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SUMMARY 
A hydrostatic stability analysis is an important first step in 
designing floating structures. Most of the currently 
available commercial software is limited to hydrostatic 
stability curves. Current research tries to address this 
limitation, by developing a framework which couples 
numerical hydrostatic stability analysis based on potential 
energy minimization, with a machine learning (ML) model 
based on genetic programming (GP).  In this way, 
potential energy functions are efficiently obtained. The 
resulting analytical formulations offer a wider 
understanding of the hydrostatic stability of floating 
structures.  
 
INTRODUCTION 
Rapid urban population growth combined with the 
increase in climate temperature are increasing the risk of 
coastal hazards and the demand for living space for the 
urban population [Vardy, 2017]. Among many solutions 
proposed, one of the most ambitious ones is the floating 
city, which is deemed suitable to tackle the unavoidable 
increase in sea level [Wang, 2011]. Hydrostatic stability 
analysis is an important first step in designing any floating 
structure. There are multiple ways to perform a 
hydrostatic stability analysis of a floating structure, 
however, one of the most efficient ways to do this is by 
using the potential energy minimization [Neves, 2011]. 
Since the mass of the structure can be assumed to be 
constant regardless of the floatation orientation, the 
potential energy (PE) of the structure can then be 
conveniently represented as being proportional to the 
vertical distance between the center of buoyancy and the 
center of gravity [Neves, 2011]. A free-floating body will 
move to an orientation that results in the least amount of 
potential energy (and thus called a stable position). 
Figure 1 illustrates that less energy is required for the long 
bar with a square cross-section to float in an orientation 
such that the longitudinal axis is parallel to the water 
plane; much more energy is required when the bar is 
perpendicular to the waterline. The potential energy 
needed for the long bar to stay at various positions 
relative to the water line is illustrated in the graph in Fig. 
1. Generating the potential energy surface of a floating 
body offers a wider understanding of its hydrostatic 
stability.  
 
The objective of the current research is to develop 
functions representing the potential energy surface of 
floating structures of any shape using a novel approach 
that combines the following: (1) modeling software called 
Rhinoceros® [McNeel, 2022], with Grasshopper network 
to determine the potential energy surface, and (2) 
machine learning (ML) models based on genetic 
programming to develop the function. Grasshopper, 

which is a visual programming language within 
Rhinoceros®, has been chosen due to its parametric 
modeling capabilities. It is expected that is novel 
framework will help designers have a better 
understanding of the hydrostatic stability of floating 
coastal structures in the design process. 
 
POTENTIAL ENERGY GENERATION 
Although a simple cuboid is used to illustrate the concept 
in Figure 1, an algorithm is developed to perform a 
hydrostatic stability analysis of a three-dimensional 
floating structure of any geometric complexity. Due to its 
parametric modeling tools, Grasshopper has been used to 
build the algorithm, which works as follows: rotate the 
floating object through all possible rotations (i.e., 
orientations); for each rotation, an iterative algorithm is 
used to determine the location of the waterline given the 
weight to buoyancy force ratio (r) of the body, as illustrated 
in Figure 2; once all iterations are run, a potential energy 
surface can be generated for the floating structure.  
 
The developed network was validated using a theoretical 
derivation of 2D rotation of square shape floating body 
rotated around the x-axis denoted as 𝜃𝜃. For the square 
shape, the analytical equations for potential energy 
depend on whether one or two corners are immersed in 
water as shown in Fig. 3 [Abolhassani, 2004]. 
 
If two corners are immersed: 

𝑃𝑃𝐸𝐸𝑎𝑎(𝑚𝑚) = 𝑎𝑎 �
1
2
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If one corner is immersed: 

𝑃𝑃𝐸𝐸𝑏𝑏(𝑚𝑚) =
1
6𝑎𝑎�3cos(𝜃𝜃) + 3sin (𝜃𝜃) − 4√𝑟𝑟�sin (2𝜃𝜃)� (2) 

 
where a is the length of the side of the square.  
 
A square cross-section with side 𝑎𝑎 = 100 𝑚𝑚 is constructed 
in the Grasshopper network where 𝑟𝑟 is varied from 0 to 
0.5, and 𝜃𝜃 from 0 to 90 degrees to generate the potential 
energy dataset. The results have demonstrated a perfect 
match with the theoretical equations, i.e., 0% error. An 
example from the network is shown in Fig. 1 where the red 
dotted curve represents the potential energy curve of the 
square cross-section for 𝑟𝑟 = 0.1.  
 
SYMBOLIC REGRESSION 
The next step involves using an ML algorithm called 
genetic programming (GP) to solve a symbolic regression 
(SR) problem using the collected data points, i.e., 
potential energy surface. The goal of SR is to find a 
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closed-form mathematical model for the potential energy 
surface. To solve the SR, GP works by heuristically 
searching over a very large space of functions to find the 
best fitting function. In this research, the open-software 
HeuristicLab [Wagner, 2014] is used to perform SR.  
 
Considering a displaced volume of 10%, i.e., 𝑟𝑟 = 0.1, the 
dataset used to validate potential energy generating is 
used to validate the SR model. The dataset randomly is 
split into 80% training, and 20% testing and the Mean 
Squared Error (MSE) is used as a fitness metric. The 
chosen genetic programming settings are as follows: 
population size = 1000, mutation probability = 15%, 
suggested maximum tree length = 10, and suggested 
maximum tree depth = 6. Refer to Wagner [2014] for 
parameters definition. The generated functions are as 
follows:  
 
If two corners are immersed:  

𝑃𝑃𝐸𝐸𝑎𝑎(𝑚𝑚) = 𝑐𝑐1 + 𝑐𝑐2tan (𝑐𝑐3𝜃𝜃) 
 

(3) 

 
If one corner is immersed: 

𝑃𝑃𝐸𝐸𝑏𝑏(𝑚𝑚) = 𝑐𝑐4 + 𝑐𝑐5cos (𝑐𝑐6 − sin(2𝜃𝜃)) (4) 
 
where 𝑐𝑐1 = 45,  𝑐𝑐2 = 1.63768, 𝑐𝑐3 = 1.1705, 𝑐𝑐4 =
51.095, 𝑐𝑐5 = 7.3992, 𝑐𝑐6 = 15.336.  
 
The MSE for the two corners immersed and one corner 
immersed are 5 × 10−6 𝑚𝑚 and 5 × 10−3𝑚𝑚, respectively. 
The generated functions match the theoretical equations 
with no overfitting problem. 
 
Therefore, this novel framework can be used to generate 
potential energy surfaces and find a corresponding 
closed-form analytical model. 
 
FLOATING BREAKWATER APPLICATION 
Floating breakwaters with circular cross-sections are 
commonly researched in literature. Consider a circular 
long bar (radius 𝑅𝑅 = 10 𝑚𝑚, and length 𝐿𝐿 = 100𝑚𝑚) as 
shown in Fig. 4. Two parameters are considered: 𝜃𝜃 from 
0 to 90 degrees, and 𝑟𝑟 from 0 to 0.5, generating 225 data 
points for the potential energy. SR is performed on the 
potential energy dataset using the same parameters 
from the previous section, resulting in the following 
closed-form function: 
 

𝑃𝑃𝐸𝐸(𝑚𝑚) = 𝑐𝑐7 +
1

𝑐𝑐8𝑟𝑟 + 𝑐𝑐9
 

(5) 

 
Where 𝑐𝑐7 = −14.528, 𝑐𝑐8 = 2.276 × 10−2, 𝑐𝑐9 = 4.189 ×
10−2. The MSE for this function is 0.12.  
 
An important observation is that 𝜃𝜃 is specified as an 
input, but it has been eliminated in the generated 
function for the circular cross-section. This can be 
explained by the fact that, given constant displacement, 
the immersed volume does not change its shape as 𝜃𝜃 is 
varied. Therefore, the resulting PE function is expected 
to be a function of 𝑟𝑟 only as predicted by the above 
equation.  

  
 
CONCLUSION 
The paper presented and validated a framework based 
on parametric modeling and machine learning to 
determine a closed-form analytical solution for potential 
energy of simple floating bodies. Future work will 
consider solving SR for the three-dimensional behavior 
of more complex floating bodies. 

 
Figure 1 – Potential energy surface for a long bar (orange) 
with a square cross-section and W/BF of 0.1 where blue 
represents water. 
 

 
Figure 2 – Bouncy solver used to determine the location of 
the waterline at a given orientation.  

 
Figure 3 – Square cross-section floating configuration for (a) 
two corners immersed, (b) one corner immersed.  



 
 

 
Figure 4 – Floating long bar with a square cross-section. 
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