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INTRODUCTION 
Solitary wave is a permanent wave when the dissipation 
is ignored. Many analytical solutions have been 
developed for finite amplitude solitary waves. In 
additional to the perturbation solutions, closed form 
solutions are also available (e.g., McCowan 1891, 
Clamond and Fructus 2003, being denoted as CF from 
hereon), which are more accuracy, especially for larger 
amplitude solitary waves which were discussed in Wang 
and Liu (2022). All the closed solutions satisfy the 
Laplace equation, bottom boundary condition and 
kinematic free surface boundary condition exactly. 
However, the dynamic free surface boundary conditions 
are only satisfied approximately. Wang and Liu (2022) 
showed that the CF’s closed form solution matched very 
well with experimental data and Tanaka’s (1986) 
numerical solutions, which is based on the boundary 
integral method solving the complex potential function.  
 
In Wang and Liu (2022) ’s laboratory experiments, 
solitary waves are slowly damped along the wave flume, 
which can be attributed to the energy dissipation inside 
the boundary layers on the bottom and sidewalls. 
Keulegan (1948) first derived an approximate solution to 
describe the wave damping in the wave flume for small 
amplitude solitary wave. The basic idea of calculating 
the damping effect is that the rate of energy dissipation 
inside the boundary layers, (𝐷) must be the same as the 
rate of wave energy loss, (𝑑𝐸/𝑑𝑡).  
 
In this work, the same principle of energy balance is 
adopted for calculating the wave damping for finite 
amplitude solitary waves in a wave flume. The closed 
form solutions provided in CF are employed here for 
analyses. 
 
NUMERICAL MODEL  
In the present paper, the wave flume has a rectangular 
cross section, where the water depth is ℎ and the width 
of the flume is 𝐵. The parameter 𝛾 = 𝐵/ℎ represents the 
shape of the wave tank. For a finite amplitude solitary 
wave, the wave amplitude is denoted by 𝐻 .  The 
parameter  𝛼 = 𝐻/ℎ  defines the nonlinearity of the 
solitary wave.  As the wave propagates down the flume, 
transient viscous boundary layer flows are developed 
along the bottom and two sidewalls. The closed form 
solutions in CF provide the free steam velocity 
components at the outer edges of the respective 
boundary layer and the wave energy in the potential flow 
region. The velocity components in the boundary layer 
has been calculated accordingly. In estimating the 
energy loss inside the sidewall boundary layers, two 
important features are considered in the analyses: 1) 
The wetted areas above the still water level (see the red 
area in Figure 1), and 2) both the horizontal and vertical 
velocity components and their profiles in the water 
column.   

 

 
Figure 1 – Sketch of solitary wave and its horizontal velocity 
distribution (blue lines) under the wave crest (not to scale).  
 
During the calculation of 𝐷, the linearized boundary layer 
equations are used here as in Keulegan (1948), i.e., the 
convection terms are neglected. The energy balance 
equation is derived by equating the rate of energy 
dissipation inside the boundary layers, (𝐷), and the rate 
of wave energy loss, (𝑑𝐸/𝑑𝑡 ), which can be solved 
numerically by a time marching scheme.  
 
EXPERIMENTS 
The damping numerical solutions have been compared 
with experiments conducted in NUS Hydraulic 
Laboratory using the long stroke flume with a piston type 
wavemaker. The dimension of the wave flume is 36m x 
0.9m x 0.9m.  
 
As shown in Figure 2, six capacitance wave gauges were 
used to measure the wave height along the flume. The 
distances between the six wave gauges and the initial 
position of the wave maker has been shown in Table 1. 
The sampling rate of the wave gauge is 200 Hz. As 
described in Wang and Liu (2022), to ensure the solitary 
wave has been fully developed in the measuring area, 
the first wave gauge need to be installed 9m away from 
the initial position of the wavemaker’s paddle. To 
minimize the effect from the slope, the last wave gauge 
was installed 5m away from the end of the slope. 
 
To study the influence of the 𝛾  and 𝛼  value on the 
damping effect, eighteen sets of experiments has been 
conducted.  The experiments were conducted with 
0.18m, 0.3m and 0.45m water depth ( 𝛾 =5, 3, and 2, 
respectively). For each water depth, the six different 
initial amplitudes were measured within the range of 
0.1 < 𝛼 < 0.65 . For each case, the experiments were 
repeated for five times. 
 

 
Figure 2 – A sketch of the long stroke wave flume (Note: CG 
denotes capacitance gauges.) . 
 



 

 
 

Wave Gauge CG 1 CG 2 CG 3 CG 4 CG 5 CG 6 

Distance 9.3 m 11.3 m 14 m 17 m 20 m 23 m 

 Table 1 – the distance between the capacitance wave gage 
and the initial position of the wave paddle. 
 
RESULTS  
Figure 3 shows the comparisons among the present 
numerical model simulated all the three water depths of 
our laboratory experiments. The models were set that 
the started amplitudes of the solitary wave is 𝛼 = 0.75 . 
Then, the solitary wave propagates to  𝛼 near zero, as 
the study is focus on the finite solitary wave. The solitary 
wave damps faster as  	𝛾 increasing and 𝛼 increasing.   
 

 
Figure 3 – Calculated 𝛼 values  at different locations with 
initial 𝛼  values. Different lines represent difference 
conditions: blue solid line is h=0.18m (	𝛾=5); red dash line is 
h=0.3m (	𝛾=3); black dotted line is h=0.45m (	𝛾=2).   s is the 
distance. s=0 stands for where the numerical model is 
started. 

 
In the result section, the experimental results of h=0.3m 
(	𝛾=3) are discussed as an example. The trend is very 
similar for other water depths experimental results. 
Figure 4 shows the comparisons among the present 
numerical solutions, Keulegan’s solutions and five-runs 
averaged experimental data for h=0.3m ( 	𝛾 =3). The 
initial 𝛼 value is calculated from the first wave gauge. 
From the largest to lowest amplitude solitary wave, the 
initial 𝛼 values are 0.63, 0.54, 0.45, 0.35, 0.26 and 0.17, 
subsequently.  
 
For the first three wave gauges, Keulegan (1948) and 
the present model are all agree with experimental data 
well. As the wave propagating longer distance, the 
differences becomes more obvious. Compared with 
experimental data, Keulegan’s solutions tend to 
underestimate the damping effect, especially for the 
finite amplitude waves.. The new damping solutions 
agree well with the measurements for all the amplitudes. 
The trend is very similar for other water depths 
experimental results. 

 
Figure 4 – Measured and calculated wave heights, 𝛼 = 𝐻/ℎ,  
at different distance, s, from the wavemaker for ℎ = 0.3𝑚. 
The solid lines denote new damping solutions; the dashed 
lines represent Keulegan’s solutions; the circles with error 
bar are the experimental data. From top to bottom, The 
different line’s colors represent difference initial 𝛼  values. 
The initial 𝛼 value is 0.63, 0.54, 0.45, 0.35, 0.26 and 0.17, 
subsequently. 

 
CONCLUDING REMARKS 
Overall, the new numerical model with CF’s solution 
provides good estimation on the solitary wave 
attenuation especially for a narrower wave tank and 
finite amplitude waves. 
 
As in the numerical model’s assumption, the convection 
terms (i.e., the nonlinear terms) are neglected as it has 
been seen as a small value. For majority cases, it could 
provide accurate estimation. However, for a very narrow 
wave tank with a large amplitude, the nonlinear terms 
might have more obvious influence. Especially for the 
area near the wave crest, the horizontal velocity and its 
gradient product could be large. The next step is to 
determine the influence of the nonlinear terms on the 
solitary wave damping estimations. The accuracy of the 
solitary wave damping model in a flume could be further 
improved. 
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