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ABSTRACT 

A mathematical theory will be given about the phenomena, which occur 
if on a coastal area groynes are constructed. 

In former similar theories ( [1] , [2], [3] , [4], [5] ) the coast was 
schematised by one coastline. In the following theory it is presented by 
two lines, one line representing the beach and the other one the inshore. 

The theory is based upon the following assumptions- 

1° the littoral drift along beach and inshore is linear dependent of the 
angle of wave incidence and therefore of the direction of the line of 
beach and inshore respectively; 

2 the transport perpendicular to the coast depends on the steepness of 
the profile. 
If the distance between the line of the beach and the line of the 
inshore is less than a certain equilibrium distance, the profile is 
too steep and there is an offshore transport. In the opposite case 
there is an onshore transport. The relation between offshore transport 
and distance between the mentioned lines is linearised. 

Some results are shown in fig. 8, 9 and 13. 

It is found, dat the influence of a groyne system is threefold: they 
reflect short-period beach processes on the adjacent areas, they retard 
erosion and they give a lee-side scour. 

But the theory only gives one aspect: influence of diffraction and of 
currents is not yet taken into account. 

INTRODUCTION 

In order to know what will happen with a coast after the building of 
coastal structures, one can make use of several approaches. 

If one should know the wave spectra during a long time at the site, if 
a reliable sand transport formula was available, if one would know the 
interaction between waves and currents on the sand transport and if the 
rules for the onshore- and offshore transport were known, one would probably 
be able to predict the changements. Unfortunately, the state of knowledge 
is not so far just now. 

Another approach, which we will use here is more or less morphological. 
With the aid of the continuity equation and a simplified dynamical equation 
with some unknown constants one can find formulae for the coastline in 
course of time. With the aid of curve fitting one can find the unknown 
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constants, which are only valid for the considered area. Furthermore one 
can find the constants from theories, following the first-mentioned 
approach, which gives a quick check of these theories. 

The first one, who published a paper about the second approach was 
PELNARD-CONSIDERE fl] . The original idea was of BOSSEN. 

PELNARD-CONSIDERE assumes, that the profile of the coast always 
remains the equilibrium profile, so that he only needs to consider one 
coastline, being one of the contourlmes. He assumes no currents, constant 
wave direction, small angle 
of wave incidence and a 
linear relation between 
angle of waves incidence 
and littoral drift. As the 
angle of wave incidence at 
A is larger than at B, the 
littoral drift at A is lar- 
ger than at Bj this means 
that there is accretion 

WAVE  INCIDENCE 

between.   A  convex  coast Flg 1      Accretion   on   a   concave    coast * 
erodes, a concave coast 
accretes. 

He finds (cf "Appendix"), that the accretion is linear dependent of 
the curvature of the coast and inverse proportional with the depth D, up 
to where accretion takes place: 

Li - 3L   !_£ 
at  D , 2 

dx 
(1) 

in which the x-direction is the mam coastal direction, the y-axis points 
in seaward direction and in which 

dQ q = IS.    < 

the derivative of the littoral drift Q to the angle of wave incidence a.. 

Prom this differential equation the coastline y as a function of x 
and t can be found for many boundary conditions. PELNARD-CONSIDERE finds 
solutions for the coastline of river deltas, the coastline m the vicinity 
of harbour moles and so on. His experiments confirm the theory. 

GRIJM [2] , [3] extends the theory by using a better formula for the 
littoral drift: 

Q = Q sin 2°t , 

in which ex. is the wave direction. He computes the shape of river deltas 
and finds fundamentally two possible solutions for these deltas: one in 
which the angle of wave incidence is everywhere less than 45° (fig. 2a) 
and the other one, m which this angle is everywhere more than 45°(fig. 2b). 
Also combinations are possible (fig. 2c). 
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In figure 2c the angle of wave incidence is less than 45 at the parts 
A, B, F and more than 45 at the parts C. D, E. As one never knows which 
combination one has to choose, the problem seems to be indefinite. 
BARKER and EDELMAN [4] treat the same problem with the linear Pelnard- 
Considere approach. They investigate also the case of negative q(= i*S. ), 
which occurs if the angle of wave incidence is large. Their solutions are 
more or less similar to GRIJM, but opposite to GRIJM, they also find a 
periodical solution: 

e    D cos Kx (2) 
t . 0- 

Rg 3 Decay    of   smussoidat      shaped    coastline 

This is a sinusoidal shaped 
coastline of which the 
amplitude decreases in course' 
of time if q is positive 
(small angle of wave inciden- 
ce), but increases if q is 
negative (large angle of wave 
incidence). Therefore, solu- 
tions of the shape of fig. 2b are unstable and will be destroyed, because 
slight deviations trigger large deviations according to (2). 

This solves the problem of the indefimteness: nature will prefer 
solutions of category I. GRIJM did not find this solutions, because he 
confined himself to solutions growing with \/Tin all directions. 

PELNARD-CONSIDERE [1] considered river deltas and coastal structures, 
GRIJM [2] , [3] and BARKER and EDELMAN [4] merely treat river deltas. 
BARKER [5J investigates the periodical solutions of eq.(1). Besides the 
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"standing" and attenuating wave of fig. 3, also propagating and attenuating 
waves are possible. The propagating sandwave found in the prototype on 
Vlieland could be explained with theory. BARKER also examines the influence 
of coastal structures on these sandwaves. The sandwave appears to be 
reflected by the structure: the amplitude at the site of the structure is 
enlarged. One can sense this, because there is an analogy between these 
moving sandwaves and tidal waves. The coastline is analogous to the vertical 
tide and the littoral drift to the horizontal tide. If one stops the littoral 
drift (current) by a dam, one increases the variations of the coastline 
(vertical tide). 

One of the beauty failures of the solutions of PELNARD-CONSIDERE CO 
and BARKER [5] is the assumption of parallel depth contours. Near coastal 
structures the deviations of the 
prototype can be considerable. 
For instance, the solution near a ,A 
breakwater is sketched in fig. 4a. 
PELNARD-CONSIDERE finds, that the 
coast on the left-hand side builds 
up to the head of the breakwater 
and that the coastline on the 
right-hand side erodes the same 
amount. This might be true for 
constructions, extending to large 
depths. But in the case of groynes 
only the littoral drift on the 
beach is prevented: at the beach 
there will be sedimentation of 
material on one side of the 
groyne and erosion on the other 
side. But m deeper regions this 
disturbance does not take place, 
so on the left-hand side the 
profile becomes steeper than the 
equilibrium profile and the sand 
drops down, and on the right-hand 
side the profile is flatter than 
the equilibrium profile and the 
sand is pushed by the waves in 
upward direction. 

In order to reproduce this feature in a mathematical model it is 
necessary to schematise the coast by two lines instead of one. This will be 
done in this article. The difference with former theories is, that thus 
off- and onshore transport are taken into account. 

parallel     contour - lines 

F.J    A" More   reasonable 

The   arrows    give 
of    the    sanddrift 

approximation 

the    direction 

Definitions and assumptions. 

r Q 
Dl 

Groyne 
7T7T77777777? 

Pig. 5a denotes a schematized 
profile. The profile is under- 
d vided into two parts, one 
part consisting of the profile 
between 0 and D. below sea 
level (beach), the second one 

F,g5a 

between D, and D, + D_ (inshore). 

Schematised     profile 

1   °" 1 
Between beach and inshore i 
horizontal shelf at depth D. 
the total depth D being D. IV 
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°2 

Groyne . 

•7k 

:     yi 

F.g5b Two-line     theory 

Q 

S.T 

/;sj///;//;;/J/j;/;sjJ 

 y 

-t 

The depth D is assumed to be so 
large, that no littoral drift 
takes place here. 

In reality one can imagine, 
that a breaker ridge occurs at 
depth Di and that a trough links 
the two parts of the coast 
(dotted line), fig. 5a. 

It is assumed, that a groyne 
reaches up to the horizontal 
shelf at depth D-] and prevents 
all littoral drift along the 
beach, but of course not along 
the inshore. 

In the theory the profile is 
still more schematized, accor- 
ding to fig. 5b. A stepwise 
profile remains. The areas 
PQSR and RTUV in fig. 5a are 
equal to the corresponding 
areas in fig. 5b. 

In top view one sees two lines 
at a distance y-j and y2' from 

the x-axis, which will be called "the line of the beach" and "the line of 
the inshore" respectively. 

The "equilibrium distance" W is the distance y2» - y. between beach 
and inshore, when the profile is an equilibrium profile. 

The following dynamic equations are assumed. 
If the distance yg• - y1 is equal to the equilibrium distance W, no inter- 
action is assumed. If the distance y ' - y. is less than W, the profile is 
too steep and an offshore transport will be the result. An onshore trans- 
port will occur m the opposite case. 

We linearize this relation and take for the 
offshore transport Q per unit length: 

F.g5c One--line   theory 

the  area    PQSTUV 

is always   the same 

Qy«qy   {yi - (y2'-w)f (3a) 

in which q    is a proportionality constant. 
The dimension of q    is [l/t] .  For a simpler 
notation,  we denote: 

and   offshore    transport -   W (4) 

Then  (3a)  becomes 
'1 (3) 

With respect to the littoral drift, the assumption of PELNARD- 
CONSIDfcRE [1] is applied, bothfor beach and inshore: the transport in 
linearized: 
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Fig   8b 

i 

Vertical        1 5 L0 tan a ~-*<\l<Mti> 
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ay-i 
Q1 " Qoi " qi S7" 

*o2 - q. 
?y2 

2 ?x 

(5) 

Fig 7   Littoral  drift  along 
beach   and   inshore 

in which Q . and Q _ are respectively the 

"stationary transport" (littoral drift where 

U, 3 y2 
-— = 0, resp. —— = 0 , fig. 7) on beach and 

inshore and in which q-| and q2 are proportionality constants. The dimension 
of q1 and q2 is[l3/t]. 

RESULTS 

By making use of the continuity equation and the above-mentioned 
dynamical equations one can compute many stationary and mstationary cases 
(cf. "Appendix"). 
Of importance appears to be a reference length: 

L = 
o 

1 

y q-i  q2 

(6) 

•M 

Pig. 8 shows the result in the case of accretion and erosion near one groyne 
when q. = q? and D,. = D„. (cf Appendix, 3). 

In the initial situation the lines of beach and inshore are parallel. 
Pig. 8a shows the situation immediately after the construction of the groyne. 
Only the beach shows some build-up on the right-hand side and erosion on 
the left-hand side. It must be stressed, that the influence of diffraction 
is not taken into account. 

In fig. 8b and 8c the profile on the left-hand side becomes too steep 
and sand drops down to the inshore. Here the littoral drift was originally 
everywhere the same. The supply of sand from the beach overcharges the 
transport capacibility of the inshore and therefore sand sedimentates here. 

Now the littoral drift Q along the groyne at the inshore becomes 
«y2 

larger ( -— becomes negative, cf (5) ). In the final stage (fig. 8d) beach dx 
and inshore on the left-hand side and on the right-hand side are shifted 
with respect to each other. This is in correspondence with the results of 
PELNARD-CONSIDERE [1], but he finds, that the coast builds up to the top of 
the groyne, and here it is found, that it builds up to a distance, only . 
dependent of q- q and the angle <*. of wave incidence, where tanot= _°1 

y q-i 
Pig. 9 shows several stationary cases. 

Pig. 9d gives again the final state of fig. 8d. The transport is the same 
as without a groyne, because the transport at a long distance of the groyne 
does not change. If more groynes are constructed, the littoral drift along 
the beach is stopped more and more, because the beach turns in the direction 
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of the wave crest (fig. 9c,b,a). 

We now consider the case, that the groynes are so near to each other, 
that they prevent all the transport along the beach (fig. 9a). 
In this case the total littoral drift is the drift along the inshore: 

Q " Q2 " %2  ~  *2    XT 

Before the construction of the groynes this transport was: 

ay-i     ;>y2 
Q - Q1 • Q2 - Qol + Qo2 - q, ST   - q2 — 

Following the conception of PELNARD-CONSIDERS (cf Appendix, 1), and 
assuming that the sedimentation takes place equable on beach and inshore 
(q sufficiently large), the coastal equation for a protected area would be: 

ix  h. ix 
at ° D x 2 dx 

The coastal constant q/D is changed in q„/D. The assumption, that the 
sedimentation takes place equable on beach ana inshore, is about correct 
for long-term coastal processes (long with respect to T0, of Appendix 2,(19),7. 

We considered the case, that the groynes were so near to each other, 
that they prevent all the transport along the beach. If the distance 
between the groynes is larger, the coastal constant will not dimmish with 
a factor q?/q, but less: 

a-        •    -2 

at = D~ "H> • in which   i2< q' < ^1 + q2   • • (7) 

dx 
1 

This factor can be computed (cf Appendix, 4 ) and will be called —j 
  P 

1      a" \ I 'M * q2 
2 

P 
(8) 

We now have returned to the one-line theory of PE1NARD-C0NSIDERE 
a protected area can be considered as an area with another coastal constant 

(•*—) than the neighbouring unprotected area, and this constant can be 

computed with the two-line theory. 

In the following section we shall give first some rough statements, 
making use of the one-line theory, considering a protected area as an area 
with another coastal constant, and afterwards we shall illustrate it with 
more accurate computations with the two-line theory. The advantage of the 
one-line theory is, that it gives a quick insight in the essence of the 
matter. 

LAWS OP SCAIE 

One can make the coastal equation (1) dimensionless by substituting: 
x = ^x .X , y - ny . 7J , t - nt . -C , q/D = ncc . C, in which X ,  T£ .< 
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and C are dxmensionless and n , n , n , n  give the scale factor of x, y, 
x  y  t  cc 

t and the coastal constant q/D. 

One finds the following relation: 

n. 
constant (9) 

The scale n of y can be chosen arbitrary, because y occurs on both 
sides of eq. (1). We shall give some examples: 

Consider two half-mf mite coastal areas with different coastal 
constants, which are in rest at infinity. Suppose that the ends of both 
areas carry out the same movements m course of time. The shape of the 
coastline will be the same in both cases, but the x-scale will be equal to 
the square root of the coastal constants (fig. 10a). 

Consider now two areas with different coastal constants, which are 
identical at time t = 0 and of which the ends of the areas are in rest. 
Now the x-scale is the same and therefore the timescale of the changements 
will be inverse proportional to the coastal constants (fig. 10b). 

yf ^ ^ 
COASTAL   CONSTANT     1/D 

same   curve 

COASTAL    CONSTANT 

Fig 10 Fig 10" 

INFLUENCE OP A ROW OP GROYNES 

We consider a coast, where over a long stretch groynes are constructed 
at time t » 0. 

What is the influence of the groynes on the coast' 

We will consider three influences, which can be superponed, because all 
equations are linear- 

1° the influence of external causes (boundary conditions); 

2° the influence of the oblique incidence of the waves (stationary 
transport); 

3 the influence of the shape of the coast. 

1  Influence of external causes. 

Assume a wave direction, perpendicular to the coast and a straight 
coastline at time t = 0. 
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NO STATIONARY 
TRANSPORT 

MOVING 

BOUNDARY 

SAME 
BOUNDARY <| 
CONDITION 

L = ce> 

Y 
t 

1,1,  I 

NO STATIONARY 
TRANSPORT 

III.   !    Ill 

FIG 11    coastline  at time t = 0 
/ / V V / / />/ REST 

— X 

FIG 11b   coastline   at  time  t  — X 

FIG 11 c   coastline at time t, if no groynes would  have been  constructed 

Assume, that by one or another external cause (for instance, a river 
or tidal canal, which embouches left of the left boundary, fig. 11) the 
coastline at time t, would have been according to fig. 11c, if no groynes 
would have been constructed. 

What is the coastline if groynes are constructed at time t » 0 ' 

This coastline can be constructed with the following method. 

The coastline y^ of the protected area can be found by reducing the 
x-scale of y by a factor 1/p (p defined by (8) ) and by multiplying the 
y-scale with a factor 1 + r, in which: 

P - 1 
P + 1 

so 1 + r 2P 
P + 1 

In formula: y* (x) - (1 + r) y (px) 

(10) 

(11a) 

The coastline of the unprotected part y_can be found as the sum of the 
original y plus a "reflected y"; the latter one being the reflection of the 
original y (for x > 0) with respect to the y-axis and multiplied with the 
reflection .factor r, given m eq. (10): 
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**-*•*«§#    '-^«s^tr^ PROTECTED  BEACH 

FIG 13 PROPAGATING    SANDWAVE    ACCORDING     TO    TWO-LINE   SYSTEM 
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if x < 0,  then y  (x) » y (x) + r. y(-x)  . . 

In fig. 12 the method of construction is visualised. 

(11b) 

V.Y, 

FIG 12 

One can proof easily, that: 

a. the new coastline of the unprotected part y suffices the coastal 
equation (1) for an unprotected area: it consists of the sum of two 
functions, both obeying this linear equation. 

b. the new coastline of the protected part y suffices the coastal 
equation (7) for a protected area. For the timescale of the changements 
at A is the same in fig. 11b and 11c and the x-scale is proportional 
to the square root of the coastal constants (fig. 10a). 

11b is equal to c. the transport a little bit on the left of A in fig. 
the transport a little bit on the right of A. 

d. the y-coordinates at A of the protected and unprotected area are the 
same. 

As an example of the influence of external causes in the case of the 
two-line system, fig. 13 shows the influence of groynes on a harmonical, 
propagating sandwave. These sandwaves occur, if the left-hand boundary 
erodes and accretes harmonically (by an external cause), if the right-hand 
boundary (protected coast) is in rest, and if the profile at the boundaries 
is an equilibrium profile [4] , [5] . In the case of fig. 13, it is assumed, 
that the distance between the groynes is so small, that no littoral drift 
takes place on the beach. The protected beach just reacts as a store. 
The formulae are given in the Appendix, 7. 

As fig. 13 shows, for short-period processes  , the motion of the 

TT defined in the appendix 
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xnshore is practically the same either if groynes are constructed, either 
if they are not. Then the motion of the protected beach is small, but there 
is a large edge effect on the unprotected beach, near the beginning of the 
groyne system. 

For long-period processes  the results of the one-line theory are 
confirmed: the wave-length along the protected beach and inshore is a 
factor 1/p times the wave-length along the unprotected beach and the 
amplitude is enlarged by a factor 1 + r, according to (10). 

2 Influence of oblique incidence of waves 

According to the one-line system, the transport along an unprotected 
coast y and along a protected coast y' are respectively: 

Q,= v -«* If 
In this formula Q ' and q' are smaller than Q and q. If the transport along 
the beach is prevented totally, Q ' and q' ar§ respectively Q - and q„ , 

O 0*- £ 
the constants of the inshore. 

Consider an area, partly protected with groynes, which is at t « 0 
parallel to the x-axis (fig. 15a). On the unprotected beach the transport 
will be Q and on the protected beach Q ' and therefore the sedimentation 
per unit time will be Q - Q '. With the same considerations as in the 

o   o 
chapter "influence of external causes" it can be shown, that a kind of 
delta will be formed, which will increase with a velocity proportional to 
\/t (fig. 15b). This delta is not symmetrical: the same y-coordinate at the 

point (-x) of the unprotected coast occurs in the point x/p of the protected 
coast (fig. H). The inverse will occur on the lee-side of the groyne system. 
Here a similar shape scour-hole 
will be formed. Pig. 15 shows the 
shape and the transport, the 
formulae are given in appendix, 8. 

F.jH 

The corresponding two-line 
system is rather intricate and 
still in study. 

3° The influence of shape 

Even if the coastline would not change because of external causes and 
even if the influence of stationary transport is not taken into account, a 
convex coast would erode and a concave coast accrete according to eq. (1): 

at  D , 2 

In the one-line system the difference between a protected coast and an 
unprotected coast is a difference in the constant q/D, which differs a 
factor p , according to (8). This means, that a protected coast accretes 

defined in the appendix 
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'•EROSION   OF 
INSHORE 

SCALES:   TIME 1 3 T.=   -51-22. 
1vD 

EROSION    IS   -?S92.J>!°* 

 1— 
ZERO   LINE    OF   INSHORE li   TIME 

-5-JL 
TIME 

LIMIT   OF   BEACH    EROSION 

v^      "-VLIMIT   OF INSHORE   EROSION 

D,   = D2 

Profile     A - B 

OJ-l-U-^-1 II III 
r BEACH   y, 

Groynes   constructed   at  t =0 

At  t = 0   is  coasthne   y, = y2 = ax2 

Fig   16    EROSION   OF BEACH   AND   INSHORE    ACCORDING    TO   THE   TWO - LINE   SYSTEM 
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(erodes) slower than an unprotected coast with the same curvature. The 
txmescale is p2 txmes as large, according to (9) and fig. 10b. 

At the boundary between a protected part and an unprotected part edge 
effects arise, which can be computed graphically with the method of 
Schmidt [5] . 

Pig. 16 shows the erosion of a convex coast, according to the two-line 
system. The formulae are given m appendix, 9. 

It is assumed, that before t » 0 beach and inshore have the same 
parabolic shape and an equilibrium profile. They erode with the same 
velocity. At time t • 0 groynes are constructed at the beach, so near to 
each other, that they prevent all transport along the beach. The erosion 
along the inshore is not stopped, however, the profile becomes too steep 
and sand moves from beach to inshore. 

The erosion of the inshore diminishes and the erosion of the beach 
begins again. Finally, beach and inshore erode together again, but the 
profile remains steeper than the equilibrium profile, and the total rate 
of erosion is less than before, according to the one-line theory. 

DISCUSSION 

The theory only deals with one aspect. 

Other aspects are: 

1 the influence of rip-currents near the groynes. 
This influence is two-fold: rip-currents transport material from beach 
to inshore and they cause stream-refraction. These two influences work 
against each other. The transport of material from the beach causes a 
scour-hole on the beach and the stream-refraction causes a spit on the 
beach. 
At the moment experiments with dyed water in the prototype are carried 
out to get an impression of the order of magnitude of these rip-currents. 
Rip-currents flatten the profile and lower the rate of effect of a 
groyne-system. Therefore it is very important, that they give the 
correct transport in models, because otherwise one can find the inverse 
effect of groynes as in practice. 

2 the influence of diffraction on the lee-side of groynes. 
The author has the feeling that diffraction does not really change the 
effect of a groyne system, but only has minor effects in the immediate 
vicinity. 

3 variable wave direction 
This causes changing boundary conditions near the groynes. 
Most influence will be found near the first groyne of a groyne system, 
where this will generate short-period moving sandwaves on the beach. 
These sandwaves have a short wavelength and will decay at a short 
distance of the groyne. At a long distance of the groynes one only finds 
the effect of mean wave conditions and no influence of variations. 
Therefore, also with varying wave conditions, most of what has been 
said, especially about long-period processes, remains its validity with 
changing wave conditions. 

4° non-linearity in the transport equation. 
According to the author, this is mostly of minor importance, except if 
anywhere the angle of wave incidence along beach or inshore becomes 
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about 45° or more. In this case the matter of instability, mentioned in 
the introduction becomes important. A point where this can occur is in 
fig. 8 on the inshore, right in front of the groyne. 

Of course everyone will be interested in the values of the coastal 
constants. 

The following is not more than a reasonable quess, because serious 
investigations have not yet been done. 

6  T 
For some parts of the Dutch coast, q/D « 0,4 x 10 m /m depth/year/ 

radian and q might be 1 to 10 m/year at a depth D. of 3 m. 
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APPENDIX 

1 . THE DERIVATION OF PELNARD-CONSIDERE 

If x is the mam coastal 
direction and y is in seaward 
direction, the angle of wave 
incidence is nearly (taking 

arctg 2i ^ 11. 
ax ax ):< ax 

The littoral drift Q is a 
function of the angle of wave 
incidence  and can be put into 
a Taylor series: 

Q = Q  + -j& («•- «-) +  ••• o  dot      0 

FIG 17 

in which Q denotes the transport Q if the angle of wave incidence is «. 
This gives in linear approximation: 
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dQ in which q « -r2-   for ^  doc 

The equation of continuity says that the sedimentation is equal to the 
decrease of littoral drift: 

Is- + »   &- o. dx     dt 

Substituting Q gives the equation of Pelnard-Considere: 

at D > 2 ' 3x 

It will be seen, that this derivation remains its validity when Q denotes 
the mean yearly transport along a coast. 

In practice, the transport is zero 
if the angle of wave incidence is zero. 
In order to get this correct m the 
mathematical model, it has sense to choose 
Q less than the transport when the angle 
of wave incidence is oc (fig. 18) 

Q 
REAL    TRANSPORT 

/   ./APPROXIMATION 

/      / 
/   ^ /   / / / a« 

(!<arctg q « 
ne 18 

DKRIVATION OP THE FORMULAE FOR THE TWO LINE SYSTEM 

The equations of continuity are: 

d^ 

dx 

dQ2 

dx" 

a*1 

ay, 
u2  at 

(12) 

Substituting the dynamical equations (3) and (5) for Q. , Q. and Q gives: 

o y1 

dx 

a y2 
?2 ~~2~ ox 

(*1 ' *z> m D1 FT 

(y. 
ay2 

(13) 

Adding both equations gives: 

b (q^y-i + q2y2)  ^(»1y1 + D2y2) 

at 

which can be written as: 
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D 5x2   D2  D1   V     Sx2     &t (    ' 

a  q1 + q2 1 m which i -   + ^   and  y - yj (D^ + D^). 

y is the "coastline" of Pelnard-Considere. We will confine ourselves to 
11   <J2 

to cases where 7?— « -rr- , which means, that if beach and inshore have the 

same curvature, they fill up equable and the profile does not change. 
In this case the second left-hand term of (14) is zero and we have back 
eq. (1) of Pelnard-Considere. 

By dividing the equations (13) by D. and D„ respectively and subtrac- 
ting one finds: 

2.   1-2=. . 22__ y = tS^  (15) 
D h2   D1D2      at 

in which y- » y., - y2        (16) 

Eq. (15) is the equation for the offshore transport, which equals q y. . 
By using the auxiliary variable y  , equal to: 

q D 
y 

ye - y_ e  D^g *      (17) 

this can be written as: 

 (18) <L   111        Jl 
B  ax2     "   M 

(1) and (18) both represent the diffusion-, warmth-, or conductivity 
equation, for which many numerical or graphical integration processes are 
available, for instance the method of Schmidt |>]. 
By substituting the appropriate boundary conditions for y and y , one can 
find y and y at every time and place, from which y1 and y?. 

Some problems can be solved analytically, of which some examples will 
be given. 

Prom (17) it will be seen, that the time scale of this kind of 
processes is highly dependent of a reference time T : 

D1D2 To=FIT      W 
y 

3. THE PROBLEM OP PIG. 8. D., - I>2, q., - q.,. 

Boundary conditions:  ji y. « y„ - 0 for x =<x=  and 0 < t <. ew 
_b y2 » 0      for x « 0  and 0 < t <. oa 
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Jy1 Qo1 o   r—- = tan oc = —ii-   for x = 0    and    0 < t < oo 
-  *>x q1 

A    y-i   • y2  " ° f or 0 < x < oo   and t - 0 

First the equations (1) and (15) are made dimensionless by substituting 

x' » x/L  , t' - t/T  and y.  ' = y. „ cot <*, in which L and T are 

defined m (6) and (19) respectively. In the following the accents will be 
omitted. Denoting the Laplace transform of y' with y, the Laplace transforms 
of the new equations are for the given boundary conditions: 

6Z- 

*   2 " ^ 3X  (20) 

i2" 
-- y = s y 

3x" 

Solving eq. (20) and substituting the boundary conditions give: 

-x\Ts 

-2e 
y =  

s(/s + Vs+1) 
    . (21) 

-x \Ts+1 

s(\fs   + VS+T) 

The functions of (21) can be splitted up into fractions. Then terms arise 

-x fs+1 
as   , which can be developed into series of the kind 

fa 
-n+4    -xVi" s       z  e , 

of which the  inverse are  integrals of the  error function.  From this,   one 
finds the final  solution.  In the  following,   the  coordinates are given for 
x>0  (the eroded part).  For x<0,   there  is  antisymmetry.  The  solution is: 

1      f    (-pn~1      tfv       /x,-£2    ?tfy 
'1'2 * 2l/Tt    n=1 n_i '  n:      7 2n-1   ^TTV  +\pTt      ^    n'     i 2n-1 

(jfe)    ± * e_X erf0   ("vt + £*=)  + i ex erfc  (Vt + ^=) (22) 

(22)  is in abridged notation:  x » x/L     (cf  (6)),   t »  t/T     (cf  (19))  and  k£  Q Q 

y1,2 " ^1,2 COtOC' 
The upper sign gives y., the lower sign y„. 

In (22), the meaning of Y is:  Y  (x) = 2n F (# + 1) in erfc x. 
n      *  n ^ 



GROYNE SYSTEM 513 

i erfo x has nothing to do with complex numbers, but denotes the n 
integral of the complementary error function. 

2 
Thus~y 1 (x) = e    . The functions Y are shown 

in fig. 19. We refer to EG, also for tabels 
and recurrence formulae (page 300 till 318). 

The erosion of the coast at x = 0 is: 

T 1 - e_t/To 
["y.l   - 2 tan<*(—,  , •... erf L 1J x=0 \JTt7T 

) .   (23) 

00      p 
x _• 

e 
»- o 

dx and erfc x • 

= 1 - erf x. Fig. 19   FUp.attd   Ini.grals  of th«  Error  Function 

4.   STATIONARY  CASE  WITH GROYNES:   PIG.   9. 

^y ay. 
In the stationary case —— and —— 

This gives the general solution: 

-x/l( 

in (13) are zero. 

'1 Aex/l° + 

y2 - — (Aex/Lo + Be 

0 + Cx + E 

-x/I, 0) + Cx + E 

Boundary conditions for fig. 9- 

a_   antisymmetry A = -B 

— y1 = y2 = ° for x = 0: E " ° 

c Q, -0 for x-L- (gl)x_L.-|i 

i y5 

oi 
tana. 

0 for x 

Result• 

tan oC - 

q„   sinh x/L \ 

q.   sinh 1/1 
1 0 

L/L 
1 + 

y„ = tan 06 
1 + 

q1  tgh L/LQ 

sinh x/L 
L   o 

smh L/l 

q2    
L/Lo° 

qi  tgh L/L0 

V (25) 

.7 

(24) 

FIG 20 
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5. STATIONARY CASE WITH ONE GROYNE: FIG. 8d AND PIG. 9. 

This case can be found from the former by taking L =oo and x'   = L + x. 
The coordinates of the eroded part are: 

y.,   » - L    tan oc  (— + e 
i o Qn 

-x/L, 
o) 

11 -TC/T 
y9  = - I    tanoC ~r (1  - e X/L°) 
CO 4o 

(26) 

6. LITTORAL DRIFT ON A PROTECTED AREA. 

In order to return from the two-line system to the one-line system, 
we look for a transport formula for a protected area of the kind: 

J,yt 
3 ' - q* ,, o       2>x (27) 

in which y' gives the overall coastal direction 
of a protected area (fig. 21) and Q * denotes 
the transport if the overall coastal direction 
is parallel to the x-axis, as in fig. 9. 
By applying the transport formula (5) to (25) 

Q„ 
we find (tan oi » °1 

h 
): 

tgh L/L 
1 - "L7L~ 

3o2 + 9o1    q..  tgh L/L 
+ q, ^171 

(28) 

FIG 21 

If the overall coastal direction has a certain value, the transport 
changes because Q - and Q „ in (287 have to be replaced by 

oi     oc 

*1 3x 
and QQ2 - q, 

ay' 
*2 bx   ' 

From this one can find q' and p 

"1 + q2 
q' 

1 + 
q1  tgh L/L 

L/L . (29) 

7. THE SANDWAVES OF FIG. 13. 

Differential equations: for the unprotected part (1) and (15), for 
the protected part (13) with q = 0. Assumed is no littoral drift along 
the protected beach. 
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In this harmonioal case, the derivates to t like rf can be replaced 
by iwy, by example 

Boundary conditions: 

a  y1 » yg • 0 at x = °° 

£  y « y = e 
+   cos (w t - K 'x) at x = - °° , in which 

ay 
0  r—- » 0 for X « -0 —  Sx 

_d  y„ continuous and differentiable at x = 0 

Solution: 

See adjacent page. The "offshore transport wave" is the solution of 
the equation (15) for y , the incoming and reflected wave are solutions 
of (1). The solution is'highly dependent of the value of to T . This value 
defines the short-period waves (u>T <<1) and large-period waves (t*)T >>1). 

8. INFLUENCE OP OBLIQUE WAVES INCIDENCE (PIG. 15). FORMULAE. 

Accretion at unprotected coast (branch yT in fig. 15b): 

*I " W V" ^ {V¥'-XW *W* • *V* erf (x^)[ 
Littoral drift Q at unprotected coast (branchy..) 

Q . Q - JL^J. . q 2al  | 1 + erf (x\/^ )| o    P       qn  t V 4qt ) 

Accretion at protected  coast   (branch yIT  in fig.   15b): 

yII  = yI  ("  px) 

Littoral drift Q at protected coast  (branch y'     in fig.   15b) 

Q . Q    - JLil q .Ssl   (,   + I    erf  (Px\ffi )} 
o p       H       q1     ( p V 4qt   'J 

2   ?  -t2 m which:  erf x » -7=  / e   dt. 
v  o 

For the scour hole (branch y'jjj and y ), the formulae are similar. 
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UNPROTECTED   COAST 

Incoming wave 
(equilibrium  profile) 

Reflected wave • Offshore transport  wave 
(equilibrium  profile) (no  equilibrium  profile) 

V, - Re [(e-k- £2- »k.l      Do     C3 k_x 
D       C] 

Y2 - Re [(e_k*: x       C2 *k,x      D,      C3        k.x 
C, DC, 

PROTECTED  COAST 

y «] 

M.2 

/phase  difference 
inshore  y2 

-  beach  y, 

y, =Re 
»-kx + rCOt 

y2 =Re|J_e-|"'•'w, 

IN   WHICH 

"0 o 

k «\/,M.B-/1*,MT»I7,j-\/E^ 
2 

WD 

c   --!*—  k   1 °2   k 
1   " 2 * 2D     k. *   2D      k„ 

C     .1,2    L     _1   JL 
2 s 2 * 2D     k. " 2D     kt 

C3=t 
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9. EROSION OP BEACH AND INSHORE ACCORDING TO TWO-LINE SYSTEM (fxg. 16). 
FORMULAE. 

Differential equations for t > 0: (13) wxth q. » 0. 

Results• 

t < 0  (groynes not yet constructed)' 

D,D0 

^.^^  +  S  '  D2  -B2-To 

t >  0  (groynes constructed): 

2  2acl2  D1D2   ,  -t/T0   ,   t  , 

y2 = ax2 +f!*L . ^  je-^o . , + i_ + £_ (1 . .-t/T0) 
qy    D    ^ o   2 


