CHAPTER 26

ON A COEXISTENCE SYSTEM OF FLOW AND WAVES
by
JUNZABURO MATSUNASHI

1

INTRODUCTION

It is a well known experimental fact that the undulation
such as sand-ripples or antidunes are formed on the bed surface
composed of fine sand, corresponding to the flow characteristics
of open channel flow.) In this case, as the mechanical effects of
the bed undulationes stated above, a kind of periodic motion is
superposed on the flow, and accordingly the water surface undulates
periodically. On the other hand, the mechanical effects of this
surface undulationes are surperposed on these undulating bed surfaces
as another kind of periodic motion. The wave generated in open sea
propagates upstream through an estuary. Accordingly the incomang
wave is superposed on the flow stated above as a forced oscillation.
Both of these phenomena are in the coexistence gystem of flow and
waves in the open channel flow.

In this paper, as the first step to study the subjects stated
above, the author treats the problem of the coexistence system in
the case when the forced oscillation of water surface is superposed
on the open channel flow with fixed bed, and analyzes theoretically
and experimentally the mechanical properties of the reciprocal
action between flow and waves.

1 THEORETICAL CONSIDERATION

(1) THE FIRST ORDER APPROXIMATE SOLUTION %
x

Let us consider the two dimen-
sional phenomenon as shown in Fig.l,
which expresses an ideal model in
the case when surface wave is
superposed on the open channel flow
with fixed bed, For the sake of
simplicity, let the scale of motion \
of water particles in the phenome- Fig. 1. ggsiiégggﬁggnder
non be so feeble that the whole :
condition of the motion can be regarded as laminar flow of viscous
fluid. Therefore, neglecting the non-linear terms the Navier-
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Stokes equations yield

?Un _(3!’/ aU; U

=gene )laz “’(axz az=) ’ ("
2._._ _12% 9[1]‘ 2%y,
ot g’;"e (555 * 572 ) (2)
o
az == >Z =0, (3)

in whichx is the distance measured along the bed surface in the
direction of downstream, ¥ the upward distance vertical to the bed
surface, + the time, u; and w, the velocity components parallel
to the axes of X and £ respectively, ¥ the kinematic coefficient
of viscosity, g the gravity acceleration, p, the pressure, f the
density of water, and sin @ the bed slope.

To obtain the solution of these equations, the velocity com-
ponents wu,, w;, and the pressure p, are assumed to be given by
the sum of a periodic function and a non-periodic one as follows:

= Uy (Z)Ecmllz Vt) U, (Z) ’ (<)

wr = wh (e &'V't)v- Wiz (), )

b =Prulme " T_p bl 6
in which u,, w,, and p, denote the first order approximate solutions
of the coexistence system, and u,,, w;; , and p;; denote ardbitrary

functions of z, my=2r/2,y 808 Vi="2,/77 » Lyand JI are the wave-
length of surface waves and the period of waves respectively.

Substituting the equations (4), (5) and (6) into the equation
(1), (2) and (3) yields

2 iy (X~ Vt)
(mTdarimb-mivanr PS4 @™ T T, g0 1 v o, 1)

(Lm,rzwrnd;-m,’uaf,,+V%§?"—ﬁ’"‘)e‘”"/z Vﬂ—gwrar%/ﬁ V}';ﬁ =0, (&

(omy+240) MV, B — (9
Assuming that these equations must be always satisfied regard-

less of the values,Z andt , the following equatiomns, (10), (11), (12)
and (13), are obtained:

a? M, —_tmph
(Gamm>+ 7)) U= - <2

2 N
(7_0{__1 Vm;z L/”/-Vl)aj;, ,_E__j;,_%/i ) ([0)

M, U//"‘g'l"_dl =0

?M& +P57:?3- =0 , Q)
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2
—gcas.9+dﬁ‘+1»%-§—’? =0, Z‘;” =0. @2),(13)

Refering to the research results by 5. S. Hough?)

solutions of the equation (10) are given as follows:

the general

Uy ==~;71;-( Aem’z+Be'”"z)+Lm"}( cekz-pekz), (14
W= (Ae™E-BEMZ) 1 (¢ ehtr DERT) (15
b =Ae"E+BeME, (16>

in which A, B, C and D are the arbitrary constants to be determined
by the boundary conditions, and

}?,2-=m/’—£m;'W/V . (17)

The general solution of the equatiomns, (11), (12) and (13), are

Uz=-2L 2t foxthe 5 Wiz =K DUV
Fz =Fcos6 -Z+Ra (20)

in which ky, k,, k3 and k4 are arbitrary constants.

Now, let consider the boundary conditions. If 7 , the height
of the free surface above the plane z = h, is expressed in the
forn,

P (X~T )
Ima- eI

the conditions are given in the following items, a) and b).
a) SURFACE CONDITIONS
If ¥ and G denote the components of the stresses parallel to

the axes x and z respectively acting on a plane z = const., these
are given as follows:

F=pr(52+52")

=pp (cmuwy+Z2) €M BTy p) ((852Cx 14y ) ,
G=-h+2r i

= Btz Gl ) pet XV p(seos 87 +hs) »

and at the surface z = h the following stress-conditions must be
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satisfied:

[Fleah=0. [&]eo=-r27 - Go.e2)

Substituting the values F and G stated above into the equations
(21) and (22) respectively yields

(ertwn+24), =0, (-255%% +h)gep=0. (23), 24
(PII +2V77'?”""3"’)z=h =0, (ywse-Z’"f'/u)x:h,:O . (25), (26)

b) BOTTOM CONDITIONS

As wy= 0 and w;= O at the bottom z=0,

(u-/l)z=0=0 ’ (U/Z)gco =0, @7, &
(w;[)z=p =0 (Mz)-g:a ’EO . &7),(%)

Now, by using of these boundary conditions the integral con-
stants A, B, C and D, and, k,, ks, k3 and k4 are determined as
follows. First, substituting the equations,(1l4), (15) and (16),
into the equatioms,(23), (25), (27) and (29), yields

L) (e Phr D) - 22 (gemh-perh) o, (31>
(1+ ZL2) (ferih 1gemb) r2pk (ce®—DEM)=—3a , (32
LR (C-D)~4—(A+B)=0 @
C+D+r=-(A-B)=0. 29

Next, introducing the value 8

ﬁ=/__7':__. 2V

TV =zp 7

and solving the equations (3L)~(34) in regard to the values A, B,
C and D, these integral constants are given as follows:

A= galz=Utre)m L 5= ~$a.{2f(7+b)m,/(31_ }
. 035

G cosh mih, eosh m b
C =0 , D —(—‘—2‘2"—1‘—/— an
ZPVi cash m h

in these calculations, the following approximations are assumed:

1) k=t —p(1-2)f -

2) g Rk o, ws/tm,h,
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3) the quantities, gm?cMh, gmz gmh , (1+m k) e R* and
(1 =mi/k) € are negligible as compared with the quantities,
(I—m,/n)e“‘ and ( f+m /k)elth

R A <

5) mPmenhmh K 2B%coshmib

6) (Mi/B)rinh mih <K coshmh ,

7} 2myP <7,

and these approximations are verified by our experimental data, mg
6-0x10%n!, h=25em, ¥ =1.3x10"%cn¥sec, V =160 cm/sec.¥

In the next place, solving the equations (24), (26), (28) and
(30) in regard to the integral constants k,, kz, ky; and k4, yields

kl——:ﬂ%ﬁ‘/ ’82—':0’

. (3(
lis=0 ., Ka=~3hcos6d ’

Summarizing the results obtained, the first order approximate
solutions are given as follows:

u,={—%—(ﬂe"”z+88'”’z)+ LR (cekz Dekz)} e;m,(x vt)

+(- L‘zu Z2+hE+R:)., €Y)]
wi={ = (A" L BEM) + (¢ eMEpe?D} e ZTisp, . G&

_)?_ =—(Ae™MZy peE) et (X VL (2c056-2 tha) G

in which the constants 4, B, C, D, k(,k,, ky and kg, are given by the
equations (35) and (36).

(2) CHARACTERISTICS OF SOLUTIONS
In the next paragraph, the second order approximate solutions
will be induced by the using of the first order approximate solu-
tions. In this paragraph, previous to this analyses, the some
considerations relating to the hydraulic properties of the first
order approximate solutions are given.

Now, let consider the change of the wave velocity and the
wave height resulting from overlapping the surface waves upon the
open channel flow. The boundary condition at the water surface is

27
("f*“’az )
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Adopting w;z as u, in the equation (40) on the basis of the relation
Juil Jwmz| yields

Vz 3'“”9 h = V- ZMcosghmh,[‘ZMMh——rg_mhm}Vr%_e—Ph'

(casph—,wph)}+ St ehmh— B E P (crphtpinph) =0, (a1)

in which the suffixes of m and V are omitted. Assuming that the
terms including e Pk are negligible in comparison with the other
terms, the equation (40) is written as

vz 3m9 hV—-—(ﬁmth'zp>""f 35 =0 - &2)

First, solving the equation (42) for the case when there is only
the wave motion of perfect fluid without flow, as ¥=0, and sin@ =0,
the wave velocity is obtained as follows:

1% =z/—7,;,_2- tanhmh . > @3)

This is the well-known wave velocity equation for frictionless
ligquid, and the first order approximate solution. Next, for the
case when there is only the wave motion of viscous fluid without
flow, as sinf =0, the equation (4#2) is written as

Vi (fark mh -2 o )+ o B/ G =0 )

in which 8=ymv/zy 1/m175: /2Y . Putting the solution of
the equation (44), whlch is the second order approximate solution
of the equation (42), as follows:

Vo =W-¢

1
e 45

the values Vg and {/7; are written as

- _ [T
V=T - e | o
_/__ VI3V b rm? )
T~ 2/Z tenhmik, T BFankimh

On the other hand, substituting the equation (45) into the
equation of the surface profile Y7 yields

7= aeim@ v ae %, imame)

e &5

By the equation (48), it is apparent that the equations (46) and
(#7) represent the change of the wave velocity and the damping of
the wave height respectively. In other words, according to the
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equations (46) and (47), the wave velocity decreases for viscosity
of fluid, and the damping of the wave height is taken place owing
to the same reason. On the other hand, the relationship corres-
ponding with these equations, which was obtained by S. S. Hough,
is written as

Ve=Vz { 1 —921;:;};2»11: } ’

. a AT o
= 2m YAVELe .
& Mt e ok

Refering to these results, it may be considered that the first term
and the second one of the right hand of the equation (47) represent
the effects of the internal-viscosity of fluid and that of the
bottom friction respectively.

Next, supposing the approximation @ = VRV /ZP =
MVzr/ 20 , and substituting the value Vgx of the equation (45)
into the value V including in the second term of the left hand of
the equation (42) yields

y2 deml th- 2 (tanhmh- LYE )+ =0. &)

Puttang the solution of the equation (49), which is the third order
approximate solution, as follows:

-

N
Vo=V~ 52
the quantities V3 and 1/7, are written as

V=% (- 0)+{ B~ PR (120} (Z)+LHE(E), gy

‘7L3— + 218%/:*»1// ) 4{ 71{771—) xp

in which o = /mP / {2/2Vstanh mh} , and =[], ), = Jh*aw 6 /2v.
The second and the third terms of the right-hand of the equation

(50) represent the eflects of the coexistence of flow for the wave
velocity, and the second and the third terms of the right hand of
the equation (51) do the its effects for the wave damping.

Let estimate quantitatively the effects of the coexistence of
flow, by using of the following data, the water mean depth h=12.0 cnm,
the period of the surface waves T=1.53 sec, the wave length L=160.6
cm and the coefficient of kinematic viscosity » =1,346x107%cm / sec ,
the equations (50) and (51) are respectively written as

V; = (04.6 +52-3(£z’-)+2&/ (Ii)z; ()’

—é- = 2.4/7 x/107%+ 0, 007 /o‘3(—) ~/-884 x /D "/7 ) ¢’
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Fig.2 indicates the V3 Gl
relationship between the t™5 sec!
wave velocity Vs and the 120 // v4
relative flow velocitly ///

Vs/ Vi « The value \\\\

Vs increases with the in- \

crease in the value Vs /

Vi. Fig.3 indicates 110 73
the relationship between hel2.0cm h=12,0cm \\
the coefficient of the 7=1. 53860 | T=l.53sec__)
wave damping 1/73 and 160 o T L=160cm

the value Vs/ Vi. It is T

found from this results /00 72 Vi
that the damping of the o °" 0z 03¢ o o1 oz 03,
wave height becomes slow Fig. 2. Relation between Fig. 3. Relation be-
against the effects of the Vg and VS/VI tween 1/C ¢ and V,/V;.
fluid viscosity, and the

tendency becomes remarkable with the increase in the value Vs/ V.

2)

(3) THE SECOND ORDER APPROXIMATE SOLUTION
(a) FUNDAMENTAL BQUATION
Substituting the first order approximate solutions into the

non-linear terms of the Navier-Stokes equations , the equations
are linearized as follows:

2U: aU U, xla X!

57 tUisx tWiss —y,ew.a—— =+r (S5 -5—-2,) 2

2W; 245 U / 32‘3 2% | 2%

37 U3z TW 33 =-gee 5'{ 22 " ( EP pzz) x5
and the continuous equation a1s written as

2Us Ui

in which suffixes 1 and 2 denote the first and the second order
approxinate solution respectivelyr, According to the properties
of the first order approximate solution, the hydraulic effects,
which may be resulted in the existence of the fluid viscosaty, are
negligible in general. In this analysis, it is assumed for the
sake of simplicity that the third terms of the right side of the
equations (52) and (53) are omitted as the very small quantities.

Introducing a stream function ¥ into these equations, it

may be considered that the function % is given by the gum of a
periodic solution and a non-periodic one as follows:

¥ =%@e" %% 6 ). 2

Coinciding a stream line ¥ =0 with the bottom z=0, the boundary
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conditions are written as $)

B (0)=0 > Ha(0)=0- G2

And in the case, uz and wp are respectively represented as

Uy = (e F e (), 5%
We==%,(Dim, et *Tt) . 7

Eliminating the prresure p, from the two equations obtained by
differentiating the equations (52) and (53) with respect to z and
x respectively yields

PU_3uk), DU A PUDUE, , B (BUs Bui
a‘f P2 "oz /) T3z 2z “ox 2x 157 (3% " 2%
2w ol _ 2UW; 2¢s 2%, 22U,

5% 3% oz 92 T m Wiz =0 " &P

+ —

in which the following approximation,

a[é o 'Y,
Wi g2 = Wi 372 ° &)

is assumed. Futhermore, substituting the quantities, uy , w, ,
uz and wz given by the equations (4), (5), (56) and (57) respec-
tively, into the equation (58), the equation is written as

@ ST O oty Ut 7, )+ 5o (o Ly~ Mty PR R,) + 2, (L
—ing U//-L'ﬂzé(” )} *[% [“Ll’lzj’,,)"‘lx oty Uya= ) + ) (EmaUs2) +
B (cm3 7mim dg=ma i)} ] = 0 D)

in which the following approximation,

2yt » _ imy (-t 210 B _tm 7‘7) alﬁ
—31{%/ CL : )+jgz }_T"SEI%/ e - 5z Jz2 ° Z3)]
is assumed. By the reason of that the equation (60) must be always

satisfied without respect to time and space, the following two condi-
tions,

dzﬁ'(/_lﬂzl///*llu)-f'iglfl—”hl//,"mlmzuﬂ/ ”lz W) +ﬁ/( iy mi L//;-LM, Un—LN2 U,/) 0,

62)
dg,(wz}’i,)f[ﬁ, (i lha=i M) 2 (M) 1, (M i = ity ti) § =0
&3

are obtained. Studying mathematically the types of these equations,

it is apparent that the periodic solution ¢, ,is expected to obtaine
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as a solution of the equation (62) and by using of the solution the
non-periodic solution . is to be obtained as a solution of the
equation (63). In this paragraph, the equations (62) and (€3)
are defined as the fundamental equations for the following analyses.
b) BOUNDARY CONDITIONS

It is desirable that the boundary conditions to be adopted to
the second order approximate solutions define the same physical
meaning as those of the conditioms, (21), (22), (25)' and (26)1,
applied to the first order approximate solutions. But, for the
simplicity, the conditions including the some different contents in
comparison with them are set as follows:

1) THE SURFACE CONDITIONS

( *u”az Wi )g=n=0 . @
(r=—t+2/r3&), ., =-ra7. )

2) THE BOTTOM CONDITIONS

[uz]2=o=0 , [wi],_,=0. GOl

Assuming that %7 , the height of the free surface above the
plane z=h, is expressible in the form 7 = gei”:(¥7*), the conditions
(64) and (65) are written respectively as

@[] gept [ ]eap= 00 s
h s

[ m2u g mitag, yaz 2o (5] Tean t §0=0 . &9

o

Furthermore, the conditions (66) and (67) are written respectively
as

[/ ]z=a ’ [ZZ'.]2=0=0 o)

and,

[fz/ ]Z=‘O= o, @

Now, transforming the variable z including in the eguations
(68)~(71.) to £ by the equation £ =m;z yields

d%, )
f”’[ g- th[%i']f =mp~ Q=0 . 132)
Vf '?i,a'§‘+ oTad ;’»"r’f (zhm 5~ §Y) 5, 45~ zwmm:b& om0,

[ I]5=0 , [%zj =:~—0 , (72’
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[?ﬁl]g“o=0 . &0

Let solve the fundamental equations (62) and (63) under the

boundary conditions (68)'~(71)' and the incidental condition (55)
relating to the stream function.

¢) THE PERIODIC SOLUTION

Transforming the variable z including in the equation (62)

to § by the equation ¥ =m;z, and representing the coefficients of

is

the equation obtained by an exponential expansions, the equation

written as

SF@5E B0 L+ Ewg o 5 72

in which

~

ﬁ(5)=,;";445""=,4,r,4,§f/]3;=.,..,, .
k(%)= ,;:,Bn}"‘ =Bt BSt+BY - -

4 (2))
5(¥)=,:Z:;Cn§"l=C°+CI;+C;§&+~-’ ,
and,
= ’Q”I (/Cilmz)(lﬂ;—m;) N
A= 2pVicosh m b (e >
(M, ~3) 3_~ 3 ,3 }
A = —ﬁ,’z—um{k Llk-2pm?)}
= }0—( ”’I‘X”’I"”x) - ¢
A’ /zmlqu:hm'h (/ ) i 0 )
= =Falm M) i loam®) .
Aqs 6‘?”1‘;917:’605/zm,kik (k-2 m )4
and,

and,

Ba == ZFQD?:I:M A { m,( h M, -rm.m;)-m/ (201; -rmz)} (- i,

B|= FaMa [’?

S50 k] (R +m>+mima) =i (R (R'+m etz ) ~2m, plam, -rmz)g] ,
B~ e

~ gk | emma)ni (m ) [ (1-2) (75)

ams [, 2 _ "
2 = /2M7 ﬁ;whm-h Lk (k My fm,'”z)"l{k’(k-fm, +1MM2) -2, (3( m,-fmz)}J}

B.= 4”’;’;47’:;%»1:& {k “Lhem tmtts)-mf (2, tm) }(1-2 ) »

A m e e el b a e e a e wsTeY

D T T

Com %v’iﬁhﬁf (Rrmmctnts )= {h k3t ) -2 p Ot ymmrni) } |,
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C _ gam,
1 20 BT, ech puk

G= Tr%(%mm[m’*'“-"'z+mv-L{k’%m'»w'"=’>~sz@ anrmmn)} ).

2ams < )
C™ Tamp s sosimry (RCCKCE MM E ) tm et W)} 1-2)

[ emmermd ) -m(mtmmermz )} (1-2)

R i I e Y

7¢)

By using of the so-called Frobenius's Method, the exponential
solution of the equation (72) is obtained as follows:

T n 5& "
%, ‘Méhng *M{ ,fi:o?ng
= (1(hthEth ¥ - ) *NSP (G, ¢2.510.5) . rn)
in which the quantities M and N are integral constants, and the
quantities hn and g, are coefficients of the exponential solution.

By the unequal equation, m, {m, , which is considered to be satisfied
in general, a relation about the exponent§ is obtained as follows:

8=1—7’;-’—=/+,,,,_,,,z >1. <2

The equation (77) represents the general solution of the fun-
damental equation (62). Let determaine the constants M and A under
the boundary conditions (69)' and (71)°'. Under the condition
(71)', which is the same condition as the first one of the eguation
(55), the relation M = O is obtained, and furthermore the following
relation is derived under the condition (69):

—_—2a
N= Fr eyl @9

in which

"”’:Vz' 8+ 47 .
I=—,‘1,,""‘{5+, (b, +8+z ’h} +8+3 (mh) "+ }

= BBl B mh ) AT RNy ) BB PR
Z = ~2iomm(nh) {6‘;,+y,(a+r)m.h+;,(5+z)(m,/,) % 9 EDMA ) - )

(30
Substituting these relations obtained into the eguation (77) yields

B = 85 AT ) @

in which

?o=7u ’ Z = ;"kma(’”’—z’”‘)

2Z 1, (s =2 X(290,~112,)
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3 = —_go kz’”z (Zm/ 3’”2)&”’1‘ Emmo+4ms)
2 224 my ("l/"”’a.) !(Zhl/ W:)(;Ml-zm:.)
2,= M&Mﬁwﬁ__{?/ 2m w2 4192, M4 T ") (¥2)
154m0 (s (2= X302 )(tom) =3 s ) .
g = 2ol € /fo’lllf e T8 19,437/ PP = LI, 4 £ %)
¢ 1280 M, (W~ ) (2,913 )(3 =200, ) (S, ~2rags)

e e T M e e e e e v e T v e Y TN N e n by . e e - ——

Furthermore, the first one of the boundary condition (71)' is satia-
fied by the solution (81) itself,

d) NON-PERIODIC SOLUTION
Substituting the 1lst order approximate solutions, u,, , up
and u,” , into the fundamental equation (63), and transforming the

variable z of the equation obtained to ¥ by the equation ¢ =m, z
yields

7,?‘:’( U'/zl?lnd% ﬂﬂ‘;/;,{ L%l (-t 2 )-im i} +m,,, aky
c i L2580 )}+ { o Pim? 2250 (4 5L ;;-—)-I'Uﬂzu} =0. (#3)

Furthermore, substituting the periodic solut:.ony;, into the equation
(83), and representing the equation obtained in the form of an ex-
ponential expansions, the equation is written as

;é;’*-*--z,u,;u FHdoF?+L F5 - 2y
in which
Lo*"-/"'[(r“/)Vz .
4‘,:,_ l S-‘*I J/ +—55L—

g‘r gz! (d‘ﬂ &1k 3 /(mg(&q) y,e...g
2 ;’ 6‘1? * & m: } vt m" { 8 ’: -2’"/ .
L=k Mt & ?(a‘+:)(J‘+ _Av;v' 20313, 5: (8+/)’ .z 2o

i A 7
B38+2) z@‘ug et 2 3:&«(9
—L{ 82”{, -Z- —z— 8 +5ﬂl/ }
Tt TTTTTom s m T we
Integrating the equation (84) with respect to § yields
R T X R @

o= LT (lgs=1)t L4 T gt SRS, Y
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in which Sy and S: are integral constants. Let determine the
constants under the second one of the boundary conditions (55) and
(70) respectively. Substituting the equation (87) into the former
condition, S;=0 is obtained, but the constant S, is not determined
by means of doing the equation (86) into the latter condition.
However, let advance this analysis under the assumption that the
constant S; was determined by some condition.

e) THE SECOND ORDER APPROXIMATE SOLUTION

Substituting the periodic solution ¢,(@and the non-periodic
one #,(y) into the equation (54)!', the stream function ¥ is written as

'50-{ z-ry 2, §8(2.+9,5135% - ~ ) jemETRY
+ (L (Lrg - e£4E" +?LZ,}‘+. + 55 . (529

Furthermore, substituting the equation (88) into the equation (56)
and (57), the velocity components u, and w, written as

U] o 5T 83, e B2y HEDLF (512, e J] Y

+[m,{4,4,;+4,;+%42r‘+3i4,f’+- +S,}J , €e))
e { G P GAT TG I} ETE. o

On the other hand, the frictional stress T acting on the bottom
is given as follows:

in which %-and ¢ denote the periodac frictional stress due to wave
motion and the non-~periodic one due to flow respectively, and it is
assumed that the limiting values,(peg/ﬁz)_oand ()ll,/ﬁg)bo, are able to
determined and the relation,

[ (3. < |G)

Now, measurlng experimentally the values Tp and putting these mean
value to %, , the value % is expected to be identical with the theo~
retical value =<y . However, the value 7¢ are indefinite because
of that a limiting value (Ml/f)k.,is undetermined, Therefore,
introducang here an infinitesimal quantity ¢ , these problems are
treated as follows. First, assuming that the experimental value

7, is identical with the theoretical value T at the level z= ¢/ m,,
the following relation is obtained from the equations (89) and (91):

Z"°

o=

;o rt+_,._}§.=t - 672)
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Determining the quantity ¢ from the equation (92), the value o
is written as follows, by using of the equation (89):

Loy =~ Lagm’ [ ;"’{ (583, +8(F¢1)3, T +( 511N E12)3, }’?r‘-'ﬂ;;s

Io*’ofzo (z Et)
M (-

e (73)

Furthermore, assuming that the mean value U, with time is equal to
zero at the level z=£/m,;, the integral constant 8; is determined as
follows by using of the equation (89):

S,=—(.40475+4,s+—2’-Z,:‘f}/—4,z’+--- ). (9¢)

In the analyses mentioned above, the second order approximate
solutions are given, but the values, m;,Vi ,m; and V;, including in
these solutions must be determined in order to that these solutions
are established. For the given data, the wave~height 22, the wave
period T, the bottom slope of channel J=sin@ and the discharge per
unit width, the value m; is expected to be determined by using of
the equation (50), in which the value V3 must be regarded as the
value V. By using of the solution my; , the value L, and V; are
obtained as follows: L,=2%wand Vi=¢/T . Furthermore, substitut-
ing the quantities, the wave height 24 , the wave period T, m; and
Vi, into the surface condition (68)', the values m,and V, are expect=~
ed to be calculated.

2 SUMMARY AND CONCLUSIONS

In thisg paper, analysing the coexistence system of wave and
flow as a kind of motion of viscous fluid, the equations of the
velocity components, u and w, and that of the frictional stress, ’
acting on the bottom are derived theoretically. It should be noticed
that the quantities, u and %, are given by the sum of the periodic
solution relating to the effects of surface waves and the non-~
periodic one relating to the effects of flow. According to the
first order approximate solution, the wave velocity increases with
increase in the flow velocity and the decaying of the wave height
becomes slow against the effect of the fluid viscosity with the
increase. The results of numerical analysis of the second order
approximate solution will be published in near future.
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