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INTRODUCTION 
Coastal structures were usually considered as stiff in the 
majority of studies related to wave-structure interaction. In 
certain situations, such as impulsive wave loading on flexible 
breakwaters, ship hulls, tank walls, hydroelasticity can be of 
importance for both wave dynamics and structural 
responses. Akrish et al. (2018) showed that hydroelastic 
effects can either relax or amplify the hydrodynamic 
characteristics (i.e., wave run-up and force) and structural 
oscillations in a deformable cantilever wall interacting with 
an incident wave group. For flexible coastal defenses, 
Huang and Li (2022) showed that an elastic horizontal plate 
breakwater can exhibit a better performance of wave 
damping than a rigid one. Sree et al. (2021) experimentally 
investigated a submerged horizontal viscoelastic plate under 
surface waves. They reported a complete cutoff of the wave 
energy with the flexible plate. However, the hydroelasticity of 
a steep-fronted structure in nonlinear progressive waves 
was not yet studied in a detailed manner, which requires 
advanced numerical methods for modelling the nonlinear 
interaction between the fluid and the solid with finite 
deformations.  
 
The present study focuses on the hydroelastic behavior of a 
flexible vertical wall in nonlinear periodic waves with different 
wave periods (or frequencies). The effects of the structural 
stiffness on the wave evolution and the structural 
deformation are investigated with a fully-coupled wave-
structure interaction model.  
 
FULLY-COUPLED NUMERICAL MODEL 
The present numerical model fully coupled the 
computational fluid dynamics (CFD) and computational solid 
mechanics (CSM) models. A partitioned scheme is used for 
the CFD+CSM coupling. It enforces the momentum and 
kinematic continuity at the fluid-solid interface with a 
Dirichlet-Neumann approach (Cardiff et al., 2018; Tuković et 
al., 2018). 
 
The CFD model solves the Navier–Stokes equations for the 
multi-phase incompressible, isothermal, and Newtonian flow 
with a free surface (i.e., interface between air and water). 
The free surface is captured by the Volume of Fluid (VOF) 
approach (Hirt and Nichols, 1981). The wave generation 
combined with an active absorption is initialized by IHFOAM 
in the framework of OpenFOAM (Higuera et al., 2013), in 
which waves are generated using a stream function theory 
(Fenton, 1985). The laminar flow model is assumed in the 
present simulation since the turbulence effects are expected 
to be negligible in non-breaking waves. The CSM model 
calculates the Cauchy stress tensor with the nonlinear Neo-
Hookean hyperelastic law. The integration of the momentum 
equation in the total Lagrangian form (refer to the initial 
undeformed configuration). A number of fluid-structure 
interaction iterations are required per time step.  
 

MODEL SETUP AND VERIFICATION 
Figure 1 shows a sketch of the numerical flume with a fixed 
water depth (ℎ) in the Cartesian coordinate system. Waves 
are generated at the wave inlet boundary. A flexible 
cantilever wall (bottom fixed and top free) is clamped at the 
center (𝑂) of the wave flume. For the applicability of analysis, 

the mass coefficient ( 𝛾 = 𝜌𝑠𝑏/𝜌𝑤ℎ ) and the stiffness 

coefficient ( 𝛽 = 𝐸𝐼/𝜌𝑤𝑔ℎ4 ) are used to represent the 
mechanical properties of the wall, where 𝜌𝑠 and 𝜌𝑤 are the 

densities of the wall and the water, 𝑏 is the thickness, 𝐸 is 

Young’s modulus, 𝐼  is the moment of inertia, and 𝑔 is the 
gravity acceleration. The radiated waves stimulated by the 
wall’s deformation are absorbed in the wave outlet boundary. 
The top and bottom of the numerical flume are specified as 
atmospheric and no-slip boundary conditions, respectively. 
The interfaces of the wall with the fluid are set as the 
Dirichlet-Neumann boundary conditions (Cardiff et al., 2018). 
 

 
Figure 1 – Sketch of the numerical flume (not to scale) 

 
    The present model is verified against the numerical results 
of He and Kashiwagi (2012), who studied the hydroelastic 
behavior of a cantilever wall interaction with a solitary wave. 
A solitary wave with a wave height (𝐻) of 0.04ℎ is generated 

50ℎ from the wall. The mass coefficient 𝛾 and the stiffness 

coefficient 𝛽 of the wall are 0.01 and 0.04, respectively. The 

length of the wall is 1.1ℎ. The computational mesh utilized in 
the fluid domain is 15 cells/𝐻 with the aspect ratio of 1/3 and 

that in the solid domain is 600 cells (i.e., 6×100 cells). 
 

 
Figure 2 – Comparison of the results between the present study 
and He and Kashiwagi (2012) 
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Figure 2 shows the comparisons of the wave elevation at 𝑥 =
−10ℎ and the horizontal displacement of the wall at 𝑧 = ℎ/2 
between the present study and He and Kashiwagi (2012). 
Good agreement is obtained in both the wave evolution and 
the structural displacement. Therefore, this model setup and 
mesh configuration is used in the following simulations. The 
present study focuses on periodic waves interactions with a 
flexible vertical wall. For the periodic waves, the wave height 
is 0.1ℎ and the wave period (𝑇) ranges from 1.0 to 1.6 s in 

an interval of 0.1 s, where ℎ = 0.3 m. For the wall, the mass 

coefficient 𝛾 is 0.06, the stiffness coefficient 𝛽 ranges from 

0.08 to 0.20 in an interval of 0.04, and the length is 1.1ℎ. 
 
HYDROELASTIC BEHAVIORS OF THE WALL 
Figure 3 shows the comparison of the reflection coefficient 
𝐶𝑟 (i.e., the ratio of the reflected wave height to the incident 

wave height) and the transmission coefficient 𝐶𝑡  (i.e., the 
ratio of the radiated wave height to the incident wave height) 
induced by the flexible wall with different stiffness. It is 
observed that 𝐶𝑟 increases with the increasing wave period. 
This increase is more obvious for the most elastic wall. 
Besides, 𝐶𝑟  also increases with the increasing structural 
stiffness, which is more sensitive for waves with a relatively 

larger wave period. Note that the values of 𝐶𝑟
2 + 𝐶𝑡

2 are close 
to 1 with negligible wave dissipation. Therefore, the 
tendencies of 𝐶𝑡 against 𝑇 and 𝛽 are in contrast with 𝐶𝑟. 
 

 
Figure 3 – Reflection and transmission coefficients 

 
Figure 4 shows the deformation of the wall with 𝛽 = 0.08 in 
periodic waves with the wave period 𝑇 of 1.2 s. In Figure 4a, 

the maximum offshore horizontal displacement (𝐷𝑚𝑖𝑛) of the 

wall occurs at 0.6𝑇 instead of at the wave trough (i.e., 0.5𝑇). 

This implies a 0.1 𝑇  phase lag between the wall’s 
displacement and the wave surface elevation. The maximum 
von-Mises stress (𝜎𝑣/𝜌𝑤𝑔ℎ) is distributed near the fixed end. 
It gradually decreases to zero from the bottom to the free end. 
In Figure 4b, as the wave propagates, the maximum 
shoreward horizontal displacement (𝐷𝑚𝑎𝑥) occurs at 1.1𝑇. 

Both the magnitudes of 𝐷  and 𝜎𝑣/𝜌𝑤𝑔ℎ  are slightly larger 

than that at 0.6𝑇, because the fluid in the wave crest moves 
faster than that in the wave trough due to wave asymmetry. 
Wave overtopping is not observed herein.  
 
CONCLUSIONS 
The present work numerically studied the interaction 
between periodic waves and a flexible wall. The reflection 
coefficient increases with the wave period and the wall 
stiffness, in contrast to the transmission coefficient. The 
wall’s displacement presents a slight phase lag relative to 
the wave elevation. Both the displacement and the stress of 
the wall tend to be larger in the shoreward direction than the 
offshore direction, because of the asymmetry of wave crests 

and troughs. The present study also showed that wave 
overtopping can be mitigated with an elastic wall due to the 
decrease in the reflection coefficient.   
 

 
Figure 4 – Snapshots of the wall deformation in periodic waves 
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