#### CHAPTER 26

# ON A COEXISTENCE SYSTEM OF FLOW AND WAVES by

# JUNZABURO MATSUNASHI 1

# INTRODUCTION

It is a well known experimental fact that the undulation such as sand-ripples or antidunes are formed on the bed surface composed of fine sand, corresponding to the flow characteristics of open channel flow. In this case, as the mechanical effects of the bed undulationes stated above, a kind of periodic motion is superposed on the flow, and accordingly the water surface undulates periodically. On the other hand, the mechanical effects of this surface undulationes are surperposed on these undulating bed surfaces as another kind of periodic motion. The wave generated in open sea propagates upstream through an estuary. Accordingly the incoming wave is superposed on the flow stated above as a forced oscillation. Both of these phenomena are in the coexistence system of flow and waves in the open channel flow.

In this paper, as the first step to study the subjects stated above, the author treats the problem of the coexistence system in the case when the forced oscillation of water surface is superposed on the open channel flow with fixed bed, and analyzes theoretically and experimentally the mechanical properties of the reciprocal action between flow and waves.

# 1 THEORETICAL CONSIDERATION

# (1) THE FIRST ORDER APPROXIMATE SOLUTION 2)

Let us consider the two dimensional phenomenon as shown in Fig.1, which expresses an ideal model in the case when surface wave is superposed on the open channel flow with fixed bed. For the sake of simplicity, let the scale of motion of water particles in the phenomenon be so feeble that the whole

mmmmmmmmmm x

Fig. 1. Ideal Model under · Consideration.

condition of the motion can be regarded as laminar flow of viscous fluid. Therefore, neglecting the non-linear terms the Navier-

 Professor, Department of Civil Engineering, University of Kobe, Kobe, Japan

(11)

Stokes equations yield

$$\frac{\partial \mathcal{U}_{i}}{\partial t} = g \sin \theta - \frac{1}{f} \frac{\partial f_{i}}{\partial x} + \nu \left( \frac{\partial^{2} \mathcal{U}_{i}}{\partial x^{2}} + \frac{\partial^{2} \mathcal{U}_{i}}{\partial x^{2}} \right) , \tag{1}$$

$$\frac{\partial \underline{W}_{1}}{\partial t} = g\cos\theta - \frac{1}{f}\frac{\partial R}{\partial x} + \nu \left(\frac{\partial^{2}\underline{W}_{1}}{\partial x^{2}} + \frac{\partial^{2}\underline{W}_{1}}{\partial \overline{x}^{2}}\right), \tag{2}$$

$$\frac{\partial u_i}{\partial x} + \frac{\partial w_i}{\partial z} = 0 \,, \tag{3}$$

in which x is the distance measured along the bed surface in the direction of downstream, & the upward distance vertical to the bed surface, t the time, u, and w, the velocity components parallel to the axes of  $\chi$  and  $\varepsilon$  respectively,  $\nu$  the kinematic coefficient of viscosity, g the gravity acceleration, p, the pressure, f the density of water, and  $sin \theta$  the bed slope.

To obtain the solution of these equations, the velocity components  $u_1$ ,  $w_1$ , and the pressure  $p_1$  are assumed to be given by the sum of a periodic function and a non-periodic one as follows:

$$U_{1} = U_{11}(\mathbf{z})e^{im_{1}(\mathbf{z}-\mathbf{V}_{1}t)} + U_{12}(\mathbf{z}), \qquad (4)$$

$$W_i = W_{ii}(z)e^{im_i(x-\overline{V}_it)} + W_{i2}(z), \qquad (5)$$

$$P_{i} = P P_{ii}(\mathbf{z}) e^{i\mathbf{m}_{i}(\mathbf{x} - \mathbf{V}_{i}t)} - P P_{iz}(\mathbf{z}) , \qquad (6)$$

in which u, , w, , and p, denote the first order approximate solutions of the coexistence system, and  $u_{ij}$ ,  $w_{ij}$ , and  $p_{ij}$  denote arbitrary functions of z,  $m_i = 2\pi/L_i$ , and  $\overline{V_i} = L_i/T_i$ . Liand  $T_i$  are the wavelength of surface waves and the period of waves respectively.

Substituting the equations (4), (5) and (6) into the equation (1), (2) and (3) yields

$$(i m_1 \nabla_1 U_{11} + i m_1 P_{11} - m_1^2 \nu U_{11} + \nu \frac{d^2 U_{11}}{d z^2}) e^{i m_1 (x - \nabla_1 t)} + g \sin \theta + \nu \frac{d^2 U_{12}}{d z^2} = 0, \quad (7)$$

$$\left(\lim_{l}\nabla_{l}w_{ll}+\frac{dP_{ll}}{dz}-m_{l}^{2}\nu w_{ll}+\nu\frac{d^{2}w_{ll}}{dz^{2}}\right)e^{im_{l}(\chi-V_{l}t)}-g\cos\theta+\frac{dP_{l2}}{dz}+\nu\frac{d^{2}w_{l2}}{dz^{2}}=0, \quad (8)$$

$$\left(\lim_{t \to \infty} U_{11} + \frac{dw_{11}}{dz}\right) e^{\lim_{t \to \infty} (\chi - \nabla t)} + \frac{dw_{12}}{dz} = 0. \tag{9}$$

Assuming that these equations must be always satisfied regardless of the values, z and t , the following equations, (10), (11), (12) and (13), are obtained:

$$\left(\frac{d^{2}}{dz^{2}} - m_{1}^{2} + \frac{i m_{1} \nabla_{i}}{\nu}\right) U_{i1} = -\frac{i m_{1} R_{i}}{\nu}$$

$$\left(\frac{d^{2}}{dz^{2}} - m_{1}^{2} + \frac{i m_{1} \nabla_{i}}{\nu}\right) w_{i1} = -\frac{1}{\nu} \frac{dR_{i}}{dz}$$

$$i m_{1} U_{i1} + \frac{d w_{i1}}{dz} = 0$$

$$g \sin \theta + \nu \frac{d^{2} U_{i2}}{dz^{2}} = 0$$
(11)

$$-g\cos\theta + \frac{dh_2}{dz} + \nu \frac{d^2w_{12}}{dz^2} = 0 , \frac{dw_{12}}{dz} = 0.$$
 (12), (13)

Referring to the research results by S. S. Hough, the general solutions of the equation (10) are given as follows:

$$U_{II} = -\frac{1}{V_I} \left( A e^{m_i Z} + B e^{-m_i Z} \right) + \frac{i k}{m_I} \left( C e^{k Z} - D e^{-k Z} \right) , \tag{14}$$

$$\omega_{ii} = \frac{i}{V_i} (Ae^{m_i Z} - Be^{-m_i Z}) + (Ce^{kZ} + De^{-kZ}), \qquad (15)$$

$$P_{i} = Ae^{m_{i}Z} + Be^{-m_{i}Z}, \tag{16}$$

in which A, B, C and D are the arbitrary constants to be determined by the boundary conditions, and

$$R^2 = m_i^2 - i m_i \nabla i / \nu . \tag{17}$$

The general solution of the equations, (11), (12) and (13), are

$$U_{12} = -\frac{3 \sin \theta}{2 \nu} \, \mathcal{Z}^2 + R_1 \mathcal{Z} + R_2 \, , \quad W_{12} = R_3 \, , \qquad (18), (19)$$

$$P_{12} = g\cos\theta \cdot Z + R_4 , \qquad (20)$$

in which k1, k2, k3 and k4 are arbitrary constants.

Now, let consider the boundary conditions. If ?, the height of the free surface above the plane z=h, is expressed in the form,

$$7 = a \cdot e^{im_i(x - v_i t)},$$

the conditions are given in the following items, a) and b).

# a) SURFACE CONDITIONS

If F and G denote the components of the stresses parallel to the axes x and z respectively acting on a plane z = const., these are given as follows:

$$F = \beta \nu \left( \frac{\partial w_i}{\partial x} + \frac{\partial u_i}{\partial z} \right)$$

$$= \beta \nu \left( i m_i w_{ii} + \frac{d u_{ii}}{d z} \right) e^{i m_i (x - \overline{v}_i t)} + \beta \nu \left( -\frac{g_{sim} \theta}{\nu} z + k_i \right),$$

$$G = -k_i + 2\beta \nu \frac{\partial w_i}{\partial z}$$

$$= \left( k_i + 2\nu \frac{d w_{ii}}{d z} \right) \beta e^{i m_i (x - \overline{v}_i t)} + \beta \left( g_{cos} \theta \cdot \overline{z} + k_4 \right),$$

and at the surface z = h the following stress-conditions must be

satisfied:

$$[F]_{z=h} = 0$$
,  $[G]_{z=h} = -997$ . (21),(22)

Substituting the values F and G stated above into the equations (21) and (22) respectively yields

$$\left(\lambda M_{i} W_{ii} + \frac{dU_{ii}}{dZ}\right)_{Z=h} = 0, \left(-\frac{9 R in \theta}{\nu} Z + R_{i}\right)_{Z=h} = 0, \tag{23}, (24)$$

$$(P_{11} + 2\nu \frac{d\omega_{11}}{dz} + ga)_{z=h} = 0, (g\cos\theta \cdot z + k_4)_{z=h} = 0.$$
 (25),(26)

#### b) BOTTOM CONDITIONS

As  $u_1 = 0$  and  $w_1 = 0$  at the bottom z=0,

$$(U_{II})_{z=0} = 0$$
 ,  $(U_{I2})_{z=0} = 0$  , (27),(28)

$$(\omega_{ii})_{z=0} = 0$$
,  $(\omega_{i2})_{z=0} = 0$ . (29),(30)

Now, by using of these boundary conditions the integral constants A, B, C and D, and,  $k_1$ ,  $k_2$ ,  $k_3$  and  $k_4$  are determined as follows. First, substituting the equations, (14), (15) and (16), into the equations, (23), (25), (27) and (29), yields

$$\frac{i(k^2+m_i^2)}{m_i}(Ce^{kh}+De^{-kh})-\frac{2m_i}{V_i}(Ae^{m_ih}-Be^{-m_ih})=0,$$
 (31)

$$(1 + \frac{2i\nu m_i}{V_i})(Ae^{m_ih} + Be^{-m_ih}) + 2\nu k (ce^{hh} - De^{-kh}) = -ga,$$
 (32)

$$\frac{ik}{m_{i}}(C-D) - \frac{1}{\sqrt{i}}(A+B) = 0, \qquad (33)$$

$$C+D+\frac{i}{V}(A-B)=0. (34)$$

Next, introducing the value & ,

$$\beta = \sqrt{\frac{\pi}{\nu T_i}} = \sqrt{\frac{m_i V_i}{2\nu}}$$
,

and solving the equations  $(31)\sim(34)$  in regard to the values A, B, C and D, these integral constants are given as follows:

$$A = -\frac{9a\{2 - (1+i)m_i/\beta\}}{4\cosh m_i h}, B = \frac{-9a\{2 + (1+i)m_i/\beta\}}{4\cosh m_i h},$$

$$C = 0, D = \frac{(1-i)9am_i}{2\beta V_i \cosh m_i h},$$
(35)

in these calculations, the following approximations are assumed:

1) 
$$k = \pm \sqrt{-im_i V_i} = \pm (1-i)\beta$$

$$e^{-kh} << \cosh m_i h$$

3) the quantities,  $4m_i^2e^{-m_ih}$ ,  $4m_i^2e^{m_ih}$ ,  $(1+m_i/k)e^{-kh}$  and  $(1-m_i/k)e^{-kh}$  are negligible as compared with the quantities,  $(1-m_i/k)e^{-kh}$  and  $(1+m_i/k)e^{-kh}$ ,

- 4)  $4\nu^{2}m_{i}^{2} \ll \nabla_{i}^{2}$
- 5) mi sinh mih « 2β cosh mih,
- 6) (m,/β) sinh m,h « cosh m,h,
- 7) 2m, V & Ti.

and these approximations are verified by our experimental data,  $m = 6.0 \times 10^{2} \text{cm}^{-1}$ , h=25 cm,  $\nu=1.3 \times 10^{-2} \text{cm}^{2}/\text{sec}$ , V=160 cm/sec.

In the next place, solving the equations (24), (26), (28) and (30) in regard to the integral constants  $k_1$ ,  $k_2$ ,  $k_3$  and  $k_4$  yields

$$k_1 = \frac{gh_{sin0}}{\nu}, \quad k_2 = 0,$$
 $k_3 = 0, \quad k_4 = -gh_{cos0}$  (36)

Summarizing the results obtained, the first order approximate solutions are given as follows:

$$U_{i} = \left\{ -\frac{1}{V_{i}} (Ae^{M_{i}Z} + Be^{-M_{i}Z}) + \frac{ik}{m_{i}} (ce^{kZ} - De^{kZ}) \right\} e^{im_{i}(\chi - V_{i}t)} + \left( -\frac{g_{Rin}\Theta}{2V} Z^{2} + k_{i}Z + k_{2} \right), \quad (37)$$

$$W_{i} = \left\{ \frac{i}{V_{i}} (Ae^{M_{i}Z} - Be^{-M_{i}Z}) + (Ce^{kZ} + De^{kZ}) \right\} e^{im_{i}(\chi - V_{i}t)} + k_{3}, \quad (38)$$

$$\frac{P_{i}}{P} = -(Ae^{M_{i}Z} + Be^{-M_{i}Z}) e^{im_{i}(\chi - V_{i}t)} - (g_{cos}\Theta \cdot Z + k_{4}), \quad (39)$$

in which the constants A, B, C, D,  $k_1$ ,  $k_2$ ,  $k_3$  and  $k_4$  are given by the equations (35) and (36).

#### (2) CHARACTERISTICS OF SOLUTIONS

In the next paragraph, the second order approximate solutions will be induced by the using of the first order approximate solutions. In this paragraph, previous to this analyses, the some considerations relating to the hydraulic properties of the first order approximate solutions are given.

Now, let consider the change of the wave velocity and the wave height resulting from overlapping the surface waves upon the open channel flow. The boundary condition at the water surface is

$$\left(\frac{\partial ?}{\partial t} + u_i \frac{\partial ?}{\partial x}\right)_{z=h} = (\omega_i)_{z=h}$$
.

Adopting  $u_{12}$  as  $u_1$  in the equation (40) on the basis of the relation |u:|\(\)|u:2| yields

$$\nabla^{2} \frac{g_{ain}\theta h^{2}}{\nu} \nabla - \frac{g}{2m \cosh mh} \left\{ Z_{einh}mh - \frac{m}{\theta} \cosh mh + \frac{m}{\theta} e^{\beta h} \right\}.$$

$$\left( (\cos\beta h - \rho in\beta h) \right\} + \frac{g_{i}}{2m \cosh mh} \left\{ \frac{m}{\theta} \cosh mh - \frac{m}{\theta} e^{\beta h} (\cos\beta h + \rho in\beta h) \right\} = 0, \quad (41)$$

in which the suffixes of m and V are omitted. Assuming that the terms including e-bh are negligible in comparison with the other terms, the equation (40) is written as

$$\nabla^2 - \frac{9 \sin \theta}{\nu} \frac{h^2}{Z} \nabla - \frac{9}{m} \left( \tanh mh - \frac{m}{Z\beta} \right) + i \frac{9}{Z\beta} = 0. \tag{42}$$

First, solving the equation (42) for the case when there is only the wave motion of perfect fluid without flow, as  $\nu=0$ , and  $\sin\theta=0$ , the wave velocity is obtained as follows:

$$\nabla_{I} = \sqrt{\frac{g}{m} \tanh mh} . \tag{43}$$

This is the well-known wave velocity equation for frictionless liquid, and the first order approximate solution. Next, for the case when there is only the wave motion of viscous fluid without flow, as  $\sin \theta = 0$ , the equation (42) is written as

$$\nabla^2 - \frac{g}{m} \left( \tanh mh - \frac{m}{2} \sqrt{\frac{2P}{mv_T}} \right) + i \frac{g}{Z} \sqrt{\frac{2P}{mv_T}} = 0 , \qquad (44)$$

in which  $\beta = \sqrt{mV/2\nu} = \sqrt{mV_I/2\nu}$ Putting the solution of the equation (44), which is the second order approximate solution of the equation (42), as follows:

$$\nabla_{\Pi} = \nabla_2 - i \frac{1}{m \, C_2} \quad , \tag{45}$$

the values  $V_2$  and  $1/T_2$  are written as

$$\frac{1}{T_2} = \frac{\sqrt{m^3 V_2 D}}{2VZ \tanh mh} + \frac{Dm^2}{8 \tanh^2 mh} . \tag{47}$$

On the other hand, substituting the equation (45) into the equation of the surface profile 7 yields

$$7 = \alpha e^{im(x-\nabla t)} = \alpha e^{-t/\tau_2} \cdot e^{im(x-\nu_2 t)}. \tag{48}$$

By the equation (48), it is apparent that the equations (46) and (47) represent the change of the wave velocity and the damping of the wave height respectively. In other words, according to the

equations (46) and (47), the wave velocity decreases for viscosity of fluid, and the damping of the wave height is taken place owing to the same reason. On the other hand, the relationship corresponding with these equations, which was obtained by S. S. Hough, is written as

$$\nabla_z = \nabla_z \left\{ 1 - \frac{\sqrt{m\nu}}{\sqrt{2V_z} \tanh 2mh} \right\},$$

$$\frac{1}{\tau_2} = 2m^2 \nu + \frac{\sqrt{m^3 V_z \nu}}{\sqrt{Z} \sinh 2mh}.$$

Referring to these results, it may be considered that the first term and the second one of the right hand of the equation (47) represent the effects of the internal-viscosity of fluid and that of the bottom friction respectively.

Next, supposing the approximation  $\beta = \sqrt{mV/2V}$  =  $\sqrt{mV_1/2\nu}$ , and substituting the value  $V_{I\!\!I}$  of the equation (45) into the value V including in the second term of the left hand of the equation (42) yields

$$\nabla^2 \frac{g_{\text{ain}} \partial}{\nu} \frac{h^2}{2} \nabla_{\text{II}} - \frac{g}{m} \left( \tanh mh - \frac{m}{2} \sqrt{\frac{2\nu}{m \nabla_{\text{I}}}} \right) + \frac{g_{\text{L}}}{2} \sqrt{\frac{2\nu}{m \nabla_{\text{I}}}} = 0. \tag{49}$$

Putting the solution of the equation (49), which is the third order approximate solution, as follows:

$$\overline{V_{II}} = \overline{V_3} - \frac{i}{m \, \overline{C_3}} ,$$

the quantities  $V_3$  and  $1/7_3$  are written as

$$\overline{V_3} = \overline{V_I} \left( 1 - \alpha \right) + \left\{ \frac{\overline{V_I}}{2} - \frac{1}{8} \frac{\sqrt{2\nu m \overline{V_I}}}{t a n h m h} \left( 1 - 2\alpha \right) \right\} \left( \frac{\overline{V_S}}{\overline{V_I}} \right) + \frac{\left( 1 - \alpha \right) \overline{V_I}}{4} \left( \frac{\overline{V_S}}{\overline{V_I}} \right)^2, \qquad (50)$$

$$\frac{1}{C_3} = \frac{1}{C_2} + \frac{1}{2} \frac{\nu m^2}{8 t a n h^2 m h} \left( \frac{\overline{V_S}}{\overline{V_I}} \right) - \frac{1}{4} \frac{1}{C_2} \left( \frac{\overline{V_S}}{\overline{V_I}} \right)^2, \qquad (51)$$

in which  $d = \sqrt{m\nu} / \{2/2V_I \tanh mh\}$ , and  $V_S = [U_{12}]_{g=h} = gh^2 \sin\theta / 2\nu$ . The second and the third terms of the right-hand of the equation (50) represent the effects of the coexistence of flow for the wave velocity, and the second and the third terms of the right hand of the equation (51) do the its effects for the wave damping.

Let estimate quantitatively the effects of the coexistence of flow, by using of the following data, the water mean depth h=12.0 cm, the period of the surface waves T=1.53 sec, the wave length L=160.6 cm and the coefficient of kinematic viscosity  $\nu=1.346\times10^{-2}$  cm / sec, the equations (50) and (51) are respectively written as

$$V_{3} = 104.6 + 52.3 \left( \frac{V_{8}}{V_{T}} \right) + 26.1 \left( \frac{V_{8}}{V_{T}} \right)^{2}, \qquad (50)'$$

$$\frac{1}{C_{8}} = 7.417 \times 10^{-3} + 0.007 \times 10^{-3} \left( \frac{V_{8}}{V_{T}} \right) - 1.854 \times 10^{-3} \left( \frac{V_{8}}{V_{T}} \right)^{2}. \qquad (51)'$$

Fig.2 indicates the V3 3.10 relationship between the Sec wave velocity V3 and the 120 relative flow velocity Vs/ VI . The value Vy increases with the increase in the value Vs / Vr. Fig.3 indicates 110 73 h=12.0cm the relationship between h=12.0cm T=1.53sec the coefficient of the T=1.53sec-L=160cm wave damping 1/T3 and L=160cm the value Vs/ VI. It is found from this results that the damping of the wave height becomes slow Fig. 2. Relation between Fig. 3. Relation beagainst the effects of the  $V_3$  and  $V_s/V_T$ tween  $1/\zeta_s$  and  $V_s/V_I$ . fluid viscosity, and the tendency becomes remarkable with the increase in the value  $V_s/V_r$ .

# (3) THE SECOND ORDER APPROXIMATE SOLUTION 2)

# (a) FUNDAMENTAL EQUATION

Substituting the first order approximate solutions into the non-linear terms of the Navier-Stokes equations , the equations are linearized as follows:

$$\frac{\partial U_2}{\partial t} + U_1 \frac{\partial U_2}{\partial x} + W_1 \frac{\partial U_2}{\partial z} = g \sin \theta - \frac{1}{f} \frac{\partial f_2}{\partial x} + V \left( \frac{\partial^2 U_2}{\partial x^2} + \frac{\partial^2 U_2}{\partial z^2} \right), \tag{52}$$

$$\frac{\partial w_2}{\partial \mathcal{X}} + \mathcal{U}_1 \frac{\partial w_2}{\partial \mathcal{X}} + w_1 \frac{\partial w_2}{\partial \mathcal{Z}} = -g \cos \theta - \frac{1}{f} \frac{\partial f_2}{\partial \mathcal{Z}} + \mathcal{V} \left( \frac{\partial^2 w_2}{\partial \mathcal{X}^2} + \frac{\partial^2 w_2}{\partial \mathcal{Z}^2} \right), \quad (53)$$

and the continuous equation is written as

$$\frac{\partial U_2}{\partial \mathcal{X}} + \frac{\partial W_2}{\partial \mathcal{Z}} = 0 , \qquad (54)$$

in which suffixes 1 and 2 denote the first and the second order approximate solution respectively. According to the properties of the first order approximate solution, the hydraulic effects, which may be resulted in the existence of the fluid viscosity, are negligible in general. In this analysis, it is assumed for the sake of simplicity that the third terms of the right side of the equations (52) and (53) are omitted as the very small quantities.

Introducing a stream function  $\psi$  into these equations, it may be considered that the function  $\psi$  is given by the sum of a periodic solution and a non-periodic one as follows:

$$\Psi = g_{2}(z)e^{iM_{2}(\chi-V_{2}t)} + g_{2}(z). \tag{54}$$

Coinciding a stream line #=0 with the bottom z=0, the boundary

conditions are written as 5)

$$g_{21}(0) = 0$$
 ,  $g_{22}(0) = 0$  (55)

And in the case, u2 and w2 are respectively represented as

$$U_2 = g_{21}'(z)e^{im_2(x-V_2t)} + g_{22}'(z) , \qquad (56)$$

$$\omega_2 = -g_2(z) i m_2 e^{i m_2 (x - \overline{V}_2 t)}. \qquad (57)$$

Eliminating the prresure  $p_2$  from the two equations obtained by differentiating the equations (52) and (53) with respect to z and x respectively yields

$$\frac{\partial}{\partial t} \left( \frac{\partial U_2}{\partial \overline{z}} - \frac{\partial \omega_2}{\partial \overline{z}} \right) + \frac{\partial U_1}{\partial \overline{z}} \frac{\partial U_2}{\partial \overline{z}} - \frac{\partial U_2}{\partial \overline{z}} \frac{\partial W_2}{\partial \overline{z}} + U_1 \frac{\partial}{\partial \overline{z}} \left( \frac{\partial U_2}{\partial \overline{z}} - \frac{\partial \omega_2}{\partial \overline{z}} \right) \\
+ \frac{\partial \omega_1}{\partial \overline{z}} \frac{\partial U_2}{\partial \overline{z}} - \frac{\partial \omega_1}{\partial \overline{z}} \frac{\partial \omega_2}{\partial \overline{z}} + \omega_2 \frac{\partial^2 U_1}{\partial \overline{z}^2} - \omega_1 \frac{\partial^2 \omega_2}{\partial \overline{z}} = 0 , \quad (58)$$

in which the following approximation,

$$W_1 \frac{\partial^2 U_2}{\partial R^2} \doteq W_2 \frac{\partial^2 U_1}{\partial R^2} , \qquad (59)$$

is assumed. Futhermore, substituting the quantities,  $u_1$ ,  $w_1$ ,  $u_2$  and  $w_2$  given by the equations (4), (5), (56) and (57) respectively, into the equation (58), the equation is written as

$$e^{im_{1}(x-\nabla_{1}t)}\left\{Q_{1}^{"}(im_{2}U_{11}+W_{11}^{2})+Q_{21}^{2}(im_{2}U_{11}^{2}-m_{1}m_{2}W_{11}-m_{2}^{2}W_{11})+Q_{21}^{2}(-im_{1}m_{2}^{2}U_{11}\right\}$$

$$-im_{2}^{3}U_{11}-im_{2}U_{11}^{"})\right\}+\left[Q_{22}^{"}(-im_{2}Q_{21}^{2})+\left\{Q_{21}^{"}(im_{2}U_{12}-im_{2}\nabla_{2})+Y_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2}(im_{2}U_{12}^{2})+Q_{21}^{2$$

in which the following approximation,

$$\frac{\partial w_1}{\partial z_1} \left( g_1^{\prime\prime\prime} e^{im_2(\chi - V_2 t)} + g_2^{\prime\prime\prime} \right) \stackrel{\partial}{=} \frac{\partial w_1}{\partial z_1} g_1^{\prime\prime\prime} e^{im_2(\chi - V_2 t)} + \frac{\partial w_2}{\partial z_2} g_2^{\prime\prime\prime}, \qquad (61)$$

is assumed. By the reason of that the equation (60) must be always satisfied without respect to time and space, the following two conditions,

$$\frac{d^{2}g_{21}}{d\mathbb{Z}^{2}}(im_{2}U_{11}+U_{11}')+\frac{d^{2}g_{21}}{d\mathbb{Z}^{2}}(im_{2}U_{11}'-m_{1}m_{2}U_{11}-m_{2}^{2}U_{11})+g_{21}(-im_{1}m_{2}^{2}U_{11}-im_{2}^{3}U_{11}-im_{2}U_{11}'')=0,$$

$$\frac{d^{2}g_{22}}{d\mathbb{Z}^{2}}(-im_{2}g_{21}')+\left\{g_{21}''(im_{2}U_{12}-im_{2}V_{2})+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}^{2})+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g_{21}'(im_{2}U_{12}')+g$$

are obtained. Studying mathematically the types of these equations, it is apparent that the periodic solution  $\varphi_z$ , is expected to obtaine

as a solution of the equation (62) and by using of the solution the non-periodic solution  $\mathfrak{R}_2$  is to be obtained as a solution of the equation (63). In this paragraph, the equations (62) and (63) are defined as the fundamental equations for the following analyses.

## b) BOUNDARY CONDITIONS

It is desirable that the boundary conditions to be adopted to the second order approximate solutions define the same physical meaning as those of the conditions, (21), (22), (25)' and (26)', applied to the first order approximate solutions. But, for the simplicity, the conditions including the some different contents in comparison with them are set as follows:

## 1) THE SURFACE CONDITIONS

$$\left(\frac{\partial ?}{\partial t} + \mathcal{U}_{22}\frac{\partial ?}{\partial x} - \mathcal{W}_2\right)_{z=h} = 0 , \qquad (64)$$

$$\left(C_{T} = -\beta_{2} + 2\beta \nu \frac{\delta w_{2}}{\delta E}\right)_{Z=h} = -\beta \beta ? . \tag{65}$$

# 2) THE BOTTOM CONDITIONS

$$[U_2]_{Z=0} = 0$$
,  $[W_2]_{Z=0} = 0$ . (66).(67)

Assuming that 7, the height of the free surface above the plane z=h, is expressible in the form  $? = ae^{im_2(x-v_2t)}$ , the conditions (64) and (65) are written respectively as

$$a[g_{22}']_{z=h} + [g_{21}]_{z=h} - \nabla_2 a = 0 , \qquad (68)$$

$$\int_{0}^{h} (-m_{2}^{2} \nabla_{2} g_{21} + m_{2}^{2} U_{12} g_{21}) dZ - 2i m_{2} \nu [g_{21}]_{Z=h} + gQ = 0.$$
 (69)

Furthermore, the conditions (66) and (67) are written respectively as

$$[g_{2i}']_{z=0} = 0 , [g_{22}']_{z=0} = 0$$
 (70)

and,

$$[g_2]_{R=0} = 0$$
. (71)

Now, transforming the variable z including in the equations (68)~(71) to  $\leq$  by the equation  $\leq$  =m,z yields

$$\begin{array}{c}
\alpha m_{i} \left[\frac{d_{22}^{2}}{d\xi}\right]_{\xi=m,h} + \left[g_{21}^{2}\right]_{\xi=m,h} - V_{2} Q = 0, \\
-\frac{m_{i}^{2}}{m_{i}} V_{2} \int_{0}^{m_{i}h} g_{2i} d\xi + \frac{g_{Ain} g}{2\nu} \frac{m_{i}^{2}}{m_{i}^{3}} \int_{0}^{m_{i}h} (2hm_{i}\xi - \xi^{2}) g_{2i} d\xi - 2i\nu m_{i} m_{2} \left[\frac{d_{22}^{2}}{d\xi}\right]_{\xi=m_{i}h} + g_{2} = 0, \\
\left[\frac{dg_{21}}{d\xi}\right]_{\xi=0}^{2} = 0, \left[\frac{dg_{22}}{d\xi}\right]_{\xi=0}^{2} = 0, \\
(69)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4} (70)^{4}$$

$$\left[\begin{array}{c}g_{2l}\\g_{2l}\end{array}\right]_{g_{2l}=0}=0. \tag{71}$$

Let solve the fundamental equations (62) and (63) under the boundary conditions (68)' $\sim$ (71)' and the incidental condition (55) relating to the stream function.

# c) THE PERIODIC SOLUTION

Transforming the variable z including in the equation (62) to  $\leq$  by the equation  $\leq$  =m<sub>1</sub>z, and representing the coefficients of the equation obtained by an exponential expansions, the equation is written as

$$3f_1(\xi)\frac{d^2g_1}{d\xi^2} + F_2(\xi)\frac{dg_2}{d\xi} + F_3(\xi)g_1 = 0, \qquad (72)$$

in which

$$f_{1}(\xi) = \sum_{n=0}^{\infty} A_{n} \xi^{n-1} = A_{1} + A_{2} \xi + A_{3} \xi^{2} + \cdots ,$$

$$f_{2}(\xi) = \sum_{n=0}^{\infty} B_{n} \xi^{n} = B_{0} + B_{1} \xi + B_{2} \xi^{2} + \cdots ,$$

$$f_{3}(\xi) = \sum_{n=0}^{\infty} C_{n} \xi^{n} = C_{0} + C_{1} \xi + C_{2} \xi^{2} + \cdots ,$$

$$(73)$$

and.

$$A_{1} = \frac{9 \, \alpha m_{1} \left(k^{2} - m_{1}^{2}\right) \left(m_{1} - m_{2}\right)}{2 \beta V_{1} \cos h \, m_{1} h} \left(l - i\right) ,$$

$$A_{2} = \frac{-3 \, \alpha \left(m_{1} - m_{2}\right)}{4 \beta V_{1} \cos h \, m_{1} h} \left\{k^{3} - i \left(k^{3} - 2 \beta m_{1}^{2}\right)\right\} ,$$

$$A_{3} = \frac{9 \, \alpha \left(k^{4} - m_{1}^{4} \times \left(m_{1} - m_{2}\right)\right)}{l^{2} m_{1} \beta V_{1} \cos h \, m_{1} h} \left\{k^{5} - i \left(k^{5} - 2 \beta m_{1}^{4}\right)\right\} ,$$

$$A_{4} = \frac{-3 \, \alpha \left(m_{1} - m_{2}\right)}{48 \, m_{1}^{2} \beta V_{1} \cos h \, m_{1} h} \left\{k^{5} - i \left(k^{5} - 2 \beta m_{1}^{4}\right)\right\} ,$$

$$(74)$$

and,

$$B_{0} = -\frac{9 \alpha m_{2}}{2 \beta T_{i} \cosh m_{i}h} \left\{ m_{1}(k_{1}^{2} + m_{1}^{2} + m_{i}m_{2}) - m_{1}^{2}(2m_{1} + m_{2}) \right\} (1-i),$$

$$B_{1} = \frac{9 \alpha m_{2}}{2 \beta T_{i} \cosh m_{i}h} \left[ h \left( h^{2} + m_{1}^{2} + m_{i}m_{2} \right) - i \left\{ h \left( h^{2} + m_{1}^{2} + m_{i}m_{2} \right) - 2m_{1}\beta(2m_{1} + m_{2}) \right\} \right],$$

$$B_{2} = \frac{-9 \alpha m_{2}}{4 m_{i}\beta T_{i} \cosh m_{i}h} \left\{ h^{2}(k_{1}^{2} + m_{1}^{2} + m_{i}m_{2}) - m_{1}^{3}(2m_{1} + m_{2}) \right\} (1-i),$$

$$B_{3} = \frac{3 \alpha m_{2}}{12 m_{1}^{2}\beta T_{i} \cosh m_{i}h} \left\{ h^{2}(k_{1}^{2} + m_{1}^{2} + m_{i}m_{2}) - i \left\{ h^{2}(k_{1}^{2} + m_{1}^{2} + m_{i}m_{2}) - 2m_{1}^{3}\beta(2m_{1} + m_{2}) \right\} \right\},$$

$$B_{4} = \frac{-9 \alpha m_{2}}{48 m_{i}^{3}\beta T_{i} \cosh m_{i}h} \left\{ h^{2}(k_{1}^{2} + m_{1}^{2} + m_{i}m_{2}) - m_{1}^{3}(2m_{1} + m_{2}) \right\} (1-i),$$

and,

$$C_{o} = \frac{-9 \, \text{am}_{2}}{2 \beta \, \text{V}_{i} \cos h \, m_{i} h} \left[ k \left( k^{2} + m_{i} m_{2} + m_{2}^{2} \right) - i \left\{ k \left( k^{2} + m_{i} m_{2} + m_{2}^{2} \right) - 2 \beta \left( m_{i}^{2} + m_{i} m_{2} + m_{2}^{2} \right) \right\} \right],$$

$$C_{1} = \frac{gam_{2}}{2m_{1}\beta V_{1} cosh mih} \left\{ k^{2} (k^{2} + m_{1}m_{2} + m^{2}) - m_{1}^{2} (m_{1}^{2} + m_{1}m_{2} + m^{2}) \right\} (1-i) ,$$

$$C_{2} = \frac{-gam_{2}}{4m_{1}^{2}\beta V_{1} cosh m_{1}h} \left[ k^{3} (k^{2} + m_{1}m_{2} + m^{2}_{2}) - i \left\{ k^{3} (k^{2} + m_{1}m_{2} + m^{2}_{2}) - 2m_{1}^{2}\beta (m_{1}^{2} + m_{1}m_{2} + m^{2}_{2}) \right\} \right] ,$$

$$C_{3} = \frac{gam_{2}}{/2m_{1}^{2}\beta V_{1} cosh m_{1}h} \left\{ k^{4} (k^{2} + m_{1}m_{2} + m^{2}_{2}) - m_{1}^{4} (m_{1}^{2} + m_{1}m_{2} + m^{2}_{2}) \right\} (1-i) ,$$

$$(76)$$

By using of the so-called Frobenius's Method, the exponential solution of the equation (72) is obtained as follows:

$$\mathcal{G}_{21} = M \sum_{n=0}^{\infty} h_n \xi^n + N \xi^{\delta} \sum_{n=0}^{\infty} g_n \xi^n \\
= M \left( h_0 + h_1 \xi + h_2 \xi^2 + \cdots \right) + N \xi^{\delta} \left( g_0 + g_1 \xi + g_2 \xi^2 + \cdots \right), \quad (77)$$

in which the quantities  $\mathcal{M}$  and  $\mathcal{N}$  are integral constants, and the quantities  $h_n$  and  $g_n$  are coefficients of the exponential solution. By the unequal equation,  $m_2 < m_1$ , which is considered to be satisfied in general, a relation about the exponent S is obtained as follows:

$$\delta = l - \frac{B_0}{A_1} = l + \frac{m_2}{m_1 - m_2} > 1 . \tag{98}$$

The equation (77) represents the general solution of the fundamental equation (62). Let determine the constants M and N under the boundary conditions (69)' and (71)'. Under the condition (71)', which is the same condition as the first one of the equation (55), the relation M = 0 is obtained, and furthermore the following relation is derived under the condition (69):

$$N = \frac{-ga}{\alpha_0 + \chi + Z_0} \quad , \tag{99}$$

in which

$$\mathcal{I}_{o} = \frac{-m_{z}^{2} V_{z}}{m_{i}} \left\{ \frac{g_{o}}{\delta + 1} (m_{i}h)^{\delta + 1} + \frac{g_{1}}{\delta + 2} (m_{i}h)^{\delta + 2} + \frac{g_{z}}{\delta + 3} (m_{i}h)^{\delta + 3} + \cdots \right\}, 
Y_{o} = \frac{g_{ain} \delta m_{z}^{2}}{2V m_{i} 3} \left\{ 2h m_{i} \frac{g_{o}}{\delta + 2} (m_{i}h)^{\delta + 2} + \frac{(2h m_{i} g_{z} - g_{o})}{\delta + 3} (m_{i}h)^{\delta + 3} + \frac{(2h m_{i} g_{z} - g_{o})}{\delta + 4} (m_{i}h)^{\delta + 4} + \frac{g_{o}}{\delta + 3} (m_{i}h)^{\delta + 3} + \frac{(2h m_{i} g_{z} - g_{o})}{\delta + 4} (m_{i}h)^{\delta + 4} + \frac{g_{o}}{\delta + 3} (m_{i}h)^{\delta + 3} + \frac{g_{o}}{\delta + 3} (m_{i}h)^{\delta + 4} + \frac{g_{o}}{\delta + 3} (m_{i}h)^{\delta + 3} + \frac{g_{o}}{\delta + 3} (m_{i}h)^{\delta$$

Substituting these relations obtained into the equation (77) yields

$$g_{21}(\xi) = \frac{-ga}{2a+1+3} \xi^{5}(g_{0}+g_{1}\xi+g_{2}\xi^{2}+\cdots), \qquad (21)$$

in which

$$g_{2} = \frac{-g_{0} k^{2} m_{2} (2m, -3m_{2}) (5m_{1}^{2} - 6m_{1}m_{1} + 4m_{2}^{2})}{24m_{1}^{2} (m_{1} - m_{2})^{2} (2m_{1} - m_{2}) (3m_{1} - 2m_{2})}$$

$$g_{3} = \frac{g_{0} k^{3} m_{2} (24m_{1}^{2} - 144m_{1}^{4} m_{2} + 25f m_{1}^{3} m_{2} - 312m_{1}^{2} m_{2}^{3} + 192m_{1} m_{2}^{4} - 48m_{2}^{5})}{144m_{1}^{3} (m_{1} - m_{2})^{3} (2m_{1} - m_{2}) (3m_{1}^{2} - 2m_{2}) (4m_{1} - 3m_{2})}$$

$$g_{4} = \frac{-g_{0} k^{2} m_{2} (186m_{1}^{6} - 17m_{2} m_{1}^{3} + 37/m_{2}^{2} m_{1}^{2} - 413m_{3}^{2} m_{1} + 6m_{2}^{4})}{1440 m_{1}^{6} (m_{1} - m_{2})^{3} (2m_{1} - m_{2}) (3m_{1} - 2m_{2}) (5m_{1} - 4m_{2})}$$

Furthermore, the first one of the boundary condition (71)' is satisfied by the solution (81) itself.

## d) NON-PERIODIC SOLUTION

Substituting the 1st order approximate solutions,  $u_{12}$ ,  $u_{12}'$  and  $u_{12}''$ , into the fundamental equation (63), and transforming the variable z of the equation obtained to  $\mathbf{5}$  by the equation  $\mathbf{5} = \mathbf{m}$ , z yields

$$\begin{split} & m_1^2 \frac{d^2 g_2}{d \, \xi^2} \Big( -i m_2 m_1 \frac{d^2 g_2}{d \, \xi} \Big) + m_1^2 \frac{d^2 g_2}{d \, \xi^2} \Big\{ i m_2 \frac{g_{ain} \theta}{L} \Big( h \frac{3}{m_1} - \frac{1}{2} \frac{3^2}{m_1^2} \Big) - i m_2 \, \overline{V}_2 \Big\} + m_1 \frac{d^2 g_2}{d \, \xi^2} \Big\{ i m_2 \frac{g_{ain} \theta}{L} \Big( h \frac{3}{m_1} - \frac{1}{2} \frac{3^2}{m_1^2} \Big) + i m_2 \frac{g_{ain} \theta}{L} \Big\} = 0. \quad (83) \end{split}$$

Furthermore, substituting the periodic solution  $g_{i}$ , into the equation (83), and representing the equation obtained in the form of an exponential expansions, the equation is written as

$$\frac{1}{2}\frac{d^{2}y_{2}}{d\xi^{2}} = L_{0} + L_{1}\xi + L_{2}\xi^{2} + L_{3}\xi^{3} + L_{4}\xi^{4} + \cdots,$$
 (84)

in which

$$\begin{split} \mathcal{L}_{0} &= -\frac{1}{m_{i}} \left( \delta - I \right) \nabla_{2} , \\ \mathcal{L}_{1} &= -\frac{1}{m_{i}} \frac{\delta + 1}{\delta} \frac{\beta_{i}}{g_{o}} \nabla_{2} + \frac{1}{m_{i}^{2}} \delta h \frac{g_{ain} \theta}{L} , \\ \mathcal{L}_{2} &= \frac{-I}{m_{i}} \left\{ \frac{2(\delta + 2)g_{2}}{\delta g_{o}} - \frac{(\delta + 1)^{2}g_{2}^{2}}{5} \frac{I}{m_{i}^{2}} \right\} \nabla_{2} + \frac{I}{m_{i}^{2}} \left\{ \frac{(\delta + I)h}{\delta} \frac{g_{i}}{g_{i}} - \frac{I}{(\delta + I)^{2}} \frac{g_{ain} \theta}{\delta} \right\} \\ \mathcal{L}_{3} &= \frac{-I}{m_{i}} \left\{ \frac{m_{s}^{2}}{\delta^{2}m_{i}^{2}} \frac{g_{i}}{g_{o}} - \frac{3(\delta + I)(\delta + 2)}{\delta} \frac{g_{i}g_{3}}{g_{s}^{2}} + \frac{7(\delta + j)}{\delta} \frac{g_{2}}{g_{o}^{2}} + \frac{(\delta + I)^{3}}{\delta} \frac{g_{i}^{3}}{g_{o}^{3}} \right\} \nabla_{2} \\ &- \frac{I}{m_{i}^{2}} \left\{ \frac{\delta^{2} + \delta + 2}{2\delta^{2}m_{i}} \frac{g_{i}}{g_{o}} - \frac{2(\delta + 2)h}{\delta} \frac{g_{2}}{g_{o}} + \frac{(\delta + I)^{2}h}{\delta} \frac{g_{i}^{2}}{g_{o}^{2}} + \frac{m_{i}^{2}h}{\delta} \right\} \frac{g_{ain} \theta}{L} , \end{split}$$

Integrating the equation (84) with respect to 3 yields

$$\frac{dg_{22}}{d\xi} = \zeta_0 \log \xi + \zeta_1 \xi_1 + \frac{1}{2} \zeta_2 \xi^2 + \frac{1}{3} \zeta_3 \xi^3 + \dots + \delta, , \qquad (26)$$

$$\varphi_{22} = \zeta_0 \xi (\log \xi - 1) + \frac{1}{2} \zeta_1 \xi^2 + \frac{1}{6} \zeta_2 \xi^3 + \dots + \delta, \xi + \delta_2 , \qquad (87)$$

in which  $S_1$  and  $S_2$  are integral constants. Let determine the constants under the second one of the boundary conditions (55) and (70) respectively. Substituting the equation (87) into the former condition,  $S_2=0$  is obtained, but the constant  $S_1$  is not determined by means of doing the equation (86) into the latter condition. However, let advance this analysis under the assumption that the constant  $S_1$  was determined by some condition.

## e) THE SECOND ORDER APPROXIMATE SOLUTION

Substituting the periodic solution  $\mathcal{P}_{n}(g)$  and the non-periodic one  $\mathcal{P}_{n}(g)$  into the equation (54), the stream function  $\psi$  is written as

$$\psi = \left\{ \frac{-30}{z_0 + y_0 + z_0} \, \xi^{5} (g_0 + g_1 \xi + g_2 \xi^2 + \dots) \right\} e^{i m_2 (x - V_2 t)} \\
+ \left\{ L_0 \xi (log \xi - 1) + \frac{1}{2} L_1 \xi^2 + \frac{1}{6} L_2 \xi^2 + \dots + S_1 \xi \right\} .$$
(88)

Furthermore, substituting the equation (88) into the equation (56) and (57), the velocity components  $u_2$  and  $w_2$  written as

$$U_{2} = \left[ \frac{-g\alpha m_{1}}{\chi_{0} + y_{0} + z_{0}} \right] \left\{ \delta g_{0} + (\delta + 1) g_{1} \right\} + (\delta + 2) g_{2} \right\}^{2} + (\delta + 3) g_{3} \right\}^{3} + \cdots \left\{ e^{i m_{1} (\chi - V_{2} t)} + \left[ m_{1} \left\{ \zeta_{0} \log \right\} + \zeta_{1} \right\} + \frac{1}{2} \zeta_{2} \right\}^{2} + \frac{1}{3} \zeta_{3} \right\}^{3} + \cdots + S_{1} \right\} \right\},$$

$$W_{2} = \left\{ \frac{2g \alpha m_{2}}{\chi_{0} + y_{0} + z_{0}} \right\}^{3} \left\{ g_{0} + g_{1} \right\}^{2} + g_{2} \right\}^{2} + g_{3} \right\}^{3} + \cdots + S_{1} \left\{ e^{i m_{2} (\chi - V_{2} t)} \right\}.$$

$$(70)$$

On the other hand, the frictional stress 7, acting on the bottom is given as follows:

$$\mathcal{T}_b = \mu \, m_i \left( \frac{\partial \mathcal{U}_z}{\partial f} \right)_{f=0} = \mathcal{T}_{uv} + \mathcal{T}_f \quad , \tag{91}$$

in which  $\mathcal{L}_{s}$  and  $\mathcal{L}_{f}$  denote the periodic frictional stress due to wave motion and the non-periodic one due to flow respectively, and it is assumed that the limiting values,  $(2u_{2}/3z)_{z=0}$  and  $(3u_{2}/3z)_{z=0}$ , are able to determined and the relation,

$$\left| \left( \frac{\partial w_2}{\partial \chi} \right)_{g=0} \right| \ll \left| \left( \frac{\partial \mathcal{U}_2}{\partial g} \right)_{g=0} \right|.$$

Now, measuring experimentally the values  $\tau_b$  and putting these mean value to  $\overline{\tau}_b$ , the value  $\overline{\tau}_b$  is expected to be identical with the theoretical value  $\tau_f$ . However, the value  $\tau_f$  are indefinite because of that a limiting value  $(m \iota_0/s)_{s=0}$  is undetermined. Therefore, introducing here an infinitesimal quantity  $\epsilon$ , these problems are treated as follows. First, assuming that the experimental value  $\overline{\tau}_b$  is identical with the theoretical value  $\overline{\tau}_f$  at the level  $z=\frac{\epsilon}{m}$ , the following relation is obtained from the equations (89) and (91):

$$\overline{\zeta}_{b} = \mu M_{1}^{2} \left( \frac{\zeta_{0}}{5} + \zeta_{1} + \zeta_{2} + \zeta_{3} + \zeta_{3} + \zeta_{4} + \zeta_{5} \right) = \varepsilon$$
 (92)

Determining the quantity  $\epsilon$  from the equation (92), the value  $\tau_{\omega}$  is written as follows, by using of the equation (89):

$$\mathcal{I}_{\omega} = -\frac{Magm_{i}^{2}}{\chi_{o}+y_{o}+z_{o}} \left[ \xi^{\delta-2} \left\{ (\delta-1)\delta g_{o} + \delta(\delta+1)g_{i}\xi + (\delta+1)(\delta+2)g_{s}\xi^{2} + \cdots \right\} \right]_{\xi=\xi} \\
e^{im_{2}(\chi-V_{o}t)}. \quad (73)$$

Furthermore, assuming that the mean value  $\overline{u}_2$  with time is equal to zero at the level  $z=\ell/m_1$ , the integral constant  $S_1$  is determined as follows by using of the equation (89):

$$S_{1} = -\left(\angle_{0} \log \xi + \angle_{1} \xi + \frac{1}{2} \angle_{2} \xi^{2} + \frac{1}{3} \angle_{3} \xi^{3} + \cdots\right). \tag{92}$$

In the analyses mentioned above, the second order approximate solutions are given, but the values,  $m_1, V_1, m_2$  and  $V_2$ , including in these solutions must be determined in order to that these solutions are established. For the given data, the wave-height  $2\mathcal{Q}$ , the wave period T, the bottom slope of channel  $J=\sin\theta$  and the discharge per unit width, the value  $m_1$  is expected to be determined by using of the equation (50), in which the value  $V_3$  must be regarded as the value  $V_1$ . By using of the solution  $m_1$ , the value  $L_1$  and  $V_1$  are obtained as follows:  $L_1=2\pi/m$ , and  $V_1=L_1/T$ . Furthermore, substituting the quantities, the wave height  $2\mathcal{Q}$ , the wave period T,  $m_1$  and  $V_1$ , into the surface condition (68)', the values  $m_2$  and  $V_2$  are expected to be calculated.

#### 2 SUMMARY AND CONCLUSIONS

In this paper, analysing the coexistence system of wave and flow as a kind of motion of viscous fluid, the equations of the velocity components, u and w, and that of the frictional stress, , acting on the bottom are derived theoretically. It should be noticed that the quantities, u and T<sub>b</sub>, are given by the sum of the periodic solution relating to the effects of surface waves and the non-periodic one relating to the effects of flow. According to the first order approximate solution, the wave velocity increases with increase in the flow velocity and the decaying of the wave height becomes slow against the effect of the fluid viscosity with the increase. The results of numerical analysis of the second order approximate solution will be published in near future.

#### ACKNOWLEDGEMENTS

In this works, the writer was given great assistance by Isamu Tamura, a student of the graduate course at Kobe University, in the detailed calculations. It is a pleasure to express many thanks to him here.

#### REFERENCES

1) A. G. Anderson: The Characteristics of Sediment Waves formed by the Flow in Open Channels, Proceedings, Third Midwestern Conf. on Fluid Mechanics, 1952.

- 2) J. Matsunashi: A Solution of the Coexistence of Flow and Waves, Lecture Summary of the 10th Hydraulic Research Meeting of the J. S. C. E., P.P. 93~98, 1966. (in Japanese)
- 3) S. S. Hough: On the Influence of Viscosity on Waves and Currents, Proceedings, London Math. Soc., Vol.28, No.1, 1896~1897.
- 4) J. Matsunashi, K. Omi: On the Fluctuation of Bed-Surface due to Wave-Motion, Lecture Summary of the 11th Coastal Engineering Meeting of the J. S. C. E., P.P.169~174, 1964. (in Japanese)
- 5) T. Hamada, H. Kato: A Calculation of the Waves propagating against the Stream, Lecture Summary of the 8th Coastal Engineering Meeting of the J. S. C. E., P.P. 25~28, 1961. (in Japanese)