COMPARISON OF NUMERICAL AND EMPIRICAL ESTIMATES OF WAVE CONDITIONS IN THE LEE OF A DETACHED BREAKWATER

Jim Churchill, Baird, jchurchill@baird.com
David Taylor, Baird, dtaylor@baird.com
Sean Garber, Baird, sgarber@baird.com

ABSTRACT
This paper presents a comparison of numerical and empirical methods routinely applied by practitioners to examine wave penetration in the lee of a breakwater, using a case study of a breakwater which is planned for Entrance Point, Broome in the northwest of Australia.

Wave conditions representative of ambient and extreme conditions were determined from measured data captured directly offshore of the site, and an extreme cyclone metocean study (Baird, 2020). For ambient and extreme tropical cyclone conditions, waves are typically short crested at a peak period of between 4 seconds to 8 seconds.

To examine the effectiveness of the offshore breakwater, empirical methods (Goda, 2000), a phase-averaged model (SWAN) and two phase-resolving model systems- the 2D Boussinesq wave model (MIKE21BW) and 3D non-hydrostatic model (MIKE3-Wave FM) - were applied. MIKE21BW is a 2D hydrodynamic model that applies the Boussinesq approximation to account for the vertical gradient in flows. The MIKE3-WaveFM model is a 3D hydrodynamic model which adopts the non-hydrostatic (NHS) assumption and solves the propagation of nonlinear waves with the enhancement of an explicit solution of vertical acceleration and velocity gradients. Both phase-resolving models can account for the complex wave propagation processes at the site where diffraction, refraction and reflection from surrounding structures are important processes. An example of the output from the MIKE21BW model at the site is presented in Figure 1.

Comparison between the phase resolving models and the spectral model showed close agreement at concurrent locations in the lee of the breakwater with phase resolving models showing larger wave height during the extreme condition due to the inclusion of diffraction. The spectral model produces more wave energy through the gap between the offshore breakwater and landside structures in part due to wind growth being included.

REFERENCES