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CNOIDAL WAVES IN SHALLOW WATER 
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ABSTRACT 

The propagation of long waves of finite amplitude in water with 
depth to wavelength ratios less than about one-tenth and greater than 
about one-fiftieth can be described by cnoidal wave theory. To date 
little use has been made of the theory because of the difficulties in- 
volved in practical application.  This paper presents the theory necessary 
for predicting the transforming characteristics of long waves based on 
cnoidal theory.  Basically the method involves calculating the power 
transmission for a wave train m shallow water from cnoidal theory and 
equating this to the deep water power transmission assuming no reflections 
or loss of energy as the waves move into shoaling water. The equations 
for wave power have been programmed for the range of cnoidal waves, and 
the results are plotted in non-dimensional form. 

INTRODUCTION 

The cnoidal wave theory developed in 1895 by Korteweg and deVries 
describes a class of permanent type long waves of finite amplitude. 
This theory which yields the solitary wave and the sinusoidal wave as its 
two limiting cases is useful for describing the propagation of periodic 
waves in shallow water with depths less than about l/lO the wave length. 
The theory for cnoidal waves is based on the assumption that the square 
of the slope of the water surface is small in relation to unity. The 
properties of the waves are given in terms of the Jacobian elliptic func- 
tions and the complete elliptic integrals of the first and second kind. 

The cnoidal wave theory has been studied more recently by Benjamin 
and Lighthill (l9^5), Patterson (l9k8),  Keulegan and Patterson (19^-9), 
Littman (1957), Wehausen and Laitone (i960), Laitone (i960), (1961), 
(1962), (1963), and Sandover and Taylor (1962). Although this class of 
waves has received rather extensive theoretical study, little use has 
been made of the theory. Wiegel (i960) summarized much of the existing 
work on cnoidal waves and presented the leading results of Korteweg and 
deVries and Keulegan and Patterson in a more useable form.  However, 
solutions of Wiegel's equations for the wave characteristics are still 
complex and involve either trial and error type computations or require 
extensive use of graphs of the cnoidal functions. To further facilitate 
the application of cnoidal wave theory, Masch and Wiegel (1961) computed 
several of the cnoidal wave characteristics such as celerity, wave length, 
and wave period based on the results of Korteweg and deVries, and pre- 
sented these results in tabular form over a range applicable to water 
waves. 
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WAVE TRANSFORMATION 

As waves propagate from deep water into shallow water (d/L < l/2), 
the geometric properties of the waves such as height and length change 
with decreasing depth. It is customary to assume that as a wave train 
moves into shallow water, the wave period as defined under deep water 
conditions remains essentially constant. Generally speaking as the 
•bottom "begins to affect the wave motion, the phase velocity is reduced. 
Since the period for the shoaling waves remains nearly constant, the 
wave length is reduced and in shallow water the waves can be thought of 
as stacking up behind one another. 

If the waves move perpendicular to the shoreline with their crests 
parallel to the bottom contours and it is further assumed that energy 
dissipation and reflections are negligible, then the power transmitted 
per unit crest width is constant at all points along the path the wave 
follows. If the waves refract as they move into shallow water, it can 
be assumed that the power is constant between adjacent orthogonals 
drawn normal to successive wave crests. 

If such deep water wave characteristics as height, period, or length 
are known, it is possible to compute the rate of energy transmission or 
power transmission per unit width of the wave crest in deep water. Equa- 
ting the deep water power transmission to that in shallow water as com- 
puted from a suitable finite amplitude wave theory and by making use of 
the fact that the period remains constant as the waves move into shallow 
water, the wave characteristics in the shallow water can be determined. 

When evaluated for deep water conditions, small amplitude wave 
theory reduces to the following well known equations: 

and 
,2 

D -XiikL (3) 
'o ~ (6 T 

where C0, LQ, H0, PQ are the deep water wave velocity, length, height 
and power respectively. Based on trochoidal theory, the deep water wave 
power given by Mason (l95l) is 

The zero subscript is the conventional notation for deep water wave con- 
ditions . 
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Using the concepts of Rayleigh  (1877) the power or rate of energy- 
transmission in deep water can be equated to that in shallow water to 
give 

Po= (»EC) =(nEa«P (s) 

where E is the wave energy, and n is the ratio of group velocity to 
phase velocity and has a value approaching one-half in deep water and 
unity in shallow water. For waves of small steepness, energy is directly 
proportional to the square of the wave height. Using eq. (5), the wave 
height is then given by 

JdL - 
H = (- 2. n 0) 

where 

Y\ - \   4- 
4TH/L 

5,nh(4TTd/L) (V) 

If it is assumed that the phase velocity of waves propagating over a 
sloping 'bottom is the same as that for waves moving over a horizontal 
bottom at the corresponding depth, then for waves of small steepness, 
eq. (6) becomes 

H    _ 
Ho 

Z C05K ( "d/0 
4TTd/L+ 5,nK(4^c!/L^ 

V& 
(8) 

Similarly it can be shown that 

- -Unh ( W/L) (?) 

The variability of wave height and length as given by eqs. (8) and (9) 
is usually related to the relative depth d/LQ, and these equations are 
shown graphically in Fig. 1.  It is seen from eqs. (8) and (9) that 
shallow water wave characteristics can be predicted theoretically at any 
depth from a knowledge of specified deep water wave conditions. 

Wiegel (1950), Iverson (1952), (1953), Eagleson (1956) and others 
have performed experiments on shoaling waves and have made comparisons 
of measured wave characteristics with those computed from small amplitude 
wave theory. They have found the small amplitude theory satisfactorily 
predicts the phase velocity of shoaling waves. This is as one would 
anticipate since the wave velocity changes only slightly when the effect 
of finite amplitude is taken into account. On the other hand, predicted 
wave heights were usually found to be smaller than measured heights when 
compared on the basis of small amplitude theory. 
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In order to determine a useable expression for the transformation of 
waves in shallow water which takes into account the effect of finite ampli 
tude waves, it remains to determine the power transmission in terms of the 
wave properties from a suitable shallow water wave theory. The following 
sections of this paper are devoted to this end in which the power trans- 
mission for shallow water waves is computed according to the cnoidal 
theory. Before computing the actual power transmission, a "brief resume 
of cnoidal wave theory is included. 

RESUME OP CNOIDAL WAVE THEORY 

In shallow water where cnoidal wave theory is applicable, the wave 
profile, ys, measured above the bottom is given by 

*' 2< Hcn2(C3i) 0°) 

where y^ is the distance from the bottom to the trough, H is the wave 
height, and u and k are the argument and parameter respectively of the 
elliptic cosine denoted hereafter as en. The elliptic cosine is a peri- 
odic function of u whose amplitude is equal to unity. However the period 
is not a fixed constant as in the case of the circular functions but 
rather depends on the modulus, k, where k is defined over the range 
o $k < 1. The argument, u, is defined by the definite integral 

~ K   s in <$> 

which is an elliptic integral of the first kind, and is a function of 
k and the upper limit, 0. When evaluated over a quarter period, eq. (ll) 
becomes 

1k  Sin 9 
02) 

which is the complete elliptic integral of the first kind. This is analo- 
gous to defining the quarter period of the circular functions by the 
complete circular integral. 

Thus the period of the en function is if-K(k) and the en2 function is 
2K(k). It can be noted that when k = 0, en (u, o) = cos (u) and K = ^ 

so that the elliptic cosine reduces to the circular cosine with a fixed 
quarter period of JC/2 and a fixed period of 2rt. Similarly when k = 1, 
the elliptic cosine degenerates to the sech (u), the quarter period, 
k(l) = cO , and the wave profile becomes essentially that of a solitary 
wave. The en function is plotted in Fig. 2 for several values of k. 

Equation (10) is often written in the form 
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>"    ?< W en2 C ) 03) 

where cn2( ) denotes cna [_2K(k) (x/L - t/T), kj where u has been replai 
by ,the more conventional notation of 2K(k) (x/L— t/T). Values of the o 
function have been tabulated over limited ranges of k by Spenceley and 
Speinceley (19V7), Milne-Thompson, (1950), and Schuler and Gabelein (1955 

tabulating values of 
the sn, en, 
Masch and Wiegel (1961) have extended the range by tabt 

1, and dn functions for 1-10 ^ k2<rl-10"^°. 

The distance from the bottom to the wave trough as used in eq. (13) 
is defined by the relation 

A rl    d) 3 L2 K(i) K(fe)- E<«0 + 1- H 04) 

where yc is the distance from the bottom to the wave crest, d is the 
still water depth, L is the wave length, and K(k) and E(k) are the com- 
plete elliptic integrals of the first and second kind respectively. The 
wave length is given by the equation 

<•• 3 H 

T 
feie(*) 05) 

Bashed on the work of Korteweg and deVries, the wave period is defined 
by the equation 

Tj¥ 3H 
feKCfe) 

L_ E(fe) 

and the phase or propagation velocity is given by 

2- wm_ 
00 

c 
J%* 

1 + d -fe*U   K(fe)J (17) 

These equations are in the form given by Wiegel (1961) and are the relat 
used by Masch and Wiegel for computing their Tables of Cnoidal Wave Func 
tions. 

If it is further assumed as an approximation that the pressure dist 
bution is linear, then the pressure at any point, y, above the bottom is 

? =f3(^~ ^ 08) 

where y„ is defined by eq. (13). 
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The horizontal and vertical components of water particle velocity 
based on the equations of Keulegan and Patterson (19^) are 

u. 

and 

w 
\r   _ 

d 4d" 

\^d £ 2dzjax     3 l?    55 J ax* 

(i<3) 

(20) 

where u and v are the horizontal and vertical components of water par- 
ticle velocity and h is defined by 

^ 
•d = -d + 3< + hWc ) &0 

POWER TRANSMISSION IN CNOIDAL WAVES 

In considering power or the rate at which energy is transmitted 
across a vertical plane in the direction of wave propagation, it is 
convenient to define power as the product of energy per unit volume of 
fluid and the volume rate of movement. Using the bottom as a datum 
for y = o, and defining terms as in Fig. 3; the energy per unit volume 
with respect to the still water level is 

:v = p^ps^ -^ (2 2) 

Substituting the approximate pressure distribution relation of eq.. (l8) 
gives 

Ev- = eg(^-d) (23) 

The instantaneous rate, V,  at which work is done across a section of 
unit width is 

u. 

P = j  f^(<j5-d) ^A (24) 
o 

The average power over one wave period is 

P =Yj Pdt =Y( ( ^(yd)udA     (£5) 
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Substituting the expressions of eqs. (13) and (19) for cnoidal waves into 
eg.- (25) the average power is given by 

u dydt (?.<0 

where 

u. 

-t-ctilc idn^ ) -Sh^odi-^C )] 

Wow integrating first with respect to y, substituting the limits, 
and rearranging, the average power can "be written as 

P     .J 

3     & 
3 

+ 
2#)-^t-d4^-^) 

+• c /o( "2-y-tii   H \ _,. „ s o (•£)]} 

whereJl = -k2 sn2( ) cn2( ) + cn2( ) dn2( ) -sn2( ) dn2( ) /il(y)- 
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Before performing the integration of the various even powers of 
the cn( ) function with respect to time., the elliptic cosines were 
expanded in terms of the elliptic integrals to determine the value of 
the integrals, and to prove that the elliptic integrals become complete 
elliptic integrals when integrated over a cnoidal wave period. Masch 
(196k)  gives the details of these expansions as" well as the evaluation 
of the various integral formulas. When evaluating the integrals with 
respect to time, it is also important to recognize that the period of 
the cn2( ) function is equal to 2K(k), i.e., two times the first complete 
elliptic integrals. Since only tables of K(k) and E(k) are available, 
it becomes expedient to make use of the symmetry of the cnoidal function, 
and to write the identity 

(28) 

Integrating eq. (27) and after some rearrangement and collecting 
of terms, the average power transmission of a cnoidal wave over one wave 
period is 

E(fc) , P*  ,1    A*T[,.*z    NE(M 

(P9)sJiar -T 1'°• - feiLK(ii),k",J'*"3vL(4R"2jKC^ 

-Z*8t? 4-353 fe4 -26Sr + 4s]  -f-&M/e (K(k)f { §£ [Ms 

-*>!$ + ^ 
s^+2] +• p       LKCT) **-.] 

2lfc*-f]   +.i^ [(iTtf-Z^^^aM^^flOS-i 

f3^-5iS2]+-^s[(/^S^8-33l8g.V3S37g4_|g4g^ 
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ect) 

-384J+ —IQ5--fes       [O1^   -2G4fe   -MS4& -48) K(i) 

+ IOS-^-2^8^V3^^-£o8^%4g]i-^|^-R^3i 

-23*VQ)^| 4-1^^-34^4-21 ^^]^J^r0fc^4i 

,e E(h) 
-488IO £,   4-68232 4   -S3S-3S&.  +-2.2212 &   ~3e4°)~i<(l£) 

-t-10 3^5 ^l2-4Gc?47i0-hSGl9q-^8-q3 7^^t+-t4434^4-24i9'2.^ 

B 

1      2 65T(|-in ^^ r 

-3S40)j^y +-^4-5-g.'°-3-207 i8fS043 ^-44 57 &V 2040 £* 

-3a4]4-^^[Cl7^fc-2t4iV|S4i2-48)^t-|0S-^ 

-256 ^ +-3S3 1^-208 £.Z+48] jl £9) 
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A0 = l"T~      4   ' 
*L 
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A4. =( 

-4" 4d ^-d^ 

IMS 
4d' 

3       3 
Bt<4^_^v^- yfc 
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-fdzU   _ Yt H        ^dMVt        2Mvt
3 

B4 = (- 

3 

dl4 

4- 

4- y^ _ ytH
: 

B. : ( 3 d 

) 

(3     -/  H 

I. fed y 

3d 

For any given value of the modulus,  k, the groups of terms which 
resulted from the integrations of the cn( ) functions and involve k, 
K(k)> and E(k) can be evaluated. These terms are dimensionless and 
will he denoted by "cpg.,   c"Aip . •.. and T%2.> ~BK>'' * • Equation (29) for 
the average power can also be put into a more convenient non-dimensional 
form by dividing through by the square of the still water depth to give 

(fg)^d? d 1. - 4U ^idf-k^y 

A4 

C B2- 

/J 

C B4 

H^)T 
+ £: (3> 
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Using a functional notation,,  the average power transmission thus 
becomes 

(e^.)\§5"d r =   £,(&,£,!) (30 

The number of parameters in eq. (31) may "be reduced toy substi- 
tuting eq. (15)into eq. (ik)  which gives 

Since Y^/d can toe written in terms of H/d and k, eq. (32) can toe substi- 
tuted into eq. (30) giving the dimensionless power relation in terms of 
two parameters 

While the power remains constant as the wave propagates into shallow 
water, the period also remains essentially constant. For cnoidal waves, 
the period is as given toy eq. (l6) or again using a functional notation 

T^a   =U^k) (5<o 

Assuming then that the specific wave characteristics, P and T, are 
known or can toe calculated in deep water, the left-hand side of eqs. (33) 
and (3^) are known for any shallow water depth, d. This leaves two 
equations with two unknowns which can toe solved simultaneously for k 
and H/d. 

COMPUTATION OF CNOIDAL WAVE POWER 

In order to evaluate the functional relationship of eq. (33) for 
application to shallow water waves, the terms involving k, K(k) and 
E(k) (i.e., 'c"A2 •>*)''' and C^Q, • • • • ) must toe evaluated for the range 
0.05 6 k2 $ 1-10  , the range of modulus applicable to water waves. 
Because of the repetitive nature of the somewhat complex expressions 
involving k, these calculations can toest toe done toy digital computer. 
Still other repeated computations are necessary. For example, the 
parameter H/d has a range extending from atoout 0.01 to O.78 such that 
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for each value of H/d, a range of k's may exist. To enable the dimen- 
sionless power term to be written in terms of two parameters, use must 
also be made of eg., (l*0 for yt/d, the value of which also depends upon 
k and H/d. 

Equations related to the power transmission of cnoidal waves were 
computed on a CDC l6c4 digital computer. Because it was desirable to 
check various parts of the calculations, the computer program was dividec 
into two parts. In the first part of the program, those terms involving 
k, K(k), and E(k) were computed for values of k2 up to l-lO-^0. The 
coefficients evaluated from this program were checked and used as input 
for the second part of the program which computed the actual power. 

The second part of the overall computer program involves the cal- 
culation of eqs. (ik),   (33)>  and (3*0 for the range of cnoidal waves. 
For each value of H/d, the computations have been truncated to include 
only those values for C2/gd (as computed from eq. (17) ) greater than 
0.8200. This is the same range of computations used by Masch and Wiegel 
(1961). Since the values of C2/gd have already been computed and given 
in tabular form, these values were not printed out in the program for 
power. 

CNOIDAL WAVE CHARACTERISTICS 

Using the computed values for eqs. (33) and (3*0; "the simultaneous 
solution for these two equations is given in Fig. h with the non-dimensic 
power transmission term plotted againstthe ratio, H/d. This graph covers 
the range of power calculations and utilizes T Jg/d]  which is a function 
of the modulus of the elliptic integrals, as a parameter. The parametric 
values of T \Jg/d' have been selected to be representative of the range 
applicable to cnoidal waves. The solution of eqs. (33) and (31+) have als 
been plotted in Fig. 5 with the non-dimensional power term plotted agains 
T\J g/a for different values of H/d up to the limiting value of O.78. 

The simultaneous solution of eqs. (33) and (3*0 enables the ratio 
H/d to be determined from which it is possible to compute the transformin 
wave height. Assuming that either deep water wave conditions are known 
or can be predicted so that the period and the deep water power are speci 
fically known or that the wave power transmission is known at some depth, 
then for any other shallow water depth, the left hand sides of eqs. (33) 
and (3*0 are known, and the wave height at the specified shallow water 
depth can be determined. These calculations can be carried out with the 
aid of either Fig. k  or 5. On the "basis of deep water conditions, an 
initial point may be located for example on Fig. 5. As the wave progress 
into shallow water, the average power and period are assumed to remain 
constant, while the depth decreases. For a depth d-^< &Q,  the depth used 
to locate the initial point, the ordinate of Fig. 5 increases defining a 
new level for the non-dimensional power term. Similarly, for d]_< d0, the 
period parameter increases, and defines the horizontal position on the ne 
power level. From this newly defined point, the value of H^/d^ can be re 
from the graph, and the wave height, H^ can be obtained from the depth d]_ 
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Figure 6 is a plot showing the relation of y-fc/d to T •Jg/d for 
several different values of H/d. This plot clearly shows the steepening 
of the crests and the flattening of the troughs. Since an increase in 
the value of T J g/d reflects an increase in the modulus, k, then as the 
depth becomes smaller, the modulus, k, approaches unity and the wave form 
approaches that of the solitary wave. Thus as Tj^g/cTincreases, the dis- 
tance from the bottom to the wave trough, yt, approaches the still water 
depth, d, and the ratio, y-t/d approaches unity. 

The transformation of wave length as cnoidal waves move into shallow 
water can be determined directly from wave steepness considerations. 
Equation (15) which defines cnoidal wave length can be rearranged to the 
form 

L I* 1     16, 
% 

fcKOO 
(35) 

which is an expression for the conventional wave steepness. Using the 
Tables of Cnoidal Wave Functions by Masch and Wiegel (1961), eg•   (35) 
has been evaluated and the steepness has been plotted against T {g/d 
for different values of H/d in Fig. 7- As the wave moves into shoaling 
water, it has been assumed that the period remains constant, so that the 
quantity T {g/d increases. At the same time, it can be seen from Figs. 
h and 5 that for a fixed period, the wave height also increases as the 
depth becomes shallower, and the ratio H/d increases up to the limiting 
value of 0.78. Thus from Fig. 7, the wave steepness is seen to increase 
as the wave propagates into shallow water.  It can also be seen from 
eq.. (35) that for the range of cnoidal wave theory, the wave length 
decreases as the wave moves into shallower water. 

From Fig. 7, it can be noted that cnoidal waves are not very steep. 
In general the value of wave steepness is less than 0.1, and for the 
greater part of the range of cnoidal waves, the shallow water steepness 
is actually less than 0.01. These values of steepness are considerably 
less than most of those reported in laboratory studies on shoaling waves. 
However this is not unexpected since the theory is limited to a class of 
long waves in water with depths less than about one-tenth the wave length. 

SUMMAEY 

The study described in this paper has been devoted to the application 
of cnoidal wave theory to the transformation of long waves in shoaling 
water. The method used involved the calculation of the power transmission 
of cnoidal waves in terms of the geometric wave characteristics and the 
complete elliptic integrals of the first and second kind. The power and 
wave period equations were evaluated on a digital computer for the range 
of cnoidal waves assuming no loss of energy and no reflections as the waves 
propagate into shallow water. Variations of wave parameters such as height 
length and steepness were determined from theoretical considerations. It 
was found that both the wave height and steepness increases as the depth 
becomes shallower, whereas the wave length decreases with decreasing water 
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depth. These results are compatible with those found by other wave 
theories although the range of steepnesses for cnoidal waves is much 
lower than that for other finite amplitude waves. 

Generally speaking cnoidal wave characteristics cannot be repre- 
sented as neatly as can the properties of waves determined by other 
theories. According to linear wave theory, the phase velocity, wave 
length, and wave period are independent of the wave height. Even to the 
second order Stokes theory, the phase velocity, wave length and steepnes 
are still independent of the wave height.  On the other hand, the relatj 
ships for cnoidal wave properties, eqs. (15), (16), (17), and (35) all 
involve the wave height in addition to the still water depth.  Hence sin 
graphs such as Fig. 1 which show wave height, phase velocity, steepness, 
etc. related directly to &/LQ  cannot be constructed. Since most cnoida] 
wave equations are three variable equations, families of curves are 
necessary to represent the results. 

It still remains to apply the theoretical computations of this stt 
to experimental or field data. Although a thorough search of the liters 
has not been completed, there appears to be only meager data reported fc 
shoaling waves in water with d/L less than 0.1. Of the data available 1 
d/L less than 0.1, wave steepnesses are relatively large and wave period 
are short so that the waves are out of the range of cnoidal theory. 
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