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INTRODUCTION 
In this study, we derive a new set of depth-integrated 
models for solving unsteady flows that satisfy the Euler 
equations and nonlinear free surface boundary 
conditions in the 𝜎 -coordinates. One of the obvious 
differences between the present approach and the ones 
directly solving the 3D Euler equations using Finite 
Element Method (FEM) is that in the present model the 
vertical velocity and the pressure field are eliminated by 
integrating the continuity equation and vertical 
momentum equation, respectively. Therefore, the 
present models only solve the horizontal velocity 
components and the free surface displacement in the 
two-dimensional horizontal (2DH) space. The new 
models are also more advantageous in using fewer 
elements in the vertical direction while achieving better 
performance. At this stage, the capability and application 
of the new models in dealing with free surface wave 
propagation problems are addressed. 
 
MATHEMATICAL MODELS 
For models derived in Yang & Liu (2020) the basic 
assumption is that one polynomial of a certain degree is 
used to approximate the horizontal velocity profile in the 
entire water column, yielding models of different 
complexity and accuracy. In this study, following the 
concept of FEM, instead of using one polynomial to 
approximate the vertical profile of horizontal velocity in 
the entire water column, the total water depth is divided 
into several elements, and the horizontal velocity profile 
within each element is approximated by a linear function 
in terms of the vertical coordinate. The continuity of 
velocity and pressure fields at the interface between 
elements are then enforced. And the resulting residuals 
from the horizontal momentum equations are minimized 
via the method of weighted residuals. Finally, a set of 
2DH governing equations is derived. The complexity and 
accuracy of the final resulting models strongly depend on 
the number of elements as well as the elevations of the 
element interfaces. 
 
For demonstration purposes, we show explicitly the 
model equations of a two-linear-element model, i.e. ME-
2L in 1DH space. For brevity, only linear terms in the 
governing equations on a constant water depth (i.e., 
ℎ(𝑥) = 𝑑 are shown here, i.e., the depth-integrated 
continuity equation 
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and three momentum equations which are written in a 
matrix form for better clarity, 
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where 𝜂  is the free surface elevation; 𝑢!, 𝑢", 𝑢#  are the 
horizontal velocities located at the bottom, interface 
between two elements, i.e., 𝜎 = 𝑐! , and free surface, 
respectively. Additionally, A and B are various coefficients 
which are functions of 𝑐! and N.L. denotes all the 
nonlinear terms in the full expressions.  It should be noted 
that the highest spatial derivative always remains at three 
regardless the number of elements.  
 
Compared with direct FEM for solving the Euler 
equations, in the present formulation, the discretization in 
the vertical direction by using linear elements is 
analytically incorporated into derivations, resulting in 
governing equations that can be solved by various 
numerical methods in 2DH space. On the other hand, the 
present model can be considered as a multi-element 
extension of the G2 model developed in Yang & Liu 
(2020), in which shape functions are used for weighting 
functions. Whereas the G2 model assumes a linear 
profile on the horizontal velocity in the entire water 
column, the present models employ multiple linear 
profiles matched at the element interface to describe the 
horizontal velocity profile. And the elevations of interfaces 
between elements are free parameters that can be tuned 
for different modelling purposes. 
 
THEROTICAL ANALYSIS 
A Stokes wave-type Fourier analysis is conducted on the 
new models up to four linear elements to examine their 
linear wave properties, including linear wave phase 
velocity, group velocity and shoaling gradient. Firstly, after 
an optimization on the free parameter, the performance 
of the ME-2L model, in which the total water depth is 
divided into two elements, is compared with other two-
layer models, which include the two-layer Boussinesq 
model (Lynett & Liu 2004) and the two-equidistant-layer 
non-hydrostatic SWASH model (Stelling & Zijlema 2003). 
However, it should be noted that the number of horizontal 
velocity unknowns of both the two-layer Boussinesq 
model and the two-equidistant-layer non-hydrostatic 
SWASH model is two. The Galerkin model (G3) and 
subdomain model (S3) developed in Yang & Liu (2020) 
are also included for comparison in the following 
discussions since both models contain three horizontal 
velocity unknowns, which is the same as the ME-2L 
model. 
 
The comparisons of various linear wave properties in 
terms of phase velocity, group velocity, shoaling gradient, 
and integrated shoaling gradient among above-
mentioned models are displayed in figure 1. Generally, 



these models show similar accuracy in terms of the linear 
wave phase velocity which are applicable up to 𝑘𝑑 ≈ 7.  
However, a detailed inspection shows that the G3 model 
deviates from the exact solution the earliest, followed by 
the two-layer Boussinesq model, two-layer SWASH 
model, S3 model, and ME-2L model, for increasing 𝑘𝑑 
values.  It can be observed that while the rest of the 
models are accurate in relatively shallow water up to 
𝑘𝑑 ≈ 7 , the two-layer SWASH models show small 
undulations locally around 𝑘𝑑 < 2 .The comparisons of 
group velocity, shoaling gradient, and integrated shoaling 
gradient are also shown in figure 1(b), (c), and (d), 
respectively. Similar to the behavior of linear phase 
velocity, the ME-2L model outperforms the other four 
models in both characteristics. These models also share 
the same feature that the applicable ranges of the model 
in terms of group velocity and shoaling gradient are 
smaller than those in terms of phase velocity. Finally, by 
specifying an error bound of 2%, we find the ME-2L 
model can be applied up to 𝑘𝑑 = 14.7 in terms of phase 
velocity, which is essentially in very deep water and 
larger than the other four models. The applicable range 
of 𝑘𝑑 values for the ME-2L model is also more than twice 
to that of the G3 model and more than 40% more than 
the S3 model for all three above-mentioned linear wave 
properties although all these three models need to solve 
three horizontal velocity unknowns. 
 

 
Figure 1 Comparisons of linear wave properties among 
ME-2L model, G3 model, S3 model, two-layer Boussinesq 
model and two-equidistant-layer SWASH model. 
 
Similarly, the performance of models up to four elements 
in terms of various linear wave properties is summarized 
in figure 2, which are denoted by dash-dotted lines. It has 
been shown in Yang & Liu (2020) that SK models are 
superior to GK models, thus only SK models are included 
in the same figure for comparisons. For the multi-linear-
element models, the applicable range of 𝑘𝑑  values 

increase dramatically with increasing number of elements, 
which demonstrates the advantage of the multi-element 
approach in enhancing model capabilities. For models 
with the same number of unknowns (lines of the same 
color in figure 2), the multi-linear-element models 
outperform the SK models significantly.  Finally, by 
specifying an error bound of 2% in phase velocity, while 
the ME-2L model is applicable up to 𝑘𝑑 ≈ 14.7,  ME-4L 
model significantly extends the applicable range to 𝑘𝑑 ≈
127.9, which is essentially in infinitely deep water. 
 

 
Figure 2 Comparisons of various linear wave properties 
between the multi-linear-element models and SK models 
(Yang & Liu 2020). 
 
NUMERICAL VALIDATIONDS 
The present ME-2L model is implemented numerically 
using the same method as discussed in Yang & Liu 
(2020), which employed a standard finite difference 
scheme for spatial discritization combined with a fourth-
order Runge-Kutta method for time integration. Models of 
more linear elements can be implemented in the same 
manner as they share similar equations structures. The 
numerical applications of models with higher 
approximations, especially in very deep-water conditions, 
will be investigated in future studies. 
 
The transformation of a wave train over a submerged 
shoal (Dingemans 1994) has been a standard test case 
for many depth-integrated models and fully three-
dimensional models. A submerged bar with a front slope 
of 1/20 and a back slope of 1/10 is placed in the middle of 
the wave flume in a still water depth of 0.86m. Free 
surface elevations are measured at several wave gauges 
in front, on and behind the submerged bar. The incident 
wave has an amplitude of 0.02m and a period of 2.86s, 
representing a small amplitude wave propagating in a 
finite water depth of 𝑘𝑑 = 0.7. Because of the shoaling 
effects when waves climb on the front slope of the bar, it 
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becomes increasing demanding for the numerical model 
to accurately predict the free surface elevations behind 
the bar, which challenges the model's capability of not 
only linear wave frequency dispersion but also higher-
order nonlinear effects. 
 
Figure 3 shows the comparisons of time series of free 
surface elevations at eight wave gauges between the 
numerical results from the ME-2L model and 
experimental data. Very good agreements are found at all 
eight wave gauges, including the last three wave gauges, 
where higher harmonic waves are already in deep water 
conditions. It should be noted that Lin & Li (2002) used a 
finite difference scheme for solving the full Navier–Stokes 
equations in the 𝜎 -coordinate in three dimensions. 
Twenty meshes were used in the vertical direction for 
simulating the same case and the comparisons at the last 
three wave gauges are less satisfactory than the present 
model which only employs two elements in the vertical 
direction. 
 
 

 
Figure 3 Comparisons between the numerical results 
(blue line) and experimental data (red circles) at eight 
wave gauges. 
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