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THEORETICAL FORMS OF SHORELINES
by
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SUMMARY

Laboratory tests say that the littoral transport by waves reaches
a maximum value when the waves approach the shore obliquely. In some
way this must lead to peculiarities in the forms of shorelines. There-
fore we put the question what types of shorelines can mathematically
exist assuming the littoral transport is ruled by the function sin 2X
where K is the angle between the wave front and the shoreline, This
yields some basic types of shorelines. After a brief discription of the
mathematical treatment these results will be discussed.

This paper is a continuation of the paper presented on the same

subject at the 7th conference on coastal engineering,

INTRODUCTION

The configuration of sandy shores and the changes in it depends
completely on the variation in the transport of sand above the sea-
bottoms The sand movement is a consequence of the movement of the water,
In its turn the watermovement is a result of the tide and of the wind
action, For the coastal engineer it is of importance to know the re~
lations between the stream and wave characteristics on the one side
and the intensity of the littoral sand transport on the other side.
Therefore several laboratory tests have been made to get an idea about
these relations. Knowing how extremely complicated these relations are we
have to expect much scatter in the results of these tests. In spite of
this scatter however all tests show a similar characteristice. They say
that the intensity of the littoral transport is maximum when the waves
approach the shore obliquelye. Some tests say that this maximum is reached
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when the angle «« between the wave front and the shoreline is 30°. Other
tests say that this happens when this angle is 60°, Whatever the real
value may be it seems to be true that the intensity of the littoral
transport has a maximum by a value of o« which differs much from <= 0
and from « = 90°.

On the supposition that this fact must lead to certain peculiari-
ties in the form of shorelines the coastal research department of the
Rijkswaterstaat in the Netherlands has made a study about this. They
have put the question what types of shorelines can mathematically exist
assuming the littoral transport is ruled by the function sin 2 « which
has its maximum value when o = 45°,

o

THE MATHEMATICAL TREATMENT
Congidering a stretch of shore of an infinite small length we have
the condition that the quantity of deposited (or eroded) material must
be equal to the difference between the quantities transported by the
sea at the beginning and at the end of that stretch of shore, On the
basis of figure 1 we put:

d4 _ dr
S_c'édq’ di;.-a.rdc?_._.t dt
or é_c_l_ =ara-—"
o¢ Dt

in which

r and ¢ are the polar coordinates of the considered point of the shore

q is the function that determines the quantity of the littoral transport
t is the time

a is the depth of the water which will be a function of r and ¢

The magnitude of q depends on the angle £ only. So this angle holds
a key position. Therefore we take X as the independent variable instead
of @ o This has two consequencies. First the form of the equation of
continuity must be reduced to:

24 dv 2@ _ or 2@
st (ST st -5 <) O )

Secondly we need another equation to relate « and @ e« On the basis of
figure 2 we have:

Xy @+ = p (2)
It will be clear that (> defines the direction of the wind. But } is a
new variable also depending on &« and t. So we cannot get away from
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another equation that defines } o From the well-known formula:

r
ta.an= Y
we derive:
dr _ 2
tan & Sx T T 3K (3)

Now the problem is to find functions which satisfy the three equations
(1), (2) and (3). We shall try whether the following combination of
functions will doe.

cr™d (¢

R () T (V)

¢ ()

AQ ()

where Q, ¢ and R are functions of « only and T is only a function of
the time t.

Substituting these functions in the equation of continuity (1) yields:

o L " @
"

4
- &« _c gmnv 4T
]{n+z‘$ %ég A at
S

On the left hand side of this equation there are expressions of « only,

on the right hand side there appears only the time t. This equation can

only be satisfied when both parts are equal to a constant k. This yields
the two conditions:

AQ = kR™* ¢ a¢
(&)
Tn.+l d.T = kA dt
c
The second condition offers no problem while it can be integrated to:
mneEL
T =\/(1-\.+2)£A(t-tc) (5)
c

where to is an integration constant, The first condition replaces the

original equation of continuity (1). However much simplier we are not

able to solve the set of equations (2), (3) and (4) unless we restrict

ourselves further. Therefore we assume that the bottom of the sea is ho-

rizontal. This means that n = o and that $ = 1.

Finally we have obtained the following set of equations we can manage:
dQ =k R, d¢p (6)
tan ydR = Re d@ (7)
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X + @ + Y = p (8)
while the function T is:
r= |[2kA (ot
[
The function Q can have each forme. We took for it the function sin 2K
It is usefull to realise that the choosen combination of functions shows

a certain character, The matter is that when we divide the radius vector
r by T we obtain a value depending on KX only. That means that the shore=
line at the time t = t7] and the shoreline at the time t = t2 can be reduce
to the very same shape by geometrical multiplying out of the origin.

8o to discuss these shorelines it is sufficient to discuss the curves gi=
ven by R and ¢ which satisfy the equations (6), (7) and (8). The constant
k can have each value. We took it equal to % because then the relation of
the area between two radius vectors in the graph of R with the area be~
tween the corresponding lines in the prototype is the most simple one.

THE RESULTS

Before discussing the solutions of these equations obtained by means
of a computer we shall bring to the fore some general remarks on these
solutions. First with respect to the function of sin 2K it can be proved
that when the curve a of figure 3 is a solution of the differential equa~
tion, the curves b, ¢ and d will also satisfy the equations, Curves a and
b and the curves ¢ and d are symmetrical with respect to the wind direc-
tion., Curves a and ¢ and the curves b and d are symmetrical with respect
to the polar axis.
The second remarkable thing is that straight lines through the origin
satisfy the equations but other straight lines do not.
The third point is that only in the octants 0,3, & and 7 of figure 42
these straight lines can be asymptotes of the solutions. This means that
we can have bays and capes of a shape as shown in figure 4b and kc, but
when the angle 9 becomes more than 45° the bays and capes must be shaped
as in the figures 43 ang 4® while in the points A the condition of conti-
nuity must been patisfied. The fourth point which asks attention is the
fact that when the littoral transport reaches its maximum value the shore
line shows a cusp as will be shown later.

Figure 5 shows the result of a calculation on the computer, The com-
puter was programmed to follow this curve starting from a point A practi=-
cally in the infinite and stopping in another point B likewise in the in-
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finiteo

With this one solution of the differential equations we can construct
shorelines of different types. First the curve of figure 5 can be inter=-
preted as the shoreline of a bay or by mirroring with respect to the po-
lar axis as the shoreline of a cape. Besides we can construct with this
curve a symmetrical simple delta., Therefore we take only part A-F, pir-
ror it with respect to the wind direction and put a rivermouth in point F,
Then the condition is that the river brings a quantity of material to the
sea that equals twice the quantity of the littoral transport in point F
of the original curve.

But there is still a third way to use this curve. The computer has
been programmed in such a way that all points of transition were indicated.
A point of transition means that in that point the littoral transport alon
the curve has the same magnitude as the littoral transport that would take
place when the shore would be situated along the radius vector to that
point, In the curve of figure 5 there are three of such points C, D and E,.
At each point there is written down a number. This number gives the ratio
between the magnitude of the littoral transport in that point and the
quantity of material that the sea is able to transport. The magnitude of
the littoral transport will be always expressed in this manner. With point
C we can construct four other shorelines, This is not possible with the
points D and E. Finally figure 6 shows all the shorelines which can be
constructed form the curve of figure 5.

Mathematically there exists another shape of the shoreline for a
symmetrical simple delta. This shape is shown in figure ?. The centre of
curvature lies at the other side of the shore shown in figure 6. The cur=
ve links op the original shore in the finite and just in the point where
the littoral transport equals zero.

It is easy to construct deltas with more rivermouths., The only thing
we have to do is to link up different curves and to put a rivermouth in
each point of connection., There the river must bring to the sea such a
quantity of material that the condition of continuity is satisfied. Such
composed deltas are shown in figure 8. A mathematical condition in con-
structing such deltas is that the river arms must be situated along a
radius vector. These deltas are still symmetrical ones. It is also very

simple to construct non-symmetrical deltas in the same way. The only thing
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we have to do is to connect on the left hand side other curves as on the
right hand side (figure 9). We can construct an infinite number of shore:
lines. By the way some of the original shores in the figures 8 and 9 haw
the shape of a bay or of a cape.

But there is still another way to construct non-symmetrical deltase.
Till yet we have put P equal to zero. That means that the wind direction
has been always perpendicular to the polar axis. When we take P> = = 20°
we can construct the seét of curves shown in figure 10. The curves on the
right hand side of the line d have a cusp in the point where the littora
transport reaches its maximum value. At one point A is indicated how the
shoreline would continue when the computer was not been stopped in the
cuspo With this second part of the curve the symmetrical simple delta
form figure 7 has been comstructed. On the left hand side of line 4 the
curves have an asymptote with decreasing values of Q according to the
flatness of the curvee.

When we take b = + 20° we can construct the set of curves of figure 1l.
Here also exists a locus of cusps. When we mirror the set of figure 11
with respect to the wind direction we can combine this set with that of
figure 10 and obtain figure 12, Here we have in principle 32 non-symme=
trical deltas. Note that by each value of the quantity of material that
the river brings to the sea there exist two different forms of shore-
lines. The deltas indicated by a letter A and by a letter B are a pair
where the ratio between the quantity of material conveyed by the river
and the quantity of material the sea is able to transport is about 0,55.
The deltas indicated by a letter D and by a letter E are a pair where
this ratio is about 1,25, Only when this ratio becomes equal to two (the
delta indicated by the letter F) there exisﬁamathematically only one so-
lation. These 5 deltas are drawn in figure ¥ seperately.

It will be clear that in this way we can also construct non-symmes
trical deltas with more rivermouths combined with bay = or cape shaped
original shorelines. But before continuing this stude it seems necessary
to investigate whether the results we have obtained can be recognized in

nature or note.
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