 to 150 to test different neural network 

configurations. The goodness of fitting was evaluated for each configuration using the Root Mean 

Squared Error (RMSE) to find the optimal configuration. 

 



 COASTAL ENGINEERING 2022 

 

5 

 
Figure 3. Computational domain nodes whose data has been adopted to calibrate neural networks. 

RESULTS AND DISCUSSION 

Regarding the setup of the neural networks, an analysis was conducted to determine the optimal 

number of neurons.  

As shown in Figure 4 and Figure 5, the optimal configuration of all the ANNs developed contains 

100 neurons in the hidden layer.  

The value of Δ was estimated with the following relationship: 

 

∆(𝑖) =
𝑅𝑀𝑆𝐸𝑖 − 𝑅𝑀𝑆𝐸𝑖−1

𝑅𝑀𝑆𝐸𝑖−1
 

 

where RMSEi indicates the value of the RMSE evaluated for the (i-1)-th configuration, and RMSEi-1 

indicates the value of the RMSE evaluated for the i-th configuration. 

For all the considered nodes (external and internal to the port), both for the wave height and for the 

peak period, it is found that the error tends to remain constant for a number of neurons greater than or 

equal to 40. As far as the directions of the wave motion are concerned, more contained variations of ∆ 

are found compared to those observed for the other two quantities. Also, in this case, for nodes external 

to the port, the number of neurons for which network performance is satisfactory equals 40. The 

configurations that guarantee the best performance for internal nodes are characterised by a number of 

nodes equal to or greater than 100. 
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Figure 4. Points outside the port of Augusta. Variation of the RMSE as the number of neurons in the hidden 
layer varies: a) significant wave height; b) peak period of the wave; c) wave direction. 

 
 

Figure 5. Points within the port of Augusta. Variation of the RMSE as the number of neurons in the hidden 
layer varies: a) significant wave height; b) peak period of the wave; c) wave direction. 

To verify the reliability of the neural networks developed for the selected points, an entire storm that 

recently affected the port of Augusta was simulated through SWAN, considering the characteristics of 

storm waves as input data. 
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Figure 6. Node E1. Comparison between the results obtained by the neural network and the SWAN numerical 
model relating to the storm of February 24-25, 2019. 

 
 

Figure 7. Node I1. Comparison between the results obtained by the neural network and the SWAN numerical 
model relating to the storm of February 24-25, 2019. 

Table 2 summarises the root mean square error between the data obtained through the application of 

neural networks and those estimated through the SWAN. The comparison is limited to cases with a 
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significant offshore wave height greater than 2 m. For all nodes, the characteristics of the wave during 

the storm were estimated with the ANNs’ hidden layer composed of 100 neurons. 

 
Table 2. RMSE evaluated by comparing the results of the 

neural network and the SWAN in the selected nodes. 

Nome 
RMSE Significant 

wave height  
[m] 

RMSE Peak 
period  

[s] 

RMSE  
Wave 

direction  
[°] 

E1 0.01 0.21 0.27 

E2 0.04 0.14 0.45 

E3 0.01 0.01 0.26 

E4 0.02 0.07 0.37 

E5 0.02 0.25 0.32 

E6 0.03 0.21 0.44 

E7 0.02 0.06 0.49 

E8 0.01 0.14 0.17 

I1 0.09 1.36 23.10 

I2 0.05 0.88 5.88 

I3 0.03 0.28 1.50 

I4 0.03 0.30 1.38 

 

As shown in Table 2, neural networks allow a reliable estimate of wave characteristics. For the 

external points, the maximum error equals 0.04 m for the significant wave height, 0.25 s for the peak 

period and 0.5° for the wave direction.  

The error tends to increase for internal points, especially for node I1. The error for such a node is 

equal to 0.09 m for the significant wave height, 1.36 s for the peak period and 23° for the direction of the 

wave motion. This difference is probably due to the location of node I1, which is relatively sheltered 

from the external wave. Therefore, it is more complex for the neural network to adequately define the 

functional link between the input and output data, especially for the less severe sea states. However, as 

seen in Figure 7, the neural network can adequately reproduce the wave’s characteristics at the peak 

event. 

CONCLUSION 

Maritime transportation is strategically vital for the world economy. Consequently, its growth also 

contributes to an increase in the number and importance of marine accidents. Among the predisposing 

factors, adverse weather conditions play a leading role. In this perspective, being aware of the wave 

climate beforehand might reduce the likelihood of an accident and increase navigation safety. However, 

the modern spectral models used to calculate the wave climate involve long computational time, which 

is not compatible with the development of early warning systems. 

The present work illustrates the results related to the development of neural networks for estimating 

the wave climate inside and outside the port of Augusta (Sicily) to implement a navigation aid system. 

The investigations carried out allowed us to assess how both the structure of the network and some 

training parameters of the network itself are essential for the accurate modelling of real conditions. Based 

on the analysis of the obtained results, it has been shown that the ANNs are an effective approach to be 

used for the safe management of port areas, allowing reliable forecasts of weather and sea conditions 

both outside and inside the port basin.  
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