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INTRODUCTION 
As the water waves come to the coastal area, the 

variation in dispersion relation due to the spatial 
inhomogeneity brings about the deformation of the wave 
shape. With the local bathymetry effect, the propagation 
of the wave experiences a complicated evolution 
process, including the reflection, wave shoaling and 
breaking, etc. Considering the directional spreading 
effect and wave refraction becomes indispensable when 
it comes to a two-dimensional (2D) problem in the 
random wavefield. Mori et al. (2011) indicated that the 
distribution of maximum wave height in deep-water is 
decided by the directional dispersion.  

In this research, we aim to discuss the occurrence of 
maximum wave height in the 2D wave evolution in the 
coastal area. It helps to estimate better extreme events 
in the prevention work of coastal hazards. To simulate 
the 2D propagation, we develop a nonlinear model as an 
extension work of Lyu et al. (2021), which considers the 
high order harmonic interactions of irregular waves 
before the breaking in surf zone. 
 
THEORETICAL MODEL  

For a 2D wavefield with finite water depth ℎ , the 
propagation of the random wave can be expressed as 
the surface elevation 𝜂 in a 2D space-time (2D+T) form: 
𝜂(𝑥, 𝑦, 𝑡) = 𝜀𝐴exp{i[ि𝑘֓𝑥 + 𝑘֔𝑦ी − 𝜔Ј𝑡]} + c. c + 𝑂(𝜀ϵ), (1) 
where 𝜀  is the wave steepness, 𝑘֓, 𝑘֔  and 𝜔Ј  are the 
wave numbers and angular frequency, 𝐴(𝑥, 𝑦, 𝑡)  is the 
phase-independent amplitude. Based on the hypothesis 
of the four-wave interactions, the evolution of 𝐴 can be 
given by a modified Nonlinear Schrödinger type equation:  
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where coefficients 𝜇,𝜆, 𝛾, 𝜐 are functions of 𝑘֓, 𝑘֔, 𝜔Ј, ℎ. 
𝜇 is related to the derivative of ℎ, so Eq. (2) can describe 
the wave evolution on a varying depth.  

Different from the ordinal treatment of the spectral 
wave modeling, in this model, we integrate Eq. (1) from 
offshore to onshore, assuming periodic boundary 
conditions in time. At the initial condition at 𝑥 = 𝑥Ј, we 
give the Fourier amplitude 𝐴 ̂as the Gaussian distribution: 
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where 𝜃 = arctan 𝑘֔/𝑘֓ represents the wave direction of 
different wave components, and 𝜃Ј  is the initial wave 
principal direction. 𝜎ᇆ ,𝜎ᇖ  are spectral bandwidth of 𝜃, 𝜔, 
respectively. 𝜓 gives a random phase. 
 
NUMERICAL RESULT  

In Figure 1, we give the transient surface elevation of 
one sample of oblique random wave on a 30×30𝐿Ј (𝐿Ј: 

wavelength on 𝑘֓ ) over a flat bottom. The waves 
propagate with a dispersion range based on the principal 
direction tan 𝜃0 = 0.2. With the Monte Carlo simulation 
(MS) over an uneven bottom, the exceeding probability of 
maximum wave height 𝑃թ(𝐻ζ͘Ђ 𝜂ϝζϣ⁄ > 8) at different 𝜎ᇆ 
and 𝑘ℎ is given in Figure 2. As the 𝜎ᇆ increases from 0.3 
to 0.5, 𝑃թ  monotonically drops and the degree of decline 
decreases from deep to shallow water. It indicates that 
the directional spreading has a dispersion effect on the 
occurrence of extreme events, and the extent of this 
effect is related to the water depth. 

 
Figure 1 – Transient surface elevation 𝜂 at 𝑡 = 40𝑇  with 

tan 𝜃0 = 0.2, 𝜎ᇆ = 0.3 over a flat bottom 𝑘ℎ = 5 

 
Figure 2 – Exceeding probability of  𝐻ζ͘Ђ > 8𝜂ϝζϣ by MS 
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