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INTRODUCTION 
In this paper, an analytic solution to the scattering of 
water wave by submerged permeable breakwaters in 
infinite-depth water is presented. The analytic solution of 
the velocity field around the permeable breakwater under 
the linear wave train in deep water condition is sought by 
formulating a nonhomogeneous Riemann-Hilbert problem. 
To deal with the nonlinearity due to the permeability of the 
plates, a perturbation method is applied in terms of a small 
parameter representing permeability. We present the 
leading order solution (impermeable breakwaters) and the 
first order solution (permeable breakwaters) of the spatial 
velocity field. The validity of the leading order solution was 
verified through comparison with the solutions suggested 
by Evans (1970). Then, the impermeable and permeable 
breakwater’s reflection and transmission coefficients are 
compared in order to investigate the effects of permeability. 
The analytical solution presented in this research can be 
used for designing breakwaters, such as calculating the 
force applied to the breakwaters, and for validation of 
numerical simulations or experimental results. 

 
FORMULATION 
Assume that the fluid has infinite depth and is 
incompressible, inviscid, and irrotational. Under a small 
amplitude linear wave train, let 𝑁  permeable plates 

occupy the intervals 𝐿𝑛: 𝑥 = 0, −𝑏𝑛 < 𝑦 < −𝑎𝑛, where 𝑛 =
1, 2, 3, ⋯ , 𝑁. From the potential wave theory, there exists 

a velocity potential Φ(𝑥, 𝑦, 𝑡) = ℜ𝑗{𝜙(𝑥, 𝑦)𝑒−𝑗𝜔𝑡}, and the 

spatial potential 𝜙(𝑥, 𝑦)  should satisfy the Laplace 
equation. As we need the spatial potential to be bounded 
in all domain to solve the Laplace equation, we should 
define the boundary conditions on the free surface, at 𝑥 →
±∞, at 𝑦 → −∞, and lastly, on the plates. 
First, there will be combined free surface boundary 
condition along the free surface. Since we assumed the 
small amplitude wave, the linearized combined free 
surface boundary condition is used, expanded around 
𝑦 = 0 and removed the higher-order terms. Next, there 
are the radiation boundary conditions for the scattered 
wave traveling toward 𝑥 → ±∞ . The reflected wave 

propagating to +∞ will be superposed with the incident 
wave, and the transmitted wave will solely travel outwards 
towards −∞. Also, the fluid velocity should vanish as 𝑦 →
−∞. Thus, the first derivative of the spatial potential with 

respect to 𝑥  and 𝑦 tend to be zero. Fluid velocity 
components are bounded everywhere, but except at the 
edges of the plates. The velocity may be unbounded but 
permit a mild singularity. Here we assumed the mild 
singularity to make the singularity integrable.  
The remaining boundary condition is that on the 
permeable plates. Following Taylor’s (1956) method, we 
assumed that the pressure difference between both sides 
of the plates makes the flow through the barriers. Then, 
substituting the pressure term with the linearized 

Bernoulli's equation, the horizontal velocity through the 
plate is represented by the difference with the time 
derivative of the total wave on both sides of the plates. 
However, since the plate boundary conditions are 
expressed in terms of the velocity potential itself, the 
problem becomes nonlinear. Thus, we introduce the 
perturbation method to seek the permeability effect on the 
wave scattering problem. 
Introducing a small parameter 𝜀 = 𝜅𝜔/𝜈𝐷𝑘, the perturbed 

solution takes the form as 𝜙 = 𝜙0 + 𝜀𝜙1 + ⋯. Substituting 
the perturbed spatial velocity potential into the boundary 
conditions we defined, we can arrange the terms in 
ascending order with respect to 𝜀 . Now, the boundary 
conditions separate to the leading order and the first order.  

 
RESULTS AND DISCUSSION 
Introducing the complex potential 𝑤(𝑧) = 𝜙 + 𝑖𝜓 and 

considering the reduced potential defined by 𝑊(𝑧) =
𝑑𝑤/𝑑𝑧 + 𝑖𝑘𝑤 , 𝑊(𝑧)  can be extended into 𝑦 > 0  by 
Schwarz’s reflection principle. From the boundary 
conditions, the problem of determining 𝑊0(𝑧), 𝑊1(𝑧) 
becomes a typical homogeneous and nonhomogeneous 
Riemann-Hilbert problem, respectively. Deriving the 
solution of the Riemann-Hilbert problem for the plane with 
cuts distributed along a straight line, we can find the 
general form of the solution, with some unknown constants. 
These unknown constants are determined from the zero-
circulation assumption around the plates and the 
radiational boundary condition at 𝑥 → ±∞ . Then, the 

complex potential 𝑤0(𝑧)  and 𝑤1(𝑧)  is obtained by 
integrating the reduced potentials. 
To find out how the first order solution had a correction effect 
on the leading order solution, the expressions for reflection 
and transmission coefficients are derived. For further 
discussion, numerical computation of the solution should 
be presented so that the effect of the permeability of the 
plate can be qualitatively examined. Experiments are 
ongoing in order to validate the analytical solution.  
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