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INTRODUCTION 
Coastal erosion and flooding, exacerbated by climate 
change, threaten coastal communities and environments 
such as wetlands and beaches. Projects to mitigate these 
effects include sea walls, beach nourishments, dune 
planting, and sandbags [1]. Analyzing the longevity and 
effectiveness of these interventions requires monitoring 
with high spatiotemporal resolution over years to decades, 
which is challenging in situ given the spatial extent of 
these interventions (100s of meters to km). 
Classical survey methods involve making in situ 
measurements of shoreline locations, which can never 
scale to the time spans and spatial extent necessary to 
cover large coastal areas. For 50 years now, satellites 
have provided images of the earth with reasonable 
resolution that can provide some insight into shoreline 
evolution over large timescales and wide areas [2]. One 
example of such a study indicates that 24% of the world’s 
sandy beaches are eroding at rates exceeding 0.5 m/yr, 
while 28% are accreting and 48% are stable [3]. 
Determining shoreline location from satellite imagery 
involves a general pipeline of image pre-processing, 
segmentation of the image into water and beach, and then 
determination of the shoreline location [4]. One state-of-
the-art software package that simplifies the process by 
handling the full process from obtaining publicly available 
satellite imagery to extracting shorelines is CoastSat. 
Users can easily obtain time-series data of satellite-
observed shoreline positions anywhere in the world [5][6].  
However, CoastSat, similar to previous research into 
shoreline evolution, focuses on sandy beaches, which are 
not necessarily representative of all shorelines [7]. The 
goal of the research here is to expand the capabilities of 
CoastSat to include identification of coastal vegetation 
and tracking of vegetated shoreline evolution. This may 
help us and other researchers answer questions such as: 
What is the large-scale relationship between vegetation 
and coastal erosion after a storm? How do restoration 
projects impact future coastal storm response? [8][9][10]. 
Accurate measurements of coastal vegetation extent and 
evolution from satellites may help our understanding of the 
health of shoreline ecosystems as sea levels rise and 
storms become more intense. Shoreline trends observed 
from satellite imagery will provide information to coastal 
communities that can be used for effective spatial 
planning, sustainable coastal development, coastal 
engineering projects, and mitigation of climate change 
impacts [3][11]. 
 
BACKGROUND 
CoastSat works by first downloading publicly available 
satellite imagery. Once the imagery is downloaded, it is 
preprocessed to remove clouds and down-sample the 
image. After preprocessing, the image is classified into 

sand, water, and white water before the shoreline is 
extracted [6].  
Shoreline extraction starts with calculating the Modified 
Normalized Difference Water Index (MNDWI) [6]. The 
MNDWI calculates a value for each data point of an image. 
The MNWDI is calculated using the equation below:  
 

MNDWI = (SWIR - GREEN)/(SWIR + GREEN)    [6] 
 
SWIR and GREEN are specific satellite bands, each of 
which collects data on a specific wavelength of light 
reflected off the Earth. SWIR represents the Short-Wave 
Infrared band while GREEN represents the green band.  
After a value is calculated for each pixel in the image, 
CoastSat uses Otsu’s threshold, an image segmentation 
process, on the MNDWI image to create an array of 0’s and 
1’s [6]. Otsu’s threshold automatically calculates an 
appropriate threshold value based on the values found in 
the MNDWI image and goes through each data point in the 
MNDWI image. If a value is above the threshold, the data 
point is changed to a 1 and if a data point is below the 
threshold the data point is turned into a 0.  
Then, a Marching Squares Algorithm is applied to map the 
contours of the shoreline [6]. The Marching Squares 
Algorithm generates contours for a rectangular array of 
individual numerical values. Every data point is treated as 
a grid vertex location. In each square grid cell, the 
algorithm looks at each vertex and determines which 
topological case (i.e. shoreline contour), should be applied 
based on the pattern of 0’s and 1’s found above using 
Otsu’s threshold [12]. Since each grid cell has four 
vertices, there are 16 topological cases shown below in 
Figure 1. In the figure, data points marked with a “1” are 
shown as filled circles and data points marked with a “0” 
are shown as hollow circles [12]. This process continues 
for each grid cell until a contour of the image is created, 
which results in the shoreline [6]. 
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Figure 1 - The 16 topological cases of cells in the Marching 
Squares Algorithm. Filled circles represent 1’s while 
hollow circles represent 0’s, and 4 pixels are considered 
at a time. The algorithm goes through all the pixels in an 
image and at the end, the lines created from the 16 
topological cases create the extracted shoreline [12]. 
 
METHODS 
To find our shoreline we use K-Means Clustering, for 
image segmentation where pixels are grouped together 
based on similarity. We used K=2 clusters to separate the 
image into land and water. After dividing the image into 
land and water, we apply a Gaussian blur and use Canny 
Edge Detection to find our shoreline. Canny Edge 
Detection works by converting the image to grayscale and 
then detecting the edges based on the intensity of the 
pixels. In this application, the edge found is the shoreline. 
This processing pipeline is inspired by the one used in 
[13]. 

 
Figure 2 - Flow chart outlining the shoreline detection 
algorithm. We first separate the image into land and water 
using the K-Means algorithm. Then we apply a blur to the 
image before detecting the edge between the land and 
water clusters. The image to the right is the output. 
 

Once the shoreline has been detected, the next step is to 
identify coastal features in the image. CoastSat already 
has a neural network that it uses to identify sand, water, 

and white-water, so we repurposed this neural network and 
used it to train the CoastSat model to also identify 
vegetation. First, we determine vegetation in our training 
satellite data by calculating the Normalized Difference 
Vegetation Index (NDVI) using the equation: 
 

NDVI = (NIR - RED)/(NIR + RED)     [14] 
 
Here, NIR represents the Near-Infrared band from satellite 
observations, while RED represents the red band. The 
NDVI value ranges from -1 to 1, with values above 0.3 
indicating vegetation [14]. Figure 3 shows the NDVI image 
with our shoreline detection algorithm layered on top. 
 

 
 
 
METHODS 
In CoastSat, the Modified Normalized Difference Water 
Index (MNDWI) calculates a value for each data point of 
an image. The MNWDI is calculated using the equation 
below:  
 
Figure 3 – Aerial image of Cape Canaveral, FL in two parts: 
Left is what CoastSat produced by default, where sand is 
represented in orange, whitewater in light blue, water in 
blue, and shoreline is the black line. Right includes our 
NDVI component of the CoastSat process, and shows the 
refined coastline algorithm (red line), the water (blue), and 
the vegetation density (green, with brighter green more 
vegetation).  
 

 
 
 
 
 
 
 
 
 
 
 
Figure 4 – Final output of CoastSat with the added Canny 
Edge Detection and vegetation index. The image shows a 
satellite view of the shoreline of Cape Canaveral, FL. Sand 
is represented in orange, whitewater in light blue, water in 
blue, vegetation in green, and shoreline is the red line.  



Next steps for this process include identifying these 
features for a variety of shoreline locations such as Duck, 
North Carolina; Boston, Massachusetts; and Cape 
Canaveral, Florida in order to observe changes visible 
from satellites before and after beach nourishment, marsh 
restoration, and historical shoreline changes such as the 
building of seawalls and other coastal structures. We will 
specifically identify vegetation extent and health in 
response to these interventions, as well as shoreline 
extent and evolution in response to these interventions. 
The ultimate goal is to understand the utility of satellite 
observations in tracking and predicting the effects of these 
human interventions in a wide spatial area. 
 
DISCUSSION 
As stated above, there is an abundance of satellite 
imagery around the world over the past 50 years that has 
already been used to determine shoreline position of 
sandy beaches; we will be studying both vegetated 
beaches and the impact of vegetation on sandy beaches. 
We would also like to explore the effects of vegetation on 
shorelines for both intense short timescale events 
(storms) as well as over long timescales. A goal is to 
discover the large-scale relationship between vegetation 
and coastal erosion after storms, and to understand how 
restoration projects impact future coastal storm response. 
The data we collect could spur more research into coastal 
resilience against storms. If vegetation reduces coastal 
erosion, coastal communities around the world could use 
vegetative restoration techniques to prevent erosion. 
Research could also be done into vegetation types to see 
which types reduce coastal erosion the most efficiently 
while lasting long term. 
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