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ABSTRACT

A mathematical theory will be given about the phenomena, which occur
if on a coastal area groynee are constructed.

In former similar theories ([1], [2], [3], [4], [5]) the coast was
schematised by one coastline. In the following theory 1t is presented by
two lines, one line repreeenting the beach and the other one the inshore.

The theory 1s based upon the following assumptions-
1° the littoral draft along beach and inshore 1s linear dependent of the
angle of wave incadence and therefore of the direction of the line of

beach and inshore respectively;

2° the transport perpendicular to the coast depends on the eteepness of
the profile.
If the distance between the line of the beach and the line of the
inehore is less than a certain equilibrium distance, the profile is
too steep and there is an offshore transport. In the opposite case
there 1s an onshore transport. The relation between offshore transport
and dietance between the mentioned lines is linearised.

Some resultsg are shown in fig. 8, 9 and 13.

It is found, dat the influence of a groyne system 1s threefold: they
reflect short~period beach processes on the ad)acent areae, they retard
erosion and they give a lee~side scour.

But the theory only gives one aspect: influence of diffraction and of
currents 1s not yet taken into account.

INTRODUCTION

In order to know what will happen with a coast after the building of
coastal structures, one can make use of several approaches.

If one should know the wave spectra during a long time at the site, if
a reliable sand transport formula wae available, 1f one would know the
interaction between waves and currente on the eand transport and if the
rulee for the onshore- and offshore transport were known, one would probably
be able to predict the changemente. Unfortunately, the state of knowledge
1s not so far Just now.

Another approach, which we will use here ie more or less morphological.
With the aid of the continuity equation and a simplified dynamical equation
with some unknown constants one can find formulae for the coastline in
couree of time. With the aid of curve fatting one can find the unknown

492



GROYNE SYSTEM 493

conetants, which are only valid for the considered area. Furthermore one
can find the constants from theories, following the first-mentioned
approach, which gives a quick check of these theoraies.

The firet one, who published a paper about the second approach was
PELNARD-CONSIDERE [1] . The original 1dea was of BOSSEN.

PELNARD-CONSIDERE assumes, that the profile of the coast always
remains the equilibrium profile, so that he only needs to consider one
coastline, being one of the contourlines. He assumee no currents, constant
wave direction, small angle
of wave incidence and a
linear relation between
angle of wavee incadence y WAVE INCIDENCE
and littoral drift. Ae the
angle of wave 1ncidence at P
A is larger than at B, the R
littoral drift at A 1e lar- 425\‘ )7/777776/7%
ger than at B; this means
that there is accretion

between. A convex coast Fig 1 Accretion on a concave coast x
erodes, a concave coast
accretes.

He finds (c¢f "Appendix"), that the accretion 1s linear dependent of
the curvature of the coast and inveree proportional with the depth D, up
to where accretion takes place:

2
¥ .4 2y R &
2t D ax2

in which the x-direction is the main coastal direction, the y-axis points
in seaward direction and in which
49

q ===

dx *

the derivative of the littoral draft Q to the angle of wave incidence «.

From thie differential equation the coastline y as a function of x
and t can be found for many boundary conditions. PELNARD-CONSIDERE finds
solutions for the coastline of river deltas, the coastline in the vicinity
of harbour moles and so on. His experiments confirm the theory.

GRIJM [2], [3] extends the theory by using a better formula for the
littoral drift: -
Q = Q sin 2%,

in which o is the wave direction. He computee the shape of river deltas

and finde fundamentally two possible solutione for these deltae: one in
whach the angle of wave 1ncidence 18 everywhere less than 45° (fig. 2a)

and the other one, in which this angle 1s everywhere more than 45°(fig. 2b).
Aleo combinations are possible (fig. 2c¢).
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In figure 2c the angle of wave incidence 1s less than 45° at the parts

A, B, F and more than 450 at the parts C. D, E. As one never knows which
combination one hae to chooee, the problem seeme to be indefinite.

BAKKER and EDELMAN [4] treat the eame problem with the linear Pelnard-
Coneiddre approach. They investigate aleo the case of negative q(= di ),
which occurs if the angle of wave incidence ie large. Their solutio & are
more or lese similar to GRIJM, but oppoeite to GRIJM, they also find a
periodical eolution:

-4 .
y=¢e D Kzt cos Kx . . (2)
This ie a sinusoidal shaped
coastline of which the
amplitude decreases in couree-
of time if q is positive
(small angle of wave inciden-
ce), but increases if g 1s
negative (large angle of wave
incidence). Therefore, eolu-
tions of the ehape of fig. 2b are unstable and will be deetroyed, because
slight deviations trigger large deviations according to (2).

Figa Decay of sinussoidal shaped coastline

This solves the problem of the indefiniteness: nature will prefsr
solutions of category I. GRIJM did not find this solutions, becauee he
confined himself to solutions growing with \/t in all directione.

PELNARD-CONSIDERE [1] considered river deltas and coastal structures,
GRIJM [2], [3] and BAKKER and EDELMAN [4] merely treat river deltas.
BAKKER [5] inveetigates the periodical solutione of eq.(1). Besides the
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"standing" and attenuating wave of fig. 3, also propagating and attenuating
waves are poesible. The propagating sandwave found in the prototype on
Vlieland could be explained with theory. BAKKER also examinee the influence
of coaetal etructuree on these sandwaves. The eandwave appears to be
reflected by the structure: the amplitude at the eite of the structure ie
enlarged. One can senee this, because there is an analogy between these
moving eandwavee and tidal wavee. The coaetline is analogous to the vertical
tide and the littoral drift to the horizontal tide. If one stops the littoral
drift (current) by a dam, one increaees the variations of the coaetline
(vertical tide).

One of the beauty failuree of the solutione of PELNARD-CONSIDERE [1]
and BAKKER [5] ie the assumption of parallel depth contoure. Near coaetal
structures the deviations of the
prototype can be coneiderable.

For instance, the solution near a
breakwater le eketched in fig. 4a.
PELNARD-CONSIDERE finds, that the
coast on the left-hand side builds
up to the head of the breakwater
and that the coastline on the
right-hand side erodes the same
amount. This might be true for
constructione, extending to large Fig 4% Coastline with parallel  contour - lines
depthe. But in the case of groynee

only the littoral drift on the

beach ie prevented: at the beach

there will be eedimentation of —ﬂ—//’///,,-\\\\\\‘—______
material on one side of the

groyne and eroeion on the other

side. But 1n deeper regione this

dieturbance doee not take place,

eo on the left-hand side the

profile becomes steeper than the

equilibrium profile and the sand

drops down, and on the right-hand

side the profile is flatter than Fig 4® More reasonable approximation
the equilibrium profile and the The arrows give the direction
sand 1s pushed by the wavee 1n of the sanddrift

upward direction.

In order to reproduce thie feature inh a mathematical model it ie
necessary to echematise the coast by two lines inetead of one. Thie will be
done in this article. The difference with former theoriee ie, that thue
off- and onehore traneport are taken into account.

Definitions and assumptions. Fig. S5a denoteea echematizcd
profile. The profile is under-
d vided into two parte, one
Dy part coneisting of the profile
1 between O and D, below eea
0 level (beach), %he seoond one
between D, and D, + D, (inshore).
D, 1 1 2
Between beach and inehore ie a
7" //777U

horizontal ehelf at depth D1,
Figh* Schematised  profile the total depth D being Dy + D,.
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The depth D 1s aesumed to be so
large, that no littoral drift

o Ir‘—_—__j;—p takes place here,
Dy ; gﬂumﬁy I3 In reality one can imagine,
7, TIITIY that a breaker riadge occurs at
¥5 AJR depth D{ and that a trough links
D, the two parts of the coast
______ J (dotted line), fig. 5a.
U v

gb . h It is assumed, that a groyne
Fig Twe_line  theory reachee up to the horizontal
ehelf at depth Dy and prevente

P
7777777 7777777777;
1 all lattoral drift along the
ST ‘ beach, but of course not along
D ’ y ] the inshore.
[ In the theory the profile is
2 ___‘___________j st11l more schematized, accor-
77y v ding to fig. 5b. A stepwiee
Fig ¢ One.lme theory profile remains. The areas
the arca PQSTUV PQSR and RTUV an fig. 5a are

equal to the correspondaing

15 always the same
y areag in fig. 5b.

In top view one sees two lines

at a dietance yq and yp' from
the x-~axais, which will be called "the line of the beach" and "“he line of
the ainshore™ respectively.

The “equilibrium distance" W 1s the dietance yp! - ¥4 between beach
and inshore, when the profile is an equilabrium profile.

The following dynamic equations are aesumed.
If the dastance y,' - ¥4 is equal to the equilibrium distance W, no inter-
action 1s assumed. If the distance y,' - ¥, is less than W, the profile as
too steep and an offshore transport will be the result. An onshore trane-

port will occur in the oppoeite case.
We lanearize this relation and take for the

offshore transport Qy per unit length:
- - (.
o =a {r -Gt =W} ... G

in which q_ is a proportionality constant.
The dimenelon of q_ ie [1/t] . For a simpler
notation, we denotk:

x
ans On- and offshore transpert y2 = y2' - W e o 6 & o ¢ & o o (4)

Then (3a) becomee Q. = q

y v (y1 - y2) B &)

With respect to the littoral drift, the assumption of PELNARD~
CONSIDERE [1] 1s applied, bothfor beach and inshore: the transport in
linearized:
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vy 3y
172 Q = Q%1 - U 3%

9
AN
\\\\\\\\\“22— ) PP €3

W = Q5 - 9 5%

\\_9__"_%_/\'/"’ in which Qo1 and Q°2 are resgpectively the

: "gtationary transport" (littoral draift where
Fig 7 Littoral drift along

beach d h oy iy
each and inshore axT - 0, resp. 5;2 = 0, fig. 7) on bsach and

inshore and in which qq and q, are proportionality constants. The dimension
of q, and g, is[13/t].

RESULTS

By making use of the continuity equation and the above-mentioned
dynamical equations one can compute many stationary and instationary cases
(cf. “Appsndax").

Of importancs appears to be a reference length:

B ()

i i
.
a, (q1 qz)

Fig. 8 shows the result in the case of accretion and erosion near one groyne
when q =9 and D1 = D2. (¢f Appendax, 3).

In the initial situation the lines of beach and inshore are parallel.
Fig. 8ashows the situation immediately after the construction of the groyne.
Only the beach shows some build-up on the right-hand side and eroceion on
the left-hand side. It must be streesed, that the influence of diffraction
is not taksn into account.

In fig. 8b and 8c the profile on the left~hand side becomes too eteep
and eand drops down to the inshore. Here the littoral drift was originally
everywhere the same. The supply of sand from the bsach overcharges the
transport capacibility of the inshore and therefore eand sedimentatss here.

Now the lattoral draift Q2 along the groyne at the inshore becomee
Y
larger ( 3;2 becomes negative, c¢f (5) ). In the final stage (fig. 8d) beach
and inshore on the left-hand side and on the right-hand side are shiftsd
with respect to each other. This 1s in correspondence with the results of
PELNARD-CONSIDERE [1], but he finds, that ths coaet builds up to the top of
the groyne, and here it 1s found, that 1t builds up to a distance, only

dependent of Qs 9o qy and the angle o of wave 1ncidence, where tanw«= 01
Fig. 9 shows sevsral etationary cases.

Fig. 94 gives again the final state of fig., 8d. The transport is the sams

ae without a groyne, because the transport at a long distance of the groyne

does not change. If more groynes are constructed, the littoral drift along

the beach is stopped more and more, because the beach turns in the darection
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of the wave crest (fig. 9c¢,b,a).

We now consider the case, that the groynes are so near to each other,
that they prevent all the transport along the beach (fig. 9a).
In this case the total littoral drift 1s the drift along the inshore:

Q=0 =2, -9 3%

Before the construction of the groynes this transport was:

ay1 byz
Q= Q1 + Q2 = Qo1 + Qo2 - 9 3% <9 2X

Pollowing the conception of PELNARD-CONSIDERE (cf Appendix, 1), and
agsuming that the sedimentation takes place equable on beach and inshore
(qy sufficiently large), the coastal equation for a protected area would be:

2y % %
2t D 2
Ax

The coastal constant q/D 1s changed in q,/D. The assumption, that the
sedimentation takes place equable on beach ang inshore, 1s about correct
for long-term coastal processes (long with respect to T,, cf Appendax 2,(19),7,

We considered the case, that the groynes were so near to each other,
that they prevent all the transport along the beach. If the distance
between the groynes 1s larger, the coastal constant will not diminish with
a factor q2/q, but less:

+

4

2 2

-a-‘tlaiDL é——%, in which q,< q'< g4 + dy o o (7)
x

This factor can be computed (cf Appendix, 4 ) and will be called 15 H

p
q, + 49
L. .\ 2—2 L@
P a4 a5 q'

We now have returned to theone<hne theory of PELNARD-CONSIDERE
a protected area can be considered as an area with another coastal constant

A
(2-) than the neighbouring unprotected area, and this constant can be
computed with the two-line theory.

In the following section we shall gave first some rough statements,
making use of the one-line theory, considering a protected area as an area
with another coastal constant, and afterwards we shall illustrate 1t with
more accurate computations with the two-line theory. The advantage of the
one-line theory is, that 1t gives a quick insight in the essence of the

matter.
LAWS OF SCALE

One can make the coastal equation (1) dimensionlees by substituting:
x=n_.X ,y-ny.’Yl,tnnt.‘(,q/D=ncc.C, inwhichX,V,'C
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and C are dimensionless and n,, n_, n

y n,, give the scale factor of x, y,
t and the coastal constant q/D.

t?

One finds the following relation:

Ty
n ., —7% = constant e e e e e e e e (9)

n
X

The scale n_ of y can be chosen arbitrary, because y occurs on both
sides of eq. (1)¥ We shall give some examples:

Consider two half-infinite coastal areas with different coastal
constants, which are in rest at infinity. Suppose that the ends of both
areas carry out the same movements in course of time. The shape of the
coastline will be the same 1n both cases, but the x-scale will be equal to
the square root of the coastal constants (fig. 10a).

Consider now two areas with different coastal constants, which are
identical at tame t = O and of which the ends of the areas are in rest.
Now the x-scale 1s the same and therefore the timescale of the changements
will be inverse proportional to the coastal constants (fig. 10b),

't

COASTAL CONSTANT 9/p

same curve
at t=0

.9
COASTAL CCNSTANT ;5 /D

Miip Fig 10°

INFLUENCE OF A ROW OF GROYNES
We consider a coast, where over a long stretch groynes are constructed
at time ¢t = O.
What is the influence of the groynes on the coast?

We will consider three ainfluences, which can be superponed, because all
equations are linear-

the influence of external causes (boundary conditions);

2° the influence of the oblique incidence of the waves (stationary
transport);

30 the influence of the shape of the coast.

Influence of external causes.

Assume a wave direction, perpendicular to the coast and a straight
coastline at time t = O.
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Fi6 11¢ coustine at time t, if na graynes wauld have been canstructed

Assume, that by one or another external cause (for instance, a river
or tidal canal, which embouches left of the left boundary, fig. 11) the
coastline at time t, would have been according to fig. 11c, if no groynes

would have been constructed.

What 18 the coastline if groynes are constructed at time t = 0 ?

Thas coastline can be constructed with the following method.

The coastline y*' of the protected area can be found by reducing the
x-scale of y by a factor 1/p (p defined by (8) ) and by multiplying the
y-scale with a factor 1 + r, in whach:

r=£:—l so1+r-—p—2—f—1 e e e e e . s (10)

In formula: ¥ (x) = (1 + r) y (px) P G A Y

The coastline of the unprotected part I can be found as the sum of the
original y plus a "reflected y"; the latter one being the reflection of the
original y (for x> O) with respect to the y-axis and multiplied with the
reflection factor r, given in eq. (10):
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1f x < 0, then Ve (x) =y (x) +r.y(-x) « « .« « (110)

In fig. 12 the method of construction 1s visualissd.

Y, Y

® [

adding

ry,

\ f Yeer refl Coastine Yy ,
coasthine Yy
with groynes ®@
! muitiplying
® ® y-scale with
reftected }X — factor (141) y=coastline
-
cocstl:w’ —_— without groynes
—— == ®- ~
— ~
~ - reduction of
Yeet x-scale with
=~ factolr 1/p
T
| |
#x/p—% |
; x 3
FI6 12

One can proof sasily, that:

a. the new coastline of the unprotected part y_ sufficss the coastal
equation (1) for an unprotected area: it consists of the sum of two
functions, both obeying this linear squation.

b. the nsw coastline of the protected part y_  suffices the coastal
equation (7) for a protscted area. For the timescale of the changemsnts
at A is the sams 1n fig. 11b and 11c and the x-scale 1s proportional
to ths square root of the coastal constants (fig. 10a).

c. ths transport a littls bit on the left of A in fig. 11b is equal to
the transport a littls bit on the right of A.

d. the y~coordinates at A of the protected and unprotected area are the
same.

As an example of the influence of external causes in the case of the
two-line system, fig. 13 shows the influencs of groynes on a harmonical,
propagating sandwave. Thess sandwaves occur, if the left-hand boundary
erodss and accrstes harmonically (by an external cause), if the right-hand
boundary (protected coast) 1s 1in rest, and 1f the profile at ths boundariss
is an squilibrium profile [4], [5]. In the case of fig. 13, it 1s assumed,
that the distance betwesn the groynes 1s so small, that no littoral drift
takss place on the beach. The protscted bsach just rsacts as a store.
The formulae are given in the Appendix, 7.

1)

As fig. 13 shows, for short-period processss ’, the motion of the

T) defined in the appendix
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inehore is practically the same either 1f groynee are constructed, either
if they are not. Then the motion of the protected beach is small, but there
is a large edge effect on the unprotected beach, near the beginning of the

groyne eyetem.

For long-period proceeeee1) the reeults of the one-line theory are
confirmed: the wave-length along the protected beach and inshore is a
factor 1/p timee the wave-length along the unprotected beach and the
amplitude ie enlarged by a factor 1 + r, according to (10).

2° Influence of oblique incidence of waves

According to the one-line system, the traneport along an unprotected
coast y and along a protected coast y' are respectively:

= - g 2L
Q@=Q, - a3y

- - gt 2¥L
Q Qo' a' d3x

In this formula Q ' and q' are smaller than Q and q, If the transport along
the beach is prevsnted totally, Qo' and q! arf respectively Q°2 and 45

the conetante of the inshore.

Consider an area, partly protected with groynes, which is at t = O
parallel to the x-axie (fig. 15a). On the unprotected beach the traneport
will be Q@ and on the protected beach Q ' and therefore the eedimentation
per unit time will be Q - Q '. With the eame consideratione ae in the
chapter "influence of external cauees" it can be shown, that a kind of
delta will be formed, which will increase with a velocity proportional to

Vt (fig. 15b), Thie delta is not symmetrical: the same y-coordinate at the
point (-x) of the unprotected coaet occure in the point x/p of the protected
coast (fig. 14). The inveree will occur on the lee-eide of the groyne eyetem.
Here a similar ehape ecour-hole
will be formed. Fig. 15 shows the
ehape and the traneport, the
formulae are given in appendix, 8. L

h{ ~ Y
The corresponding two-line 4;___——;i3’1 N

eyetem is rather intricate and X X/p
still in study. Fig 14

3° The influence of ehape

Even if the coastline would not change because of external causes and
even if the influence of stationary transport is not taken into account, a
convex coast would erode and a concave coaet accrete according to eq. (1):

2
2y . 4 22X
-3 1 D 2

dx

In the one-line system the diafference between a protected coast and an
unprotected coaet is a difference in the constant q/D, which differe a
factor p°, according to (8). Thie means, that a protected coaet accretee

K defined in the appendix
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(erodes) slower than an unprotected coaet with the same curvature. The
timeecale ie p2 times as large, according to (9) and fig. 10b.

At the boundary beiween a protected part and an unprotected part edge
effects ariee, which can be computed graphically with the method of
Schmidt [5].

Fig. 16 ehowe the eroeion of a convex coaet, according to the two-line
eyetem. The formulae are given in appendix, 9.

It ie aesumed, that before t+ = O beach and inshore have the eame
parabolic ehape and an equilibrium profile. They erode with the same
velocity. At time t = O groynee are constructed at the beach, eo near to
each other, that they prevent all transport along the beach. The erosion
along the inshore 1e not etopped, however, the profile becomes too eteep
and sand moves from beach to inshore.

The erosion of the inshore diminishes and the erosion of the beach
begins again. Finally, beach and inshore erode together again, but the
profile remains eteeper than the equilibrium profile, and the total rate
of erosion 1s less than before, according to the one~line theory.

DISCUSSION

The theory only deale with one aspect.
Other aspecte are:

1° the influence of rip-currents near the groynee.
Thie influence 18 two-fold: rip-currente traneport material from beach
to inshore and they cause eiream-refraction. These two influencee work
againet each other. The traneport of material from the beach cauees a
scour-hole on the beach and the etream-refraction causee a epit on the
beach.
At the moment experiments with dyed water in the prototype are carried
out to get an impression of the order of magnitude of theee rip-currents.
Rip-currente flatten the profile and lower the rate of effect of a
groyne-system. Therefore 1t ie very important, that they give the
correct transport in modele, because otherwise one can find the inveree
effect of groynee ae in practice.

the influence of diffraction on the lee-eide of groynee.

The author hae the feeling that diffraction does not really change the
effect of a groyne system, but only hae minor effects in the ilmmediate
vicinity.

variable wave direction

This causes changing boundary conditione near the groynee.

Most influence will be found near the first groyne of a groyne eyetem,
where thie will generate ehort-period moving sandwaves on the beach.
These eandwavee have a short wavelength and will decay at a ehort
distance of the groyne. At a long dietance of the groynee one only finde
the effect of mean wave conditione and no influence of variations.
Therefore, aleo with varying wave conditione, most of what has been
eaid, especially about long-period processes, remaine ite validity with
changing wave conditione.

4° non-linearity in the traneport equation.
According to the author, this ie moetly of minor importance, except if
anywhere the angle of wave incidence along beach or inshore becomes
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about 45° or more. In thie case the matter of instabilaity, mentioned in
the i1ntroduction becomes important. A point where this can occur is in

fig. 8 on the inshore, right in front of the groyne.

Of course everyone will be interested i1n the values of the coastal
constants.

The following is not more than a reasonable quees, because serious
investigations have not yet been done.

For some parts of the Dutch coast, q/D = 0,4 x ‘IO6 n/m depth/year/
radian and qy might be 1 to 10 m/year at a depth D1 of 3 m.

REFERENCES

il R. Pelnard-Coneidére, Essai de théorie de 1'évolution des formes de
rivages en plages de sable et de galets.
Quatriéme Journées de 1l'Hydraulique, Paris 13-15 Juin 1954.
Les Energies de la Mer, Question III.

[ W. Griym, Theoretical Forms of Shorelines.
Proc. Tth Conf. on Coaetal Engng., The Hague 1960.

[ W. Griym, Theoretical Forms of Shorelines.
Proc. 9th Conf. on Coastal Engng., Lisbon 1964.

4 W.T.J.N.P. Bakker and T. Edelman. The Coastline of River Deltas.
Proc. 9th Conf. on Coastal Engng., Lisbon 1964.

H W.T.J.N.P, Bakker, A mathematical theory about sandwaves and 1ts
applications on the Dutch Wadden Isle of Vlieland.
Shore and Beach (unpublished yet).

@ U.S. Department of Commerce, National Bureau of Standards,

Handbook of Mathematical Punctione (ed. M. Abramowitz and I.A. Stegun).

APPENDIX

1. THE DERIVATION OF PELNARD-CONSIDERE

If x 18 the main coastal
direction and y 1s in seaward Y
direction, the angle of wave
incidence 1s nearly (taking

? 2 2
arctgg%fes;% Yioce= o -—a—)%

The littoral drift Q is a COASTLINE Y

function of the angle of wave 7
incidence and can be put into ,ﬂfﬂﬂ<ﬁ777774 X

a Taylor seriee: Fie 17

4aQ
Q Qo + d“_(a- mb) R
in which Q_ denotes the traneport Q if the angle of wave incidence 1s %
This gives i1n linear approximation:

= - g
Q Q0 1 °X
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in which q = %% for o = oco.

The squation of continuity says that the sedimentation is equal to the
decrease of littoral drift:

49 2y .
ix + D St 0.

Substituting Q gives the equation of Pelnard-Considére:

2
2y .4 2x
2t D ., 2°

ax

It will be seen, that this derivation remains its validity when Q denotes
the mean yearly transport along a coast.

[}
In practice, the transport is zero REAL TRANSPORT
1f the angle of wave incadencs as zero. | = N. =~ 7
In order to get this correct in the id
mathematical model, it has sense to choose 7 ABPROXIMATION
Q_ less than the transport when the angle P
ol wave incidence 1s &0 (fig. 18) s
7" e
{arctg q o

o

F16 18
2. DERIVATION OF THE FORMULAE FOR THE TWO LINE SYSTEM

The equations of continuity are:

dq, 2y,
T Y " Dhis

N 3
- w— ¢ Q =D —

ax y 2 2%

Substituting the dynamical equations (3) and (5) for Qs Q, and Qy gives:

2
20 ( ) «p, o2
q -q, (yg = ¥) =Dy 377
1522 y W1~ Y2 12%
e e e e e« (13)
2
2°y, 2y,
7 " W yy) =Dy Eg

Adding both equations gives:

2
> (q4yy + q¥,)  9(Dyy, + Dyy,)
> 22 - 2t
X

which can be written as:
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2
2 D1D2 q»‘ q2 2 (y»‘ - y2)

4 2y, 12 A2y "1 "2 3y .. (4,
D6x2 D2 1'.)1 D2 ax2 b-31
q, + 9
. a2 -a
in which D, + D, and y =g (D1y1 + D2y2).

y is the “coastline™ of Pelnard-Considére. We will confine ourselvss to

q q
to cases where 3% = 3% , which means, that 1f bsach and inshore have the

same curvature, they fill up equable and the profile does not change.
In this case the second left-hand term of (14) 1s zero and we have back
eq. (1) of Pslnard-Considére.

By dividing the squations (13) by D, and D
ting ons finds:

> respectively and subtrac-

2 q D
4 24 ¥ _y . U= ce e e e e (15)
Dbxz D1D2 At
in which y- = ¥y -9 e e e e e e e e e e e e e . {16)

Eq. (15) is the equation for the offshore transport, which equals q Y o
By using the auxiliary variable Yo » equal to:

—L-D t
Yo =y_ ¢ 1D2 [ G A2
this can bs written as:
2
2
g 2% | Y A €13
D bx2 21

(1) and (18) both represent the diffusion~-, warmth-, or conductivity
equation, for which many numeraical or graphical integration processes are
availabls, for instancs the method of Schmidt .

By substituting ths appropriats boundary conditions for y and ygs oOne can
find y and Vg at every time and place, from which ¥, and Ype

Some problems can be Bolved analytically, of which soms examples will
be given.

From (17) it will be seen, that the tims scals of this kind of
processes is highly dependent of a reference time To:

D,D.
T o= —= B ¢ 1°))

3. THE PROBLEM OF PFIG. 8. D1 - D2, qy = dye

Boundary conditions: Yy =¥y = 0 for x =oc and 0 < t <« o°

a
L y,=0 for x = 0 and 0 < { <« oo
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2Y4 Qo1
¢ T = tand= —=— for x =0 and Q0 <t < o0
-~ d¥x 1
2y1-y2=0 for 0 L x <00 and t = 0

Farst the equations (1) and (15) are mads dimensionless by substituting
- [ t =

x x/I.0 , t' = t/To and 1,2 1,2 cot«, 1n which L and T are
definsd in (6) and (19) respectively. In ths following the accents will be

omitted. Denoting the Laplace transform of y' with y, the Laplacs transforms
of the new equations are for the given boundary conditions:

N

o

-

-
ax e e e e e (20)

N

%7 - -
IxX

Solving eq. (20) and substituting the boundary conditions give:
-x Vs
-e

s(Vs + Vs+1)
e e e e (27)

-2e-x s+1

T s(Vs +Vs+1)

<
it

The functions of (21) can be splitted up into fractions. Then terms arise

e—x Vs+1
ag -—————— , which can be developed into series of the kind
Vs
s-n+-1; s-xV§ ,
of which the inverse are integrals of the error function. From this, one
finds the final solution. In the following, the coordinates ars given for
x>0 (the eroded part). For x<0, there 1s antisymmetry. The solution is:

-1 n -t n
1 g g-Qn t X\ -€ 4 }7
y = b3 - = Y (---\/-—-) + == > -
1,2 2](—"'“ ne n-% n! 2n=1 2Vt VRt =1 n' 2n-1

X ~-X X | - x X
=) + fe (-Vt + == t+==) .. ... (22
(Z‘Fc + %8 erfe ( 2\E)+-l;e erfe (VI 2\/"5) (22)
(22) 18 1n abridgsd notation: x = x/Lo (cf (6))y t = t/'I'o (¢t (19)) and
V1,2 = ¥q,p GOt

The upper sign gives Yq» the lower sign Yoo

In (22), the meaning ofyn is: yn (x) = 21 P(gz- + 1) 1" srfe x.
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in erfc x has nothing to do with complex numbers, but denotes the nJch

integral of thc complementary error function.
2
'l‘husy_1 (x) = e * . The functions Yn are shown

in fig. 19. We refer to [6], also for tabels
and recurrence formulae (page 300 t1ll 318).

The erosion of the coast at x = 0 1s:

-t/7
1 - e o t
[y{] oo = 2 tan o ( l\t/’l‘o eer——-To Yy .. (23)

oo 2
2 -X

s

an which erf x = dx and erfc x =

=1 - erf x. Fig. 19 Repeated Inlegrals of the Error Functon

4., STATIONARY CASE WITH GROYNES: FIG. 9.
Y

3y
In the stationary case —;t-l and 3—{2_ in (13) are zero.

This gives the general solution:

¥y = Aex/LO + Be-X/L° +Cx + E

. C e e e . (28)
g, = - — (1e*’To 4 Be™Lo) 4 cx + E
2 a,

Boundary conditions for fig. 9-

& antisymmetry A = -B \
b y1=y2=0 for x =0:E =0
¥y, Q°'| [, }‘4:%)’
& Q9 =0 for x=1L- (aT-)x=L=—q—=tanoc E\—/ )
1
4 y, =0 for x =1 of
Y
R R X
esult - -
. 3_2_ L sinh x/L0
q sinh L/L
¥y, = tan o L 2 r L L ;
1 .. dy L/L0 Fi6 20
q, tgh L/Lo
. . (25
sinh x/L0
x-1 sinh L7L°
¥, = tan o
2 1+ % L/Lo

a7 tan L/,
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5. STATIONARY CASE WITH ONE GROYNE: FIG. 83 AND FIG. 9.

This case can be found from the former by taking L =oc0 and x' = L + x.
The coordinates of the eroded part are:

q -
Y. = - L tano (— + e x/Loy
1 [} q2
e s e e e e e s (26)
21 ~x/L
P — - (o]
Y, Lo tanaol P 1 e )

6. LITTORAL DRIFT ON A PROTECTED AREA.

In order to return from the two-line system to the one~line eystem,
we look for a transport formula for a protected area of the kind:

Q,Qo._q.%i'_’ BN €10

in which y' gives the overall coastal direction
of a protected area (fig. 21) and Q ' denotes
the transport if the overall coastaf direction
is parallel to the x~axis, as in fig. 9.

By applying the transport formula (5) to (25)

Q
we find (tan o = —% : FIG 21
tgh L/Lo
1= I/t
t o « o .
Q, %2 * A1 4, tgh L/Lo (28)

Ay!
If the overall coastal direction 31— hae a certain value, the transport

changes because Q°1 and Q°2 in (28§ have to be replaced by

' Syt
- q, &Y. and Q°2 - A

2
Q 3x % 5x *

ol

From this one can find q' and p2

q, + q q, tgh L/L
2 1 2 1 o
P =1+ — ————L/Lo e 0o e (29)

7. THE SANDWAVES OF PIG, 13.

Differential equations: for the unprotected part (1) and (15), for
the protected part (13) with q, = O. Assumed 1s no littoral draft along
the protected beach.
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In this harmonical case, the derivates to t like %—% can be replaced
by 1wy, by example

Boundary conditions:

a ¥y =3, = 0 at x = o0

- 1
b y1=yzx=eK+x cos(wt-K+'x)atx=-°°,inwhlch
v o2\ 9D
K+ 2q
34
c —- =0 for x = -0
— X

4 ¥y continuous and differentiable at x = O

Solution:

See adjacent page. The "offshore transport wave™ i1s the solution of
the equation (15) for y_, the incoming and reflected wave are solutions
of (1). The solution is highly dependent of the value of w T . This value
defines the short-period waves (wTo<<1) and large-period waves (w T,>>1 ).

8. INFLUENCE OF OBLIQUE WAVES INCIDENCE (FIG. 15). FORMULAE.
Accretion at unprotected coast (branch y{ 1n fag. 15b):

Q 2 R
=t p=1 Zol 43t -x"D/4qt D
Vg el 5 o { 5 e +x\ o+ x\ erf (x Iqt )}

Littoral drift Q at unprotected coast (branch yI)

Q
eo -R=1 o ol { D }
Q= aq e o 1 + erf (x\'4qt )

Accretion at protected coast (branch yi'[I in fig. 15b):
\ = -
¥y = yp (= px)

Littoral drift Q at protected coast (branch yl'[I in fig. 15b)
.q Rzt G { 1 \[-2
Q= Q > a- 0 1+ > erf (px 2q% )

2 F -2
in which: erf x = V—Tt' oj e dt.

For the scour hole (branch y'III and yIV)’ the formulae are similar.
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UNPROTECTED COAST

v, (inshore)

Y, (bcach)\ J
————- -— -~
Incoming wave + Reflected wave Oftshore tronsport wave
(equilibrium profile) (equilibrium profile) {no equilibrium profile)

- “kyx | Co +k,x Dy C3a koxy Wt
y1-R¢[(e "‘ETQ .+_D_E1_¢ )e

<k C skex Ly € koxy 1wt
y2=R¢[(¢‘+-—2c'-——'——3-c )e ]

Cy D Cy4

PROTECTED COAST

Yi,2
tud \ inshore y
gg‘fxu‘;tfon <: /shasc difference 2
= beach y,
-kx « 1t
e
Yy=Re|——
¢ (1.2_‘- w)
1 qy
1 -
Yy, =Re|— g-kx Wt
¢y
IN WHICH
D ‘! WD w0 1 1t by k D2 o«
=\ — = { — - = — {1 WT, S —— — ¢ — —
k. UQM Zq"hq el Rl ©1°7'30 W' T
D /1 B 1\/ 1. Pk P2k
= | 2{= e —— C,zme 0 — o2 2
k-_vq(.ronw)- 0, 1+1WT, 2 2.20 T
k = Sk

x
'

149WT, 1 14 1WT,
.wl(_‘_&_)=__ _‘D_°_ ¢,
92 nD—l.w Lo 1422
9y
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9. EROSION OF BEACH AND INSHORE ACCORDING TO TWO-LINE SYSTEM (fag. 16).
FORMULAE.

Differential equations for t > O: (13) wath qq = 0.

Results:*

t < 0 (groynes not yet constructed)-

2aq2 D.D

t > 0 (groynes constructed):

2aq D.D .
v, = ax2 + 2 . ~l§£ . (e /T 1+ T )
qy D o

2aq D.D _ _
Y, = ax® 4 2, 12 e %% _ Ta s 21 t/TO)
2 ay 02 T




