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ABSTRACT 
We present a new equilibrium ripple predictor using a 
machine learning approach that outputs a probability 
distribution of wave-generated equilibrium wavelengths 
and statistics including an estimate of ripple height, the 
most probable ripple wavelength, and sediment and flow 
parameterizations. The Bayesian Optimal Model System 
(BOMS) is an ensemble machine learning system that 
combines two machine learning algorithms and two 
deterministic empirical ripple predictors with a Bayesian 
meta-learner to produce probabilistic wave-generated 
equilibrium ripple wavelength estimates in sandy 
locations. 
 
BACKGROUND 
Sand ripples are geomorphic features on the seafloor that 
affect bottom boundary layer dynamics including wave 
attenuation and sediment transport and are critical for 
time-dependent ripple and sediment transport models 
(Traykovski [2007], Nelson and Voulgaris [2015], Soulsby 
et al. [2012], Penko et al. [2017]). Decades of work 
focused on studying the equilibrium geometry of ripples 
generated by constant wave propagation over a sandy 
bed has resulted in many empirical formulations derived 
from laboratory and field observations (e.g., Soulsby and 
Whitehouse [2005], Faraci and Foti [2002], Mogridge et 
al. [1994], Nielsen [1981], and others). Typically, the data 
used to derive these deterministic equilibrium ripple 
predictors have a large spread and the predictions 
therefore have high uncertainty. Nelson et al. [2013] 
compiled over 50 years of laboratory and field 
observations to produce one of the most recent empirical 
formulations for the prediction of equilibrium ripple length 
and height given constant wave forcing. To date, this 
empirical deterministic predictor is the most accurate 
available. 
 
METHODOLOGY 
The Bayesian Optimal Model System (BOMS) (Phillip et 
al. [2022]) combines two ML base models with two 
empirical ripple predictors into an ensemble stacked 
system including a Bayesian meta-learner to produce 
probabilistic equilibrium ripple wavelength predictions 
and geometry statistics including an estimate of ripple 
height, the most probable ripple wavelength, and 
sediment and flow parameterizations. 
 
The four base models within the first layer of the stacked 
generalized system include two machine learning 
algorithms and two deterministic empirical equilibrium 
ripple wavelength formulations. After extensive testing of 
several machine learning models, an optimized Gradient 
Boosting Regressor (Friedman [2002]) and a non-
optimized XGBoost Regressor (Chen and Guestrin 
[2016]) were chosen to allow for the minimization of 
overfitting without significantly increasing the bias.  

 
Including empirical equilibrium equations as base models 
allows for the representation of the present state-of-the-
art deterministic ripple geometry predictions based on 
over 50 years of research and observations.  The Nelson 
et al. [2013] and Traykovski et al. [1999] equations were 
chosen because while they are both functions of wave-
orbital excursion, Traykovski et al. [1999] includes an 
additional dependence on sediment settling velocity and 
wave period. The two predictors incorporate a variety of 
independent variables and resulted in predictions with the 
highest skill.  
 
The system was trained with the 50+ year dataset 
compiled by Nelson et al. [2013]. The compilation contains 
observations from both field and laboratory studies. 
Parameters included in the compilation are ripple height, 
ripple wavelength, median grain size, wave orbital 
velocity, semi-orbital excursion, water depth, wave period, 
and water density. The data was filtered to include only 
equilibrium ripples using the equilibrium ripple criteria 
established in Nelson et al. [2013]. Additionally, the 
dataset is filtered to only include wave-generated orbital 
ripples with wavelengths less than a specific threshold. A 
maximum ripple wavelength threshold of 1m for laboratory 
data and 1.5m for field data was applied to filter out 
potential megaripples that have longer wavelengths due 
to being forced by other processes (tides, infragravity 
waves, etc.). The final equilibrium ripple filtered dataset 
consisted of 3,622 data points. Lastly, null values were 
removed and a method was employed to predict ripple 
height values when they were not included in the dataset. 
A KNNImputer class was used to estimate missing ripple 
height values and serves as an additional output of 
deterministic ripple height in addition to the probabilistic 
ripple length predictions. 
 
A Bayesian Linear Regression (BLR) is used as the meta-
learner. Bayesian inference determines the posterior 
distribution of the model features from a prior probability. 
The final probabilistic predictions are generated from the 
posterior distribution with Markov Chain Monte Carlo 
sampling.  
 
RESULTS 
Ten-fold cross validations were performed on both layers 
of the stacked system as well as the ripple height imputer 
method. The KNNImputer method predicted ripple heights 
with an adjusted R-squared (Radj

2) of 0.88 and root mean 
square error (RMSE) of 0.014 m. The comparisons of 
each of the base model layers resulted in R-squared 
(adjusted), RMSE, and Bias values as presented in Table 
1. A final ten-fold cross validation was performed on the 
final predictions from the meta-learner in BOMS. The 
predictions resulted in an R-squared value of 0.93 and an 



average root mean square error (RMSE) of 8.0 cm 
(Figure 1). 
 

 
 
Table 1 – Performance metrics of the base models when 
subject to 10-fold cross validation on the training dataset. 
 

 
Figure 1  – Scatter plot visualizing the results from ten-fold 
cross validation of the stacked model system, BOMS. 

 
BOMS was also tested on three unique field data sets not 
included in the training data. The RMSE from the field 
comparisons ranged from 5-10cm with biases O(1cm). 
During both cross validation and testing on three unique 
field datasets, BOMS provided more accurate 
wavelength predictions than each individual base model 
and other common ripple predictors.  
 

APPLICATIONS 
Due to its ability to provide probabilistic distributions of 
ripple length, BOMS is well suited for providing 
distributions of equilibrium wavelengths that can be used 
to drive time-dependent seafloor roughness models. For 
example, to stochastically model the changes in seafloor 
ripples, we can combine a point process model with 
BOMS to produce probability distributions of ripple 
wavelengths over time given a timeseries of wave 
conditions (Figure 2).  
 

 
Figure 2  – Time series plot of the observed ripple 
wavelength (black dots) and the probability density of 
predicted ripple wavelengths (red shaded) at a location in 
8m water depth off the coast of Panama City, FL.  
 

CONCLUSIONS 
The Bayesian Optimal Model System (BOMS) predicts 
probabilistic distributions of wave-generated equilibrium 
sand ripple wavelengths and estimations of a 
deterministic ripple height using machine learning 
techniques in combination with pre-existing 
deterministic empirical equilibrium ripple predictors. 
Overall, BOMS provides more accurate predictions of 
ripple wavelength during both cross-validation and 
testing compared to the performance of each 
independent base model and other common equilibrium 
ripple predictors. Practical applications of BOMS include 
probabilistic ripple geometry forecasting and the 
coupling with time-dependent ripple and sediment 
transport models. 
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A machine learning approach to predicting equilibrium ripple wavelength

Model R2
adj RMSE(m) Bias(m)

Gradient Boosting Regression 0.93 0.082 -0.0011
XGBoost Regression 0.92 0.087 -0.0004
Traykovski et al. (1999) 0.57 0.199 -0.0603
Nelson et al. (2013) 0.50 0.215 -0.0879
BOMS 0.93 0.080 0.0007

Table 2
Metrics used to measure the performance of the individual base models as well as the Bayesian Optimal Model System
(BOMS) when subject to 10-fold cross validation on the training dataset. The performance metrics consist of adjust
R-squared (R2

adj), root mean square error (RMSE) in meters, and bias in meters.

is the mean and standard deviation of the predicted value, respectively. Too few random samples may result in an295

unrepresentative density curve. The random sample values were used to create a histogram with a set number of bins296

(m). Two formulas were used in tandem to determine the number of bins to use in the histogram to produce the BOMS297

equilibrium ripple wavelength estimate distribution plots: Sturges’ rule and the Rice rule. Sturges’ rule, which is widely298

used in many statistical packages for constructing histograms, is given by,299

mSturges = 1 + log2n (6)

where m is the number of bins and n is the number of observations. Caution should be taken when using Sturges’ rule300

as it has faced criticism for over-smoothing (Hyndman, 1995). Therefore, the Rice rule was also used in determining301

the number of bins.302

mRice = 2 3
˘

n (7)

The median of mSturges and mRice (15 bins) was used as the overall number of bins. These final histograms were used303

to produce the posterior probability plots to compare to observed ripple wavelengths. Here, most probable value was304

compared to the observed value, and the posterior distribution width indicates the model prediction uncertainty.305

3. Results306

This section describes applicability and performance of BOMS at field sites with data not included in the307

optimization and training of the model system. Three separate field experiments in the Gulf of Mexico in 2013 and308

o� the Virginia and Maryland coasts in 2014 and 2015, respectively, provided observations of wave heights, wave309

periods, bottom velocities, sediment grain size, and ripple wavelength. These datasets were preprocessed using the310

same methods that were applied to the Nelson et al. (2013) training dataset detailed in Section 2.1. Like the training311

dataset, the field datasets used for validation were filtered to only include equilibrium ripples using the Nelson et al.312

(2013) equilibrium ripple criteria filter, imputed to replace missing ripple height values, and scaled in the pipeline.313

Ripple data with wavelengths exceeding 1.5 m were also filtered out to ensure only wave-generated orbital ripples314

were included in the analysis. The following subsections describe the field experiments.315

3.1. Target and Reverberation Experiment (TREX13)316

The Target and Reverberation Experiment (TREX13) o� the coast of Panama City, Florida in spring of 2015317

included moored instruments to collect in-situ observations of hydrodynamics and the seabed. Two instrumented318

quadpods at approximately 7.5 m and 20 m water depths collected data for 34 days (20 April – 23 May 2013). An319

upward-looking Nortek AWAC-AST® recorded wave height, period, and direction at 2 Hz for 1,024 seconds every 30320

minutes. Bottom wave-orbital excursions were calculated using linear wave theory and observations of wave height321

and period. Over the month-long deployment, the conditions ranged from calm (significant wave heights of 0.24 m322

and peak periods of 5 s) to fairly energetic (significant wave heights of 2 m and peak periods of 8 s). Bedforms were323

observed with high-frequency (2.25 MHz) sector-scanning sonar in about a 15 m2 area of the seabed every 12 minutes324

(Penko et al., 2017). Ripple wavelengths were extracted from the acoustic backscatter data. The sediment at the site325
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