CHAPTER 15

THE SHEAR STRESS OF SEA BREEZE ON A SWASH ZONE

By Shih~Ang Hsu
Coastal Studies Institute
Loulsiana State University

Baton Rouge, Louisiana 70803

ABSTRACT

Measurements of shear stress under the effect of a sea breeze
were made by simultaneous wind and temperature profiles over a shore
near Fort Walton Beach, Florida It was found that the sea breeze in
the surface boundary layer is in the atmospheric free-convection regime
The measured shear stress coefficient is in conformity with that ob-
tained by other investigators by the sea surface tilt method under
the unstable condition For coastal applications, the result is found
to be more reliable than those assumed coefficients obtained under
neutral stability for this localized coastal wind system

INTRODUCTION

In coastal areas, especially on tropical, subtropical, and marine
desert coasts,and on the shores of relatively large lakes, we can
observe 1n the course of a day the reversal of onshore and offshore
winds, called sea breeze and land breeze, respectively Perhaps the
most lucid synopsis of the main features of these local wind systems
has been presented by Defant (1951) Baralt and Brown (1965) have
compiled an excellent annotated bibliography on this subject It
should be noted that whereas a hurricane or storm may cause extensive
damage to coastal structures, the sea breeze 1s a persistent phenomenon
and may, 1in the long run, be more important For instance, loss of
beach sand into the backshore area as a result of sea breeze is an
urgent engineering problem, examples are found especially in coastal
Peru, Libya, Florida, and the Cape Hatteras National Seashore

The mesoscale structure as a function of space and time and par-
ticularly the hypothesis of land—- and sea-breeze systems which are
governed by the circulation theorem have\been observed and verified
on the Texas coast by Hsu (1970) Some of the microstructure of the
frontal characteristics and the diurnal clockwise rotation of the system
with time owing to the Coriolis effect have been observed and presented
elsewhere (Hsu, 1969a), this paper will study the surface shearing stress
aspect of the sea breeze
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The sea breeze is effective in generating waves and currents
(Murray, personal communication), which in turn transport sediments
1n the littoral envaironment (Sonu, personal communication) Also,
eolian sand transport (Sonu, personal communication) and air pollution
(Neiburger, 1969) in the coastal zone are closely controlled by this
localized wind system  Since in the nearshore areas that are frequently
affected by diurnal local wind systems the lapse rate is rarely adia-
batic and buoyancy forces must be considered, the wind shear stress
coefficients obtained under the near-neutral condition (see, e g , Wu,
1969) cannot be used under these local wind conditions, as previously
pointed out by Hsu (1969b) It is hoped that this study will fulfall
the need for coefficient values under the sea breeze situation

THEORETICAL CONSIDERATION

The following derivation for the sea breeze regime in the surface
boundary layer 1s due to McPherson (1968) and is an expanded version of
that presented by Estoque (1961)

It is presumed that in the layer immediately above the surface the
viscous forces acting on a fluid element are much larger than the inertial
forces, thus the horizontal momentum equations and the thermodynamic
equation for the layer become

9 g duy

5z K3g) =0 &
and

9 90, _

Z®g =0 @

where K is an eddy exchange coefficient, assumed to be the same for both
heat and momentum transfer, u 1s the magnitude of the horizontal wind,

and 6 is the potential temperature If K 1s known as a function of height
Z, the equations can be integrated to obtain u and 6 in the boundary layer

Under conditions of free convection--that 1s, when the buoyant forces
dominate the mechanical forces--the expression of K used 1s

K =2z" & | ¥ /2 g1 < -0 03, 3
) Z

as discussed by Priestley (1959) Here A 1s an empirical constant, g 1s
the acceleration of gravity, and § 1s a layer-mean potential temperature
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in the layer in which the Richardson number (R1i) 1s evaluated Eqs
(1) and (2) may be written as

3 2
K 57 = U *)
and
36
K 52-= G*U*, (3)

where U, 6, are termed the "friction velocity" and "friction temperature"
respectively From Eqs (4) and (5) we obtain

du _ Ux 38
32 o, 32 (6)
and
36 _ 8% du
3Z U* 3Z &)
For the free-convection regime, we use Eqs (3) through (7) and obtain
5= 1/3
3u _ Uy~ 8 -4/3
T = s Z (8)
3Z 2
A g‘e*‘
and
2 2 = |1/3
26 |Us O O 4/3
7| A 9)
g
Eqs (8) and (9) can be integrated to give
[, 5 = 1/3
Ue 8 -1/3
U= -3 Z + Constant (10)
_} gle*l
— 1/3
2 2 =
§ = -3 Us B O 2—1/3 + Constant (11)
2
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The expressions for turbulent shear stress (1) and surface shear
stress (ro) are

T=0p U, (12)

and

_ 2
T, =P CzUz (13)

where p 1s the density of air and C, is a dimensionless '"shear stress"
or "drag" coefficient for the height Z
Combining Eqs (12) and (13) gives

Ug\2
Cz = <*I'J—> (14)

z

Thus, from simultaneous temperature- and wind-profile measurements in the
atmospheric boundary layer and from Eqs (8) through (14), the values of

Cz and T, are obtained

FIELD EXPERIMENT AND DATA ANALYSIS

Field Site and Experiment

The experiment site (see Figs 1 and 2) was located on the Gulf
Coast near Fort Walton Beach, Florida The site (86°43'W, 30°24'N) has
an approximate east-west shoreline orientation It has been used to
study the local wind system (Hsu, 1969a) The experiment related to the
present study was designed to measure the temperature and wind profiles
1n the surface boundary layer as shown in Eqs (8) through (11) and was
performed during the month of May 1970

Instrumentation

The main instrument used for this study was a Thornthwaite Wind
Profile Register System (Model 106) with 6-unit, 3~cup fast response
mounted 20, 40, 80, 160, 240, and 320 cm above the beach surface (Fig 1)
The anemometers have a distance constant of better than 1 meter and are
rugged enough to withstand limited exposure to a marine atmosphere
(Seesholtz, 1968) Note that the system is portable so that during the
experiment 1t is quickly and easily moved to a desired location

Temperatures were measured at 170, 360, and 550 cm above a grass-
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Method of Data Analysis

Our immediate concern 1s to examine the validity of Eq (10) under
sea breeze conditions First, by integrating Eq (10) between any two
heights a and b, we have

vos 3
* - -
u - =3 5—| @373 (15)
a 2
A gle*l
This may be written
v = a, + a; % (15a)
where
¥y = Ub - Ua
a = ¢]
15b)
5 = 1/3 (
U’ @
a, = —_—
1 2
A 8|e*|
IS VE RSV

We plot the observations for each run in the form y against x, plotting
on point for each available pair of heights Eq (15a) shows that, if
the data do follow the free~convection form, the points lie on a straight
line This method 1s similar to that used by Webb (1970) Eqs (15a)
and (15b) have also been obtained by the least~squares technique Table
1 gives as an example the least-squares values of each correlation
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coefficient (r), as well as the y-axis intercept (a,) It can be seen
from this table that, in the whole sea breeze range from 1000 to 2200
CDT, r > 96 and -5 2 cm < a5 < 5 2 cm, which 1s within the experimental
error In other words, these observations verify that the sea breeze 1is
in the atmospheric free-convection regime and that its wind profile in
the surface boundary layer can be represented by Eq (10)

Similar analyses were made for temperature profiles under sea
breeze conditions whenever wind profiles were measured Thus, the Ux
and 6y values are obtained from these observations, as mentioned pre-
viously Note that, on the basis of the findings by Priestly (1959),
Deardorff and Willis (1967), and Dyer (1967), the value of A was chosen
to equal unity and was used 1n the present analysis

SURFACE SHEAR STRESS OF THE SEA BREEZE

Since the main purpose of this paper i1s to provide the shear
stress coefficient (C,) under the sea breeze condition, and since
usually Z = 10 meters is taken as reference level, Figure 3 shows the
required results It can be noted immediately from this figure that
the Cyp x 103 value for a given wind speed is greater than that under
neutral and stable conditions (e g , Roll, 1965) This 1s not sur-
prising inasmuch as the sea breeze itself is set up by the differential
heating between land and water (Hsu, 1970) Thus the buoyancy forces
must play the dominant role, as demonstrated in Table 1

The result 1s consistent with the findings by J and M Darbyshire
(1955), who showed that atmospheric stability has a very marked effect
on the tilt of the water surface In response to the wind In measuring
the surface slope of a lake under different thermal conditions, they
obtained stress coefficients that, for a given wind speed, were twice
as great in unstable cases as in stable ones According to Roll (1965),
the Darbyshires' result is also in conformity with the findings of
several authors in different regions of the world (see references given
by Roll, 1965)

Since the shear stress coefficient may also be affected by the
fetch of the wind (e g , J and M Darbyshire, 1955, and Roll, 1965),
the annotated bibliography compiled by Baralt and Brown (1965) for the
sea breeze structure in various parts of the world and a summary of
local winds by Defant (1951) may be consulted Furthermore, since the
land and sea breeze systems, which are governed by the circulation
theorem, have been verified by Hsu (1970), the fetch may be estimated
from wind observations (see Eq 8 in Hsu, 1970), provided that the value
of the coefficient of friction can be estimated on the basis of accurate
geomorphological survey of the coastal area in question (see also the
discussions by Haurwitz, 1947) An example of the mesoscale structure,
including the fetch study of the sea breeze, is given by Hsu (1970)

As for coastal applications, Murray (personal communication) found
that the computed shear stress value based on Figure 3 for a given wind
speed fits his wind-induced current prediction and observation under the
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Fig 3 Measured shear stress coefficients under the sea breeze condi-
tion Each point 1s calculated from a 15-minute time average from both
air temperature and velocity profiles Correlation coefficient of the
least—squares fit for the straight line 1s 0 80

sea breeze condition more reliably than that based on the neutral sta-
bility coefficient (e g , Wu, 1969)

CONCLUDING REMARKS

While this study 1s intended to provide the shear stress coefficient
under the sea breeze condition, caution should be exercised in applying
the result, which may not be applicable to other coastal winds, such as
the land breeze, coastal mountain and valley wainds, and other synoptic
and subsynoptic wind systems It 1s suggested that before this result
can be applied some knowledge of sea breeze meteorology may be needed
In this connection, papers by, among others, Defant (1951), Baralt and
Brown (1965), and Hsu (1969a and b and 1970) may be comsulted
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