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INTRODUCTION 

This paper is addressed to the problem of structural behavior in an 
offshore environment, and the application of a more rigorous analysis for 
time-dependent forces than is currently used. 

Design of pile supported structures subjected to wave forces has, in 
the past, been treated in two parts; (1) a static analysis based on the 
loading of a single wave, and (2) a dynamic analysis which sought to deter- 
mine the resonant frequency by assuming that the structure could be approx- 
imated as a single-degree-of-freedom system.(Ref. 4 and 6) The behavior 
of these structures would be better understood if the dynamic nature of the 
loading and the many degrees of freedom of the system were included. 

A structure which is built in the open ocean is subjected to periodic 
forces due to wind, waves, floating objects, and due occasionally to ma- 
chinery mounted on the structure. To resist motion, the structure relies 
on the stiffness of the elements from which it is built and the restraints 
of the ocean bottom into which the supporting legs are driven. 

Ocean wave forces vary in magnitude, direction, and elevation as they 
pass through a complete cycle. Figure 1 (b) shows the forces of a wave of 
length \  passing a simple bent. The legs of the bent, in the plane perpen- 
dicular to the wave crest, are spaced at a distance of \/2.    Leg A is then 
acted upon by a force to the right while leg B is forced in the opposite 
direction.  If the legs were either an integer number of wave lengths apart, 
or extremely close together, they would be acted upon by approximately equal 
wave forces. 

Even though the bent is a planar structure waves seldom approach in 
its plane or perpendicular to its plane. Figure 1 (a) shows the bent in 
plan with its plane rotated an angle Y from the line of wave crests. Thus 
the forces on legs A and B are not only unequal and opposite but exert 
components of force both in the plane of the structure and also out of the 
plane. To treat this structure realistically it is necessary to formulate 
an analytic method which can accommodate all the variations in these time- 
dependent forces. 
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Wave Motion 
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Figure 1 (a) Bent - Plan 

 X/2 = D sin y 

Wave Motion 

Positive wave force CJT 
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Figure 1 (b) Bent - Elevation 
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ANALYSIS 

For analysis the structural system is idealized as follows: First, 
the piles are assumed to be driven in the ocean bottom and fixed at a 
particular elevation. The analytic formulation in no way precludes the 
application of resisting soil forces as a function of deformation and time. 
Second, continuous members are assumed to be a series of discrete springs 
and masses so that a digital computer can be used for the solution.(Ref. 8) 
Third, the continuous force of a passing wave, represented by a known func- 
tion of time, is idealized by breaking it into segments of depth L (see 
Fig. 2 (a)). The resultant of this force segment is denoted by fn(t). 

Wave Motion 

Spring 

Lumped Mass 

(a) Actual Pile (b) Idealized Pile 

Figure 2 

Figure 2 (b) shows the idealized pile divided into a series of springs 
and masses. The distance between masses is also L to correspond to the 
vertical increment of wave force selected. Acting externally on each mass 
is the viscous damping force of the water, Cn(z). Non-linear damping can 
be included by considering the continuously varying value of CQ as approx- 
imated by step values, each of which is constant for a short time. All 
further reference to beams or piles will assume the lumped mass idealiza- 
tion of Fig. 2 (b). 

It is customary for vibrations texts (Ref. 9) to use the coordinate x 
for the derivation of the equations of motion. To be consistent with later 
parts of this paper, the coordinate z will be used here. 

Further idealizations upon which this analysis is based are: (a) stress 
is proportional to strain, (b) small deflection theory, (c) all motion is 
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measured from the position of static equilibrium (P.O.S.E.), and (d) one 
dimensional analysis. 

DIFFERENTIAL EQUATIONS OF MOTION 

Figure 3 shows a single-degree-of-freedom system which consists of 
two basic parts. First, the spring k and dashpot c in parallel are equiv- 
alent to the spring of length L in Fig. 
2 (b). The dashpot in this location 
provides a means of expressing struc- 
tural, or internal, damping. Second, 
a mass m is damped viscously and also 
forced by a steady-state periodic 
function. The need for this second 
dashpot is to provide a means to apply 
external viscous damping to the pile 
as shown in Fig. 2 (b) by C (z). The 
forcing function P cos Ot is analogous 
to fQ(t) of Fig. 2 (b). With each 
mathematical expression tied to phys- 
ical reality we may now apply D'Alem- 
bert's Principle to Newton's Second 
Law and write the equation of motion 
as an equation of static equilibrium 
for the system of Fig. 3. (Eef. 9) 

v\\\\\\\\\\ 

P.Q.S.E. 

+z 

•til 

m 

C   |X P cos fit 

Figure 3    Single-Degree-of- 
Freedom System with two Viscous 

Dampers 

mz + Cz+cz + kzsP cos Qt (1) 

The forcing expression can be represented for convenience by the real 
part of the complex function 

P cos fit = Re(P eJ^*) (2) 

where j = /-l. For the offshore application our interest is focused on 
the response of the structure to a train of waves of approximately the 
same period. Mathematically then, we will seek only the steady-state so- 
lution to Eq.(l) which is 

z « Re(z eJ ) (3) 

where the complex amplitude z represents the actual amplitude of motion 
made up of the vector sum of two components, the real and imaginary. For 
impulse loading (earthquake waves, blasts, or ship berthing) the transient 
solution could also be included.(Eef. 8) Differentiating Eq. (3) and sub- 
stituting into Eq. (1), we obtain 

or 
(-mQ2 + jCO + jcQ + k)£ *&*  - P eJQt 

-mfl2z + jcQz + jcflz + kz « P (4) 

Through the use of complex notation the steady state solution, as 
given by Eq. (4), is easily obtained and the effect of each term remains 
apparent. 
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Structural damping m homogeneous materials may be defined as a func- 
tion of the forcing frequency Q such that 

c ss c(Q) = k a (5) 

where k is the spring constant and e is a factor of proportionality which 
is charateristic of the material.(Ref. 2) By substituting Eq. (5) into 
Eq. (4) we obtain 

-mQ z + JCQz + jkgz + k£ = P (6) 

For analytic convenience the complex modulus K for structural damping can 
be formulated as 

K(Q) = k + jSk = k(l + je) (7) 

For example in bending we have a flexibility term of the form 1/k = L /61I 
where the elastic properties are expressed by E, or in the torsional case 
G. To handle these situations it is convenient to formulate an expression 
for the complex elastic modulus E and the complex shearing modulus G. 

and 
E = E(l + je) 

G « G(l + je) 

Where E appears in the denominator as cited above, the imaginary portion 
is then moved to the numerator 

(1 - je)  IT<1 - J 
k  6E(1 + je)I (1 - je)  6EI 

Lz_M_ 
(1 + s2) 

(8) 

so that the imaginary part may be separated from the real in the matrix 
formulation. 

Imaginary 

=Eeal 

+Real 

= 0 

Figure 4 Vector Force Representation 
of Eq. (6) with Phase Angle a  < 90° 

Figure 4 shows the 
vector relationship of 
the terms of Eq. (6). 
From the axis t = 0 the 
entire vector force dia- 
gram (an Argand diagram, 
i.e. any diagram on the 
complex plane) is rota- 
ting at the constant an- 
gular velocity Qt.    As 
the forcing frequency Q 
moves toward a resonant 
frequency of the structure, 
a  approaches 90 . When or 
= 90° the externally ap- 
plied force is devoted ex- 
clusively to opposing 
damping, both structural 
and external, while the 
spring force kz is equal 
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and opposite to the inertia force mfl2z. 

MATRIX FORMULATION 

The equations required to describe the motion of each spring and each 
mass are formulated in matrix notation for concise explanation in this 
paper, and for systematic manipulation within the program for the digital 
computer. This section employs three matrix expressions: (1) the state 
vector, (2} the mass matrix, and (3) the field transfer matrix. The for- 
mulation of these types of matrices has been described in detail by Pestel 
and Leckie.(Ref. 8) 

The coordinate system used throughout this paper is shown in Fig. 5 
and follows the right-hand rule. 

J" 
-*-x 

?z 

(a) Coordinate Axes 

My     1 

(d) Moments 

^   y 
'9 

(b) Displacements 

<<z 

Jl 
(c) Rotations 

tvz 

(e) Shears 

Figure 5 Coordinate System 

The centroidal axis, which in the cases studied here is taken always 
to coincide with the shear center of any member, will be the x-axis as 
shown in Fig.5 (a). 

Equation (6) contains both real and imaginary terms. However, in- 
stead of formulating matrices of complex numbers it is possible to par- 
tition all matrices in such a way that both real and imaginary terms may 
be treated as real and still remain separated.(Ref. 7) The following 
complex multiplication 

MB] = [c] 

can be written in partitioned form as 

(9) 

where R represents real terms and I represents imaginary. 

The State Vector  The state vector {z} is so named because it gives the 

K K "R   l-i " 
Bl     B EARB"IAIB ! ~RAIB"RBIA 

RCI-:I:C 

1
_A\\ >! EB 

E
BWB i ^AWB . c l   c 
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displacements and forces at any station along the beam. It is partitioned 
to separate real and imaginary parts and sub-partitioned to separate dis- 
placements and forces. Braces { } are used to denote a vertical column 
matrix but to use space more efficiently in this paper these will be writ- 
ten horizontally. Brackets [ ] are used for square matrices. 

{*} - 

Generalized   Generalized   Generalized   Generalized 
Displacements    Forces    Displacements    Forces 
{u v -w cp f GlMj, ML T Vz -Vy Nju v -w cp f e!*^ My T V^ -Vy NJlj (10) 

Real Imaginary Unity 

The significance of the unity term will become apparent in the for- 
mulation of the mass matrix. 

The Mass Matrix  Figure 6 shows a section of an arbitrary beam with the 
superscripts R and h  denoting right and left. 

-R    _L    -R 

Centroidal Axis 

BJ i  Bi     m^ 

^-{•i-iY Hm± jr (""i+ij— 

Figure 6 Portion of Arbitrary Beam 

In Fig. 7 (a) a free-body diagram of mass m^ in this beam is shown 
with the forces and displacements in the z-x plane. 

V* 

{  iJCQw^ 

\ 

min2w5; 

v* 

*-x 

Figure 7 (a) Displacements 
and Forces - Mass mi 

Figure 7 (b) Rotations 
and Moments - Mass m, 

Since the mass is considered lumped at an infinitesimally small point and 
is non-deformable, we may write the displacement equation as 

Jt-t (11) 
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and by summing forces in the z direction 

v£. + a^wj - V^ - jCflwJ + f„x(t) =0 

we recognize three terms from Eq. (6) plus two shear terms. 

(12) 

Figure 7 (b) is a free-body diagram of the same mass a^ as shown in 
Fig. 7 (a) but showing rotations and moments. The rotation equation is 

and by summing moments about the y-axis 

?i+ h±^ ~ ^i"jcnt^ + fmyi(t)" ° Si 

(13) 

(14) 

where I = f(x2 + z2)dm and is called the mass moment of inertia. 

By drawing four more free-body diagrams of mass m^, two in the x-y 
plane and two in the y-z plane, eight more equations similar to Eqs. (11) 
through (14) can be written bringing the total to 12.  If all equations 
are solved for the terms at the position to the right of n^ as shown by 
m§ in Fig. 6, the mass matrix may then be written for mass m^. 

r iL The state vector to the left of mj_ is (zj^ and the state vector to 
the right is {z}?, each containing the terms shown in Eq. (10). The 25 x 
25 mass matrix [p] is then 

{.jj 

12113 

12_ 
L3 
 jth eol- 

ith row 

24 

.__L_. 

I Pi,J 

24 
25 
 1  

£«£ (15) 

The constant term, fm_ (t) of Eq. (14) is placed in the 25th column 
of [p]. The coefficient ofxone, which appears in the state vector of Eq. 
(10) then has the effect of carrying the forcing function term along in 
the matrix operations. Table 1 lists the terms of matrix [p]. 

TABLE 1 Non-Zero Elements in the General Mass Martix Sub-Sections 
[PR], [-Pj], and Column 25 

PR(1 thru 12, 1 thru 12) m  PR(13 thru 24, 13 thru 24) 
-Pj(l thru 12, 13 thru 24) = Pj (13 thru 24, 1 thru 12) 

Row Col Term Col Term Col Term Col Term 
(i) U) (j) (j) (j) 
1 1 1.0 
2 2 1.0 
3 3 1.0 
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TABLE 1 (cont.) 

Row Col Term Col Term Col Term Col Term 
CO (J) (j) (J) (j) 
4 4 1.0 
5 5 1.0 
6 6 i.o9 
7 6 7 1.0 18 -CO 25 -fmz(t) 
8 5 8 1.0 17 -CO 25 -fm(t) 

-fm^(t) 9 4 9 1.0 16 -CO 25 
10 3 

-mn2 

10 1.0 15 Cfl 25 -fz(t) 
11 
12 

2 
1 

11 
12 

1.0 
1.0 

14 
13 

en 
-en 

25 
25 

fy(t) 
-fx(t) 

The Field Transfer Matrix  The section of beam between points m*.^ and 
m£  of Fig. 6 represents a spring connector of length L. A free-body dia- 

y 

Figure 8 Displacements and Forces; 
Rotations and Moments 

gram of this spring in the z-x plane is shown in Fig. 8 from which the fol- 
lowing equations are derived: 

-w^ + w11 

i + wi-l 
R     2 

Li*i-1 " ^Ni^-^yyi ~ ^Zi^'—yyi 

,.R 
•i " n-1 - H^./^yyi " ^Zi-i^Vi 

./2EI 

,R 

- L?V? ,/6EiL = 0 

n yi-i " V. 
-v: ,R 

i-l 
= 0 

V        B 0 zi-l 

(16) 

(17) 

(18) 

(19) 

Equations (16) and (17) relate the displacements and rotations at one end 
of the beam to the displacements and rotations at the other. Equation (18) 
is obtained by summing the moments and Eq. (19) by summing the shears 
shown in the free-body diagram. 

By drawing free-body diagrams of the spring connectors in the x-y and 
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y-z planes, eight more equations can be written. Solving these equations 
for the terms to the left of mass m , the 25 x 25 field transfer matrix [F] 
can be written as 

{«)£- 

1 121 13 
1 

241 

FR 
1 
1 "FI 

jo 

12 
tth row 

—jth col 

t -| 

i  'J 

FI 
i     F 
1      R 

|0 

24 

25  0 

1 
1 

1 0 
- H— 

wj-l (20) 

TABLE 2 (a) Non-Zero Elements in the General Field Matrix, Sub-Sec- 
tion [FR]j FR(1 thru 12, 1 thru 12) = FR(13 thru 24, 13 thru 24) 

Row Col Term Col Term Col Term Col Term 
(i) q) (j) (j) (j) 

1 1 1.0 12 L/EA(l+e2) 
L3/6EIzza+*2) 
LV6EIyy(l + e2) 

2 2 1.0 6 L 7 L2/2EIz;z;(l+e
2) 11 

3 
4 

3 
4 

1.0 
1.0 

5 
9 

L 
L/GJ(l+e2) 
L/EIyyU+e2) 
L/EI„(l+€2) 

8 L2/2EIyy(1+e
2) 

L2/2EI (1+e2) 
L

2
/2EI;;U+O 

10 

5 5 1.0 8 10 
6 6 1.0 7 11 
7 7 1.0 11 L 
8 8 1.0 10 L   Note: 
9 9 1.0 A = Cross-Sectional Area 

10 10 1.0 J = Moment of Inertia about x-axis 

11 11 1.0 I  = Moment of Inertia about y-axis 
I„~ = Moment of Inertia about z-axis 

  ss    12 12 1.0 

TABLE 2 (b) Non-Zero Elements in the General Field Matrix, Sub-Sec- 
tion [Fj]; FJ(13 thru 24, 1 thru 12) =-[Fj](l thru 12, 13 thru 24) 

Row 

(i) 

Col 

(j) 

Term Col 

(j) 

Term 

1 
2 
3 
4 
5 
6 

24 
19 
20 
21 
20 
19 

CL/EA(l+e2) 
8L2/2EIzz,(l+e

2) 
6L2/2EI y(l+6

2) 
eL/GJ(l+e2) 

6L/EI (1+e2) 
6L/EIzz(l+e

2) 

23 
22 

22 
23 

eL3/6EIzz(l+e
2) 

«L3/6EIyy(l+e
2) 

«L2/2EI  (1+e2) 
eL^EI^d+e^) 

Matrix Formulation for a Single Pile  Figure 9 shows a single pile, fixed 
at the base and free at the upper end. A state vector {z}A may be written 
for the fixed base and a spring matrix [F1] for the first spring. The 
equation which relates the base at A to the lower side of the first mass 
is 

>L 
UL = l>i]{z}A (21) 
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Similarly the lower side of the first mass may be related to the upper side 
of the first mass by 

t>m] 

,U Ml - CPI3£«)J (22) 

By substituting Eq. (21) into Eq. (22) the 
upper side of the first mass is related to 
the fixed base at A by 

»U 
Ml = CP1][F1]C*)i (23) 

This procedure is continued until the top 
of the pile is related to the base, giving 
the equation 

W^ - [F103CP9]—[PJ^ICJ^ 
or 

U}BA - [AB]£Z}A 

Figure 9 Cantilever Pile Corner Transformation Matrix  The mathe- 
Idealized by 9 Lumped Masses  matical model of a simple bent must in- 

clude a method of transforming displace- 
ment and force information from a vertical 

member to the horizontal bent cap and then back to the second vertical pile. 
Considering the bent ABCD of Fig. 10 and applying the right-hand-screw rule, 
the transformation around corner B requires rotation about the y-axis 
through the angle V = -90°. The state vector at the B end of member AB is 

Figure 10 Bent Idealized by 27 
Lumped Masses 

m 

{z}^, the initial state vector in member BC is {z}BA, and the transforma- 
tion matrix is [T]. Therefore, 

UJBA - M£Z}AB 
which expanded into its partitioned form becomes 
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M BA 

1  1 
T, I 0  , 
x J 4 

0 
1 
1 0 |0 
1 

0   [ T2 ! 0 f 
1 

~ T 
0 >0 

1 

0 ' 0 | 
_Ti 

1 
1 0 |0 

---!-- + + — -h- 
0 10' 

1   1- 
0 1 

1 
T2|° 

_ o ! o i 0 1 
1 0 |lj 

{*} BA 
(24) 

Submatrix [iv] transforms displacements and rotations 

CT2]- 

Similarly [T0J transforms moments and shears 

cos if 0 sin i|i  0 0 0 
0 1 0    0 0 0 

sin ijr 0 cos if      0 0 0 
0 0 0  cos t|r 0 -sin i/ 
0 0 0    0 X 0 
0 0 0  sin ijr 0 cos f 

o2]« 

cos if 0 sin if      0 0 0 
0 1 0    0 0 0 

sin if 0 cos if      0 0 0 
0 0 0  cos t|f 0 sin ijr 
0 0 0    0 1 0 
0 0 0 -sin if 0 cos f_ 

Mathematical Model of Bent  The bent of Fig. 10 was idealized by assuming 
nine masses per member, with each mass being allowed six degrees of free- 
dom, or a total of 162 degrees of freedom for the structure. This bent 
was programmed and is to serve as an analytic and experimental example for 
the remainder of this paper. 

The fixed base of leg A was related to corner B in a single matrix 
expression. Using Eq. (24) for corners B and C the entire bent can now 
be formulated in the single equation 

£«}„ = [CD][T][BC3[T;II;AB;)M 
or 

£z}D - Cu]{z3A 

Expanding Eq. (25) into its partitioned form we obtain 

w.- 
PR 

PI 

.1 . D 

UdEdR ' UdBpR ; UdRdI j UdBpI | UdB25 

0pRdR , UpRPR j uPRdI ! DpRpI | UpR25 

UdIdR 1 UdIPR [ udldl J udlpl | Udl25 

UpIdR 1 UpIpR 1 °pldlj °plpl ! °pl25 
0  r 0  !  0  1  0  i  1 

dR 

PR 

A 
pi 
Ll J, 

(25) 
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Equation (25) represents a series of 24 simultaneous equations (plus 
the identity 1=1) which can be solved by applying the boundary conditions 
at points A and D. At these points the displacements and rotations, de- 
noted by dR for real and dj for imaginary, are zero due to the assumption 
of complete fixity, while the moments and shears, pR and Pj, are unknown. 
Next, extract from Eq. (25) the submatrices which have not been multiplied 
by zero displacement or rotation terms of iz}.,  stnd  which are equated to 
zero terms of {z}D. 

UdBpE ! upKpI 

u\ dlpR ! dlpl 

PR 

P 
- + 

-A. 

'dR25 

JdI25, 

(26) 

The forces p and pT of leg A are found to be R      1 

w 
JA 

JdHpR 

JdIpR 

JdRpI 

Jdlpl 

-1, 

?' 
JdR25 

(27) 

dI25 

Electronic Computation  The formulation of this analytic method in general 
terms presupposed its solution by an electronic computer. The matrix oper- 
ations described above are grouped and written in FORTRAN as general sub- 
routines. (Ref.3) Then a relatively short main program for any specific 
structure can be made up largely of commands which call subroutines. 

In Eq. (23) the state vector for the upper side of mass one of leg AB 
was expressed in terms of a mass matrix, a spring matrix, and the state 
vector at A which is now known by Eq. (27). As matrix multiplication pro- 
ceeds around bent ABGD, a matrix of coefficients is saved at each lumped 
mass, i.e. [Un3. 

and 

etc. 

Ml - [P1][K1]{z}A - [01]{z}i 

U)\ - CPa3Cra]CP13C»1]£«}i [u23U}A 

By successively retrieving coefficient matrices [U.^U^], Cun^ and 

multiplying by the known state vector {z}A> the entire response at each 
lumped mass may be computed and written out. This means that a numerical 
value will be computed for each term shown in the state vector of Eq. (10), 
By paring each real term with its corresponding imaginary term, a complex 
term may be re-established from which the phase angle a  of Figs. 4 and 11 
can be computed: 

a = arctan Imaginary Component 
Real Component 

The analysis of an actual structure would begin with the selection of 
a frequency range over which the response is of interest. First, the static 
structural response to the maximum value of the forcing function is ob- 
tained by setting Q = e = 0. Second, the entire frequency range is trav- 
ersed in small increments and changes of sign of real terms are noted. 
Third, at a sign change the response vectors are plotted on the complex 
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plane, as shown in Fig. 11, to determine the maximum response. The points 

Imaginary 

-200 -100 100 

Figure 11 Polar Plot of M 
A m  7.45 cps    y 

on the circle, Q1  and fl2 
are 

found from the incremental ap- 
proach. By using these two points 
and the origin, a circle can be 
constructed, the diameter of which 
is the value of the maximum re- 
sponse. (Ref. 1) Figure 11 is the 
plot used to determine the mag- 
nitude of the first peak shown 
xn Fig. 12. 

The bent ABCD of Fig. 10 was 
programmed in FORTRAN and run on 
an IBM 7094 computer.(Ref. 3) A 
single exciting force of 1.414 
pounds was applied to the middle 
mass of leg AB in the y-z plane 
at an angle of 45° from the z- 
axis. This force resolves into 
1.0 pound forces concurrent with 

and T at the base of leg AB were the y and z axes. The moments ML, M , 
chosen to indicate the structural response through the entire frequency 
range. Figures 12 and 13 indicate the peaks at which resonant frequencies 
occur. 

300 
*Q, 

200 
Moment 
(lb-in) 

100 

F(t) = 1.0 lb. along z~axis 
Structural Damping Coefficient e = 0.015 

M„ (moment about y-axis) 

20 30 40 50 60 cps (fl) 

Figure 12 My at point A with Forcing at Mid-Height of Leg AB 

400 T 

300 

200 
Moment 
(lb-in) 

100 - 

I 
F(t) » 1.0 along y-axis 
Structural Damping Coefficient e = 0.015 

M (moment about z-axis) z 
T (moment about x-axis) - 

60 cps (Q) 

Figure 13 M and T at point A with Forcing at Mid-Height of Leg AB 
z 
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At each resonant peak a characteristic mode shape, or deformed shape 
of the structure, occurs which can be plotted from the computer output at 
each lumped mass. The maximum number of resonant frequencies which can be 
computed is equal to the number of degrees of freedom. Although the bent 
chosen for illustration was forced by a point load, the mode shapes and 
resonant frequencies would be similar if a series of point loads, which 
models a gravxty wave function of the same frequency, were applied. The 
deformed shapes at each resonant frequency for in-plane loading are given 
by Figs. 14 and for out-of-plane loading by Figs. 15. 

fl = 7.45 cps Q m 29.37 cps 

Figure 14 (a) Mode Shape for 
1st Resonant Frequency of 
Structure as a Whole 

Figure 14 (b) Mode Shape for 
2nd Resonant Frequency of 
Structure as a Whole 

F(t) 

if      fJ = 47.82 cps 

F(t) 

Q a 51.79 cps 

Figure 14 (c) Mode Shape for 
3rd Resonant Frequency of 

Structure as a Whole 

Figure 14 (d) Mode Shape for 
4th Resonant Frequency of 
Structure as a Whole 
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Figure 15 (a) Mode Shape for 
1st Resonant Frequency of 
Structure as a Whole 
(Out-of-Plane Forcing) 

Figure 15 (b) Mode Shape for 
y        2nd Resonant Frequency of 

Structure as a Whole 
(Out-of-Plane Forcing) 

Figure 15 (c) Mode Shape for 
3rd Resonant Frequency of 
Structure as a Whole 
(Out-of-Plane Forcing) 

Figure 15 (d) Mode Shape for 
4th Resonant Frequency of 
Structure as a Whole 
(Out-of-Plane Forcing) 
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Figure 15 (e) Mode Shape for 
5th Resonant Frequency of 
Structure as a Whole 
(Out-of-Plane Forcing) 

ytiownirig the mode shapes is of 
practical significance since the 
amplitude of resonant deformation 
is greatest when the forces on each 
leg are putting energy into the 
structure. When a bent is deformed 
in an anti-eyw.etrie mode shape 
(Figs. 14 (a),(c) and Figs. 15 (b), 
(d)) forces on legs spaced an inte- 
ger number of wave lengths apart 
are mutually reinforcing. Simi- 
larly, when a bent is deformed in 
a symmetric mode shape (Figs. 14 
(b),(d) and Figs 15 (a),(c),(e)) 
forces on legs spaced an integer 
number of ha3f-wave lengths apart 
add their effects.  (At half-wave 
lengths the opposing forces are 
not necessarily at their maximum in 
all cases.(Eef. 5)) Thus the de- 
formed structures may be thought of 
in the same light as influence lines 
for resonant loading. 

EXPERIMENTAL VERIFICATION 

To test the validity of the analytic formulation a bent was constructed 
of 3 - 3/8" round steel rods each approximately 36" long. Full penetration 
welds were used at corners B and C and legs A and D were drilled and welded 
into a 15" x 1/2" x 4'-0" steel base plate.  In-plane and out-of-plane ex- 
citation was provided by an electro-magnetic shaker. Force input to the 
structure was measured by a crystal force gage, from which the signal was 
minimum at resonance points. The frequency of resonant oscillation was 
measured by a stroboscopic light which also provided a means of observing 
mode shapes for comparison with analysis. 

TABLE 3  Summary: Calculated vs Experimental Resonant Frequencies 

Fig. 
In-Plane Out-of -Plane 

High Low 
Std. 
Dev. 

Dis- 
crep- Calc. Exp. Calc. Exp. 

cps cps cps cps cps cps cps ancy 

14 (a) 7.45 7.35 0.10 0.07 1.4% 
14 (b) 29.37 29.27 0.10 0.10 0.4% 
14 (c) 47.82 47.43 0.39 0.25 0.8% 
14 (d) 51.79 51.80 0.01 0.04 0.0% 

15 (a) 4.66 4.62 0.04 0.02 0.9% 
15 (b) 9.99 9.82 0.17 0.03 1.7% 
15 (c) 31,94 31.75 0.19 0.21 0.5% 
15 (d) 46.85 46.26 0.59 0.18 1.3% 
15 (e) 53.57 ,53.58 0.01 0.05 0.0% 
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Table 3 shows the comparison between calculated and experimental res- 
onant frequencies for the nine modes investigated. The standard deviation 
was calculated from five experimental readings at each frequency. The dis- 
crepancy was computed from the average experimental frequency and the cal- 
culated resonant frequency. 

COMPARISON TO SINGLE-DEGREE-OF-FREEDOM ANALYSIS 

For comparison bent ABCD is assumed to have only one degree of free- 
dom. The idealized structure would consist of an equivalent mass M', sup- 

ported on a cantilever col- 
•« *> jg.  uma. The equivalent mass 

is made up of the mass of 
the horizontal member BC and 

M' M' / the mass of some portion of 
the legs, taken for example 
as 1/3 in Ref. 6. 

If, for in-plane vibra- 
tion, the equivalent mass be 
restrained from rotation, 
the computed natural frequency 
is 8.87 cps compared to the 
frequency of 7.45 cps from 

/ x » T,, /^\  « J.    *  •       Table 3, or 19% high. (a) In-Plane        (b) Out-of-Plane '       6 

Vibration Vibration _    ...... 
For out-of-plane vibra- 

tion both translation and ro- 
tation are allowed. This 
idealization would result In 
a computed natural frequency 

of 4.42 cps compared to 4.66 cps from Table 3, or 5% low. Of course no 
other frequencies can be computed from a single~degr©e-of-freedom system. 

CONCLUSIONS 

By the use of a lumped-mass system to describe a structure subjected 
to wave forces we may (1) apply wave forces of any magnitude, direction, 
and elevation directly to any part of the structure on which they act, (2) 
find all resonant frequencies in the range of the waves expected at the 
site, and (3) compute complete information on deflections, rotations, mo- 
ments, and shears at all parts of the structure, even at resonance. 

Use of the more rigorous analysis presented in this paper removes the 
three limitations imposed by the single-degree-of-freedom idealization: 
(1) that wave forces cannot be applied direotly to the supporting piles, 
(2) only one resonant frequency can be obtained, and (3) its accuracy de- 
pends on an estimated equivalent mass. 
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