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ABSTRACT

This paper 1s a continuation of the paper with the same name,
presented on the XIth Conference on Coastal Engineering by the
first author [1] , i1n which a mathematical theory was given about
the behaviour of a coast after the construction of a groyne system.
Now this paper extends the former paper theoretically and practi=
cally.

1. Theoretically a computer program has been made in which the
influence of diffraction behind the groyne has been taken into
account.

2. Practically the coastal constants used in the theoretical
model of the coast will be expressed in terms of wave height
and wave direction, based on the theory of SVASEK [2] .

Results are given of computations with a coastal model in which
the coast 18 schematized to one line (one-line theory) and a model
1n which the coast 1s schematized to a beach line and on inshore=
line (two-line theory).

The influence of changing wave conditions is investigated.

INTRODUCTION

The construction of a groyne has the following effects
(fig. 1)

1+ Prevention of the littoral sanddrift in the area between the
coastline and the head of the groyne.

2. Prevention of the longshore current in the same area,

3. Formation of a sheltered area at the lee-side of the groyne,
caused by the diffraction.

Lk, Changing the wave height by reflection

’7\\<wuvc direction
\\obs'rucnon ogoinst longshore current
/

7 ’
obstruction ogoinst longshore sonddrift
formotion of © sheltered orea

Fig 1 The effects of the construction of a groyne
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The former paper dealt only about the first aspect, now we shall
pay attention to the first and the third aspect. The second and
fourth one will be investigated in the future.

ONE-LINE THEORY

The theory given here 1s an extension of the theory of

PELNARD-CONSIDERE [37] .
PELNARD-CONSIDERE assumes, that the profile of the coast always
remains the equilibraium profile, so that he only needs to consi-
der one coastline, being one of the contourlines. He assumes no
currents, constant wave direction, small angle of wave incidence
and a linear relation between angle of wave incidence and the
lattoral drift.
The derivation of his theory is summaraized in [

For the littoral draift he finds

= - q 3L
y WAVE INCIDENCE Q=Q, - a9y e e e (1)
1n which Q = littoral draft.
Q Q = lattoral drift at
G = © the point, where
kA 0.
- ax
X 2
Fig 2  Littoral dnft along the coast q = 3% = the derivate

of the littoral

draft Q to the angle

of wave incidence Y.
He finds, that the accretion is proportional to the curvature of

the coast 2
R AR S 1 4 S ¢
at D
tot ax

From this equation the coastline y as a function of x and t can
be found for many boundary conditions. Pelnard-Considére gives
analytical solutions of his equations. The interrupted line in
fig. 5 shows the accretion and erosion near a groyne according to
his theory. He assumes that wave height and wave direction are
constants along the coast., At the lee-side of the groyne however,
the wave height i1s less and the waves have an other direction, as
a result of the daffraction.
We introduce diffraction in the theory of Pelnard-Considére
. The equations become more complicated, that's why we have to
give numerical solutions. The deravation of the one-line theory
including daffraction 1s given in appendix A1,
For the littoral drift the same formula of Pelnard-Considére re-
mains of value . -
Q=Q-q-§£ ooooooooo(})

]

* *
but now Q and q are functions of x.
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The effect of the diffraction can be splitted in a stationary
effect and an instationary effect. This can be made c’<2r in the
following way (fig. 4).

If everywhere wave height and wave direction %%4 2{4 ¢%f
are the same, a straight coastline 1s stable,
the transport 1s everywhere the same. If the

wave height and the wave darection change in i
x-direction, the transport will change also

and therefore the coastal shape has to adapt

1tself in order to make the transport every- i%{/

where the same again and give a stable coast- fF, :%:
line. In appendix A1 a mathematical formula- %:, X _,
tion of this problem is given. The transport ’ﬂ”/fﬂhé&>ﬂ4ﬁ”””"””*
has been taken proportional to the square of T
the wave height and to the angle of wave Fig 4

incadence. A possible stable coastline yo as a function of x is
found (appendix A1), ruled by the differential equation

dy Poo
(o)
a—;(—:)(-——z— ...o........‘(h)

h
an which ¥ 1s the angle of the waves with the y-axis,Pxo the
angle of wavVe incidence far from the groyne and h 1s the ratio
between the wave height at an arbatrary point (x,0) to the wave
height at x =90, h 1s a function of x.
A short analysais of (4) learns, that 1f the wave height
should be everywhere the same (h=1) this would give

Yy
ﬁ = (px -Poo, thus the changing of the coastal direction i1s equal

to the changing of the wave directaon,

However, the problem of daffraction near a harbour mole is
more intricate.

As the groyne stops all the transport, and as at x = oo the
transport remains Q,, a stable coastline can never be achieved.

We split the coastline y 1?to two parts, yo being a statio-
nary effect of the diffraction’’ and y', being an unstationary
effect

y (x,t) = yo (x) + y* (x,t) s o o 0 s a0 o e s (5)

As shown 1n appendix A1, the equation for the unstationary part y*
becomes about (2), but with an additional term, because q* 1s a
function of x

oyt . _a* &y 1 dgr eyt e e e ®
ot Dtot 3x2 Dtot dx ax

:I.nwh:l.chq* Ah2 oooccoocoo(?)

1

1)

¥, 18 the stable coastline, which would develop, 1f an artifi-
cial nourishment Q, would be administered on the lee-side of
the groyne.
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A 15 a proportionality constant, being investigated in the chapter
"coastal constants".

The amount of h and P, 1n (4) and (?) in the diffraction case 1s
found from the 51mp11¥1ed theory of PUTNAM and ARTHUR [4] B

The unstationary part y' can be found by numerical integration

of equation (6).

Sn€erp051tlon of y, and y', according to (4) gives the coastline
Yy (x, t).

For the calculation of the coastlines a computerprogram has been
made. Fig. 5 shows the calculated development of a coast with one
groyne, Comparison of the interrupted and the solid line gives an
impression of the influence of diffraction.

Wave incidence i
/f Y

»
| 2100

-
= > t 50/,;(//
L~ 1 1604t

—

_
-

»
\\/‘ 2008t

—

// PELNARD CONSIDERE

\

[ A

Fig 5 Aceretion and erosion near a groyne numerical solution with diffraction (one line theory)
The dotted lines at the right hand giwes erosion according to Pelnard - Considere

With the computerprogram we calculated the behaviour of the
coastline between two groynes with the influence of diffraction.
The result 1s shown in fig. 6.

NN

AN

Fig 6 Behavior of the coastline between two groynes {one-line theory)
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TWO~LINE THEORY

Now we schematize the coastal profile to two lines, the beach
(y.,) and the inshore (y,'). This gaves
the possaibility to take the off~ and

——— /-—__"_:—_ﬂ onshore transport into account.
° — “—  In top view one sees two lines at a
Dot v J distance y, and y,' from the x-axis.
o, p The "equillbrium Zistance" 1s the
distance y,' ~ y' between beach and

X axs

Fig 7 Schematized profile inshore, when the profile i1s an equi-
librium profile.
The following dynamic equations are
Y, Y, assumed.
If the dastance ¥Yp' - y' 1s equal to
the equilibrium distance W, no inter-

§ z > action 1s assumed., If the distance
> ¥2' - yq1 is less than W, the profile
: 2 1s too steep and an offshore trans-
Ai ] port will be the result. An onshore

% transport will occur in the opposite
Fig8 On- and offshore  transport case.

We linearize this relation and take for the offshore transport Q
per unait length ¥

R AN ) SEEIRII O
in which qy 15 a proportional constant with the dimension [1/t] o
It 1s a function of x. For a simpler notation, we denote

Yo = YZ' - W e &)
Then (9) becomes

Qy = q (yq = ¥,) e e e e (11)

With respect to the littoral drift, the assumption of PELNARD-
CONSIDERE i1s applied, both for beach and inshore, the transport

1s linearaized av4
' = Q0% e QF e
%Y, Q\ Q1 = o1 q1 X * o o o o 0(128.)
Q2
" = P2 (12b)
‘ Qz‘Qoz"qzax ® o o o o o
(1] o* "
Sl
‘ in which Qo1 and Q°2 :;e respectively
3 X
19 ﬁgfaﬂﬂhﬂ:% the transports where 5;l = O,
Q;1 < uittion of x, Q°2 1s a constant. q: and q, are propor-

tionallity factors, q* 15 a function of x and q, 1s a constant.
In appendix A2 the deravation of the two-line theory is given.
The beach line y, 1s splatted into two parts, analogue to (4)-

¥, (x,8) = Y, (X) + 3, (x,t) e s e s e (13
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in which y_(x) 1s the same function as given in (8).
For the accretion along the beach and the inshore we find

ay,'  aq* §y1' g 9% avy' @

D L XL (g0 ) .ol
= + . - Ta' + ¥y =y, . eld)

at D1 ax2 D1 ax ax D1 1 ) 2

3y q a2y q

2. 272, ¥ ¢."

® "5, T2t T Y- cee e (15)

These are two simultaneous partial differential equations.
For the calculation of the beach line y, and the inshore line ¥,
we made a computer program in which the equations are solved
numerically (appendix A2). In fig. 10 the development of a coast
with one groyne is shown,

Wove incidence

Fig 10 Accretion and erosion neor a groyne numericot solution with diffroction
(two-line theory)

Wove Incidence K\

LAt
8At
16 At

Fig 11 Behaviour of beach and inshore between two groynes (two-line theory)
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From a coast with an infinite row of groynes, we calculated
the development of the coastal shape between two groynes. This 1s
shown in fig. 11.

COASTAL CONSTANTS

In this chapter some expressions will be derived for the
coastal constants, respectively using the one-line and the two-line
theory. For the one-line theory the CERC-formula will be used, for
the two-line theory the SVASEK-variation of this 21 .

It 1s assumed, that the transport i1s confined to the breaker-zone.

Dyt = Dpr e e s e s e e s s s e e (16)

Considering the longshore theory of BOWEN 6 1t may be
expected that the transport takes place over a distance 1 to 1,5
times the breaker zone, and that most of the transport 1s confined
to the breaker zone. Probably 1t 1s better to assume for Diot the
depth occurring at a distance 14 times the width of the breaker
zone. In this case the factor 4 becomes less, for a concave pro-
file about 100% to 80% of the computed value.

co tour fines paraliet
to coastlne in x
breaker zone
T =

Dby Opr

. flat &t _ 5
depth Dy, cos %
A A

e
[

[T i

tour | nes parafiel y
toxa  outsde
b ake -zone

Fig 12°

Fip 12° orotite A-a

One-line theory

- -

We assume the topography and notation according to fig. 12
The CERC-formula relates the longshore transport Q to the longshore



1008 COASTAL ENGINEERING

component of the wave energy flux
-2 .2 2
Q= 1.4 x 1077 H C, kK° sin ¢%r cos‘Pbr N & V2

in whach By
Co

Bor

From fig. 12 can be derived

wave height in deep water

phase velocity in deep water

refraction coefficient

angle of wave incidence in the breaker zone

thr=‘Pbr'-%§ (g-;fsman) N € 1))
Q, = 1.k x 102 HZ ¢, K2 s, "cos®, ' L. .. (19

= S8 =2 42 2 '
q = 225 1.4 x 10 H® C K cos Z\Pbr e o o (20
ox

One can write
B =4, D .« (21) and Cbr\/g Dpp oo o e (22}

in which A, and A3 can be taken from any wave theory or measure-
ments (for ainstante, solitary wave theory [ 7]

A, = 0.78 and A3 =2 x 0.78).,

Conservation of wave energy between wave rays gives

2 2 _ 2 _, 2 3 5/2
Ho Co k™ = Hbr Cbr - AZ A38 Dbr
This makes
_ 2 3 5/2 ' '
Q, = A, A, A3 g D, 51ntpbr coskpbr e e e e (23)
_ 2 4 5/2 '
Q-A1Aa A38 Dbr cosZkPbr N -1

in which A, = 1.,k x 102
Often cos ), can be taken equal to 1,

Now 1t is easy to give numerical values to the proportionality
constants, used elsewhere in this paper, for instance, in (7)

A =14 x10282c k2
[] o
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and 1n appendix A1, (A10)

At = Diot (4 x)°
- 2 2
An”ax
At = Dpr . (Ax)°
- 2 % 5/2 .2 2
A1A2 ABg Dbr h max
2
At = 1 (A x)

2 2
2A1 A2 ABh max Dbr V& br

HOW CHAHGES TNE TRAHSPORT
Two=1l1ine theory ALGHD. THE  MSHORE ol
............... WHEN THE IHSHORE il
OIRECTION CHAHOES?
In the two-line theory,
V=SS
i\\ Eﬂ 187 THE LITTORAL
E -_— ORIFT FAR FROM

The exact definitions are giver | ™ ot
in (9) and (12). The constant
qys Which defines, how the off-
sgore transport changes, when
the profile changes, will be
treated 1n a separate paper 1in
the future. Some i1nvestigation
about this constant has already £
g 13
been done 8 .
The coefficients Q°1, a4 QoZ and qa, w1ll be computed with the

the coastal constants mentioned

1n fig. 13 are of importance. |urwos wassron
THE CONSTRUCTION
ALOHO TNE BEACH ?

HOW CHAHGES
THE BEACH TRAHSPORT
WHEN THE BEACH

OIRECTION CHAHOES 7

%

SVASEK-theory 2 which only treats the longshore transport.
SVASEK neglects the longshore transport outside the breaker-zone
We assume, that the profile outside the breaker-zone has reached
already 1ts equilibrium profile, and that the on- and offshore
transport can be neglected there.

The assumed profile topography can be like given in fig. 14 (see
next page)more natural than shown in fig. 7.

SVASEK assumes, that the lattoral drift between two depth contours
18 proportional to the longshore component of the loss energy
between these contourlines ( 2 , formula 5 - 7)

2

AQ= A1v _A(-E—Z—C-) sz s:m&Pm cos\P‘2 e o o o (25)

in which Q = littoral drift between two depth contours D - %} AD
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HZC contour hines x
and D + 2AD, A(=~) = difference parallel to ¥, line
K on Inshore
H2C
between < o°n both dept contours "
- - A
Ko \Pm = value of refrac- | ,
tion coefficient K and angle of wave s
incidence P 1n the midst between the cantour Tines contonr ines
depth contours. It appears (appendix A3), Pyateltox s faonet e
that A Q can be written o0 beach
Y
a
AQ = BA‘]A2 38% %AD 81n'~P coskp (26} Fig 147 Upper view

and after some simplifications, treated
in appendix A3, the following constants
are found for small angle of wave inci-
dence

2, 3,3, -3
Qgq = AqAy" A5g°D,” D sin ¢%r. Fig 14° pronte as’

o1
2 _3. 2_3_ PR . o e o \cyy
A1A2 A3g D1

i

94
- 2 % 3 3 -3 ,
Qaz = Ahy" A38" (D" = Dy7) D7 sn Py,
o oo o .. (28)

i)

2 3 3 3 -3
A = Aghy" Agg® (D7 - D7) Dy

2 % -2
The factor A4Ap A3g® varies between 2,37 x 10 = and
3.85 x 1072 \/m/sec, dependent of the kind of waves (harmonic or
random) .

VARIABLE WAVE CONDITIONS

There has to be distinguished the influence of variable wave
conditions on the coastal constants and the influence of the boun-
dary conditions.

Influence varlable wave condltlons on coastal constants

The derivation used for the PELNARD-CONSIDERE-formula (2)
keeps 1ts validity when the littoral drlft Q. the statlonarv
transport Q, and the constant q are -
averages over a year instead of - \\\
instantaneous values, However, 1t will .. // XYY -
not be directly clear, which value has =
to be taken for Diot. In order to esti- oy -
mate Dtot 1t 1s useful to compute first® % \\\\ -
the distribution of the littoral drift .. Va o o
perpendicular to the coast. An example «=
of such a distribution gives fig. 15, b “ b . z™
The yearly littoral drift between two R S L

/ oo
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depth contours D - #AD and D + $ AD 1s computed with the aid of
(26), which becomes 1n case of variable wave conditions (cos\Py
has been takenland Snell's law has been applied)

s1n,
Ag = 3A1A22 ABgDZAD px =2 (T .. (29)
all wave classes o

for whaich D <Dbr

in which fr(H,T7,9) denotes the frequency of occurrence of a wave
class for which H, T and P lie between certain values (for instan-
ce 3 m<H<1 m, 5 sec<P< 6 sec, 30° <P< 60°). More details
about the computation are given in(8] .. . i neao

From the distribution of the t th g oyne
transport Qo1 and Qup are found
(f1g. 16)

/7
Q Q
o . - I &g P wm//{', "
o1 = !
0< D <D e e (30) Ay emel

Res Itant littoral & ift
/ betw en \w  suc e

depth o tours

O pih below
D sea level

Q,= * &9
o2 D > D1

Fig 16

After that, a, and q, can be found
by repeating the computation accor-
ding to (29), but with a '"wrong"
coastal direction, which has been
turned over an angle A, say 15°.
This gives the interrupted line 1in
fig. 17, instead of the solid line,
which represents the transport dis-
tribution for the original coastal
direction.

Now q4 equals Fq/AKP(F1 158 the left-
handed hatched area in fig. 17) and qp = FZ/Aq).

From the transport distribution, alsc a reasonable guess about

Dtot can be made.

0 pih of the head
Result ot litteral dritt
/wher ¢ astline would
b tu edov AP

sm In as_ fg3

O pthbiw
Coa @1 oy 5 atva >

Fig 17

wave dirgction

Influence variable wave conditions ){
on_the boundary
This paper 1s concentrated on

two effects of a groyne prevention
of the littoral sand drift and for-
mation of a sheltered area We shall
1nvestigate these two effects i1n case
of changing wave conditions.

When the wave direction changes

candwave
periodically for instance according o
to
" X —
P=Psin Wyt <. . (31 P

sondwave

Fig 18 Generat n of eandwavee by
variable wav  direct on

this generates a sandwave near a
groyne (fig. 15,0101)
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wl@ .e'kwx

y = cos (Wt -kpgx) .. .. (32)
aw\2” ¥ *
in which
Ao = - o\lg—3- T e e et e e e e e (33
¢ ko Dtot M

T\p being the period of the fluctuations of P and )\‘p being the
length of the sandwave, -2

Using (24) and taking A1 = 1.4 x 1077, A, = 0.4, A, = \/ 1.4,
this gives 3

Np= 183 Dbr3/‘* (g T DHVH AR 1O

Taking as an example T¢ = 1 week, this makes kq,: 324 m.

Now the decay of this sandwave 18 very strong withan %Aq)lt 18
attenuated to 4%. Thus, outside this area, no influence of the
stopping of the littoral drift by the groyne will be observed.

In case of the two-line theory D, . in (34) probably can be replaced
by Dq, P has to be replaced by Y,1, according to (A36)

The second influence of the groyne i1s the wave-shelter. We shall
agsume first, that the sheltered area 1s large with respect to
%Aﬂp. As 1n (12a), Qo and qq become functions of x, called Q,¢* and
gq*. Consider fig. 19, The influence of diffraction will be neglec-
ted with resvect to the influence of changing wave conditions.

The computation of Qyq and qq 1n

area A can be performed according to
(29), (30) and fig. 14. But applying
(44) to area B, all wave classes with
Po = 75° must be excluded in the
summation, in area C all wave classes
with P, =459, and so on.

Litlarat sanddrift
by waves lmm the

—ilp ¢ B A When, for instance, the resulting
Fig19?9 variable wave condilians transport i1n area A would be zero for
N a coastline parallel to the x-axis

‘ waves from the e (fig. 19a), the transport
ay,
Q1" (G = 0) (started because 1t
- )
———“TE:——ﬁ: ¢s A— changes i1n x-direction) will be
Fg 197  Resuiting 0, larger and larger (in negative direc-
0 tion) 1n the areas B, C and Dq,and

also qq* will change

Now we have returned to the normal
\\\\\\\\\\-_-7 computer program, treated in (5) to (7)
i and in appendix 3, only with other

F|g19c Stable caastline Yo values for Yo and j' ther .~ _he
diffraction cases.
The stable coastline y, can be found
from continuity for y, the trans-
port 1s everywhere the same
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[Qm]xzm - Q'I_’[Qm]x:m =

Yo Yo X= 00
_(2 * ¥ ey —— = Y Y
01 9" Ix dx q1‘ (35)

From (35) the stable coastline ¥y, can be found, which gives the
initial value of the unstationary part yq'

In case of changing wave conditions, and no
resultant drift, the final coastal shape near

one single groyne will become just the stable

Fig 20¢ shape y,, because then everywhere the resultant
N\ drift 1s zero. This will give accretion on both
a\ /g\ /%\\\\¥ sides of thegroyne, which will be withdrawn
from a very long stretch of coast (fig. 20a).
Fig 20° in case of a row of groynes, the sand for the

accretion near the groyne 1s withdrawn from
the area i1n the midst between the groynes, and only near the boun~
dary of the groyne system some real accretion can be expected
(fig. 20b)., However, after some time this sand will move to the
areas between the groynes, and so this shelter effect may give
some accretion (in case of no resultant drift), starting from the
boundaries of the groyne system

In case %)~¢ 1s not small with respect to the sheltered area, the
best way of computation 1s a kind of "hindcasting", using the one-
line or two~line computer program described before, and changing
the wave conditions during the program.

This has been done at the Coastal Research Department of Rijks~
waterstaat.,

N B The vertical scale of fig 5 and 6 15 5 times and of
fig. 10 and 1" 1s 10 times exaggerated.
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APPENDIX

Al. One-line theory _Assumptions_and formulae (diffraction)

Assumptions 1littoral drift proportional to the angle of wave
incidence and to the square of the wave height (fig. A1)

2
Q= 4" (9 -2 e e e e e e e e e s (A1)

in whaich A 1sa proportionality constant and h 1s the ratio between
the wave height at x = x and the wave height at x = co Eq (A1) 1s
a special case of (3)

-L. '-‘aﬂ . . L] L] L] . . . L] L] . . (AZ)
Diot ox

ay 1 . aaz aq* ay 1 on
Using (3) 3t = Diot (q 2 + 3 o ax) - 3;;: = o o o (43)
The stable coastline y, from (5) 1s a solution of (A2), or (A3)
Continuity gives Q 1s constant for Yo+ The amount of Q can be
derived from the condition at infinity

Continuity %% = -

h =1, ‘Px =Py, %% =0 , from (A1) follows (4)

dy
A Qo= AR (P, -2

Eq (6) can be derived from (A3) by substituting Yo 1R (A3) and
subtracting this equation from (A3).

y y wave incidence

X [

? ) P,
2y o
2%\ ox \
\‘ X
X \,\ /// B
Fig Al o
Fig A2
For the determination of the values of and h the simplified
diffraction theory of PUTNAM and ARTHUR [f] 15 used.
It can be shown[#1] that P, 1s about equal to
A ge (Al)

Q=P -5 e o e e e e e e e

in which A - wave length diffracted wave and ¢ = phase difference
of the waves between B and B' (fig. 42). B = point on x-axis, for
which Yo 18 computed,
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Substitution of this result in (4) and integration gives the
relation between y, and the basic data of diffraction h and ©

-1
yo=_27\_ne+ &pmjh = lax ... .. (a6)

The first term of the right hand side of (A 6) 1s the influence of
the turning of the waves, the second term gives the influence of
changing the wave height by diffraction.

"l M

— - - n — e ——— — - -1
10f— - 0
as - - A T
a8 PY. ) S I
0L f— — AV — A+ - — —_— = i
02 4T B 4 - -1 - -
1
a0 [ R B SR Lo . R
3 2 1 0 1 2 3 2 ' ] 1 2
—u b -u
Fig A3° Fig A3

Fig A3 WAVE DIFFRACTION ACCORDING
TO PUTNAM AND ARTHUR (6]

_AR'
& and h as a function of u = 2\/&%}1' at uv.ulng to PUTNAM AND
ARTHUR [4] are shown in fig. AS.

Unstationary part y'
(6) has been taken as a difference equation, taking

aq T O U )
max max

At

2
Dtot‘(A") /quax . o . o (410)

Substituting (A7) and (A10) in (6), from three adjacent points of
a curve at time t one point of the curve at point t + At can be
found (explicite method)

y! [x,t + At ]:

(@ [x+8x)/8 +1 63/2 -3 [x -2:/8).y [x +8x,¢] +
( -aq [x] +1 Yoy [x,t]) +
(-3 [x +Ax]/8 +3 [¥/2 +3 [x -Ax]/8).y'[x -Ax,t]

e oo (A1)

in which q = q*/qmax has been introduced to avoid instability.
Boundary conditions at x = 0 no transport and therefore

oy, 4y, oy
% dx + 9% &px X=0 e o & & & o o(A12)
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Substitution of (4) 1n (A12) gives

@ ¢¢9
_a_1'_=spx-(ap ap ST e e e e e e e s (A13)

We can write this equation into differences and express y'[ x]
in y[Ax] This gives for the boundary point at the 1ee—s1de

[O t +At]- - (- q[Ax /8 + q[O]/2 + q[Ax]/B) 20x. 3 [h]?(
(- q[o] + 1. ¥ [O t] + q[O] [Ax t‘_]
e e e e e e e . (A78)

The expression for the luffside can be found by changing every-
where in (A14) Ax by =-Bx.

(147 and ( ‘Ib) “can be derived by substitution of the dynamic
equations (123' b ) in the continuity equations

T'—L+Q +D1?€-L-O

‘a“a Qy +D3gr =0

We state At = cD(AX) /q,lm and call ay . (Ax) /q’lmax = q;’

in which ¢ 1s a coefficient to get a stable numerical process.
Then the following difference equations are derived

v} [x, t +At]
c. {(q1 [x +Ax] /b +q1[ x] - 4d, [x -Ax‘_]/u) y[x +A X, €]+
+ (p/cp, - 2q,[x] - qy) oyt [xae] +
(=g, [x o+ Ax]/% v afx ]+ a [x -Ax]/8). yi[x -Ax,t]

ay (yo[x] - yzl:x,t])}. S O Y-A D]

. (A17)
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yz[x, t +At] -
G %2@/2[" 4 A”vt] * Jz[/ - A"'t] Yoo/ Uypay *

+(Dy/eD - 2qZ/q’lmax - qé) yz[x't] *

q& (yg [x.t] 4 yo[x])}. . . e e v e e .(a22)

The boundary conditions for y', can be found by substituting
x = o and (lee-side)

slad-uld epF G
v-0

A3, Coastal constants according to_the adapted SVASEK-theory

- " " o - o R o e o o e 4 o e e 0 " m o e o o O

SVASEK assumes, that the littoral drift between two depth con-
tours 1s proportional to the longshore component of the loss of
energy between these contour lines ( (25))

We assume that in the breaker zone cos y = cos for ' and we
neglect the influence of the refraction factor K inside the
breaker zone

Q = A} . A (8%) sinYWeosP ., . ... .(a25)

le assume, that the relations between H and D and between C and

according to (21) and (22) on the boundary of the breaker
zone remain their validity inside the breakerzone (spilling
breaker)

H=4a,D. . .(A26) C = Ay gD . . .(A27)

2
Thus the difference in HC between two adjacent depth contours
equals

AH2C) = gD (A; Y p2%) ap :2 Ag Ay g2 01D . . .(a28)
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Now first the stationary transport Qo will be computed, according
to SVASEK's theory. In this case all contour lines are parallel
and Snell's law 1is valad

s ¢ DD_ N ¢ F-1)
sin@y.  Cup br

Substitution of (28) and (29) in (25) gives AQ, expressed
in D
5, a2 2 -t
AQ = 5 A, A5 A3 g D DbrAD sin "pbr coskPbr
. - (A30)
We find the total transport by integration over the depth. Again
we assume ~os'P= cos .

Dbr 2 2
Q =°/ AQ ap = %A1 AS A3 g% Dbj s1nl.Pbr coskar . . (a31)

Comparison of (A31) and (23) leads to the conclusion, that for
parallel depth contours the relation should exist
6
v -
A =54 e e s o s e e s o o o (A32)
The reason 1s, that SVASEK multiplies the component of the wave
energy with sint instead of sin kar and in the breakerzone
sin ‘% 1s less than sinP .

Thus the transport betweeh two depth contours will be, in gneral,
using (A25) (A29) and (A32)
- 2 1N e e e e . (a33)
AQ = 3 Ay A5 A3 g* D7D s:mq)m coskPm

In 12 has been constdered in detail how the littoral drift
changes when the beach and inshore direction change in case of
the topography at fig. A5 (cf fig. 14).

Using SVASEK's assumptions and a proper use of Snell's law,
for the littoral drift along the inshore 1s found

br

and for the transport along the beach

Q, = A, Ag Ag g% (D 3. D?) Dgg Sln¢br cos q)br oo oo (A3H)

2 3 2% A
Q, = A, AS A D sin @, cosP o - -a-% cos 2&P10

2 %3 &8 Y4
8¥: (1 -3 2@, cosP cos? 2 (A35)
% T F S eFo br )Ters‘rgq-gg
in whach QP,O is the angle of incidence of the wave on the

beach (fig. AS5), which occurs, when the inshore 1s parallel with

the x~exas
D '
P = arcs1nH/-—ﬁ!— smkar) e o o o o o (A36)
br
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depth oo
w ’

depth Dp,

depth Dy

o2 _ N
Peax 80X~ 3x_

1
in which Lpm. 15 the breaker angle, 1f the inshore would be paral-
lel to the x-axis.
For small angle of wave incidence, (A35) can be written

_ 2 3 2% ay ay. \
Qq = Ay A5 Ay g° D [smtpm-Tf' +a_x2 <1 - bt«) (A37)

As would be expected, there 1s some
influence of refraction on the i1nshore on the
transport on the beach. The dynamic equations
(12, ) do not account for that. With (A37)
we 478 able to estimate the 1naccuracy caused
by this neglection. (without taking the

0 1 0,/D,, curvature of the inshore into account ) When
Fig A6 the beach and the inshore turn over the same
angle, the influence of the direction of the
direction inshore 3 nghore on the transport on the beach is
Influence  direction beach (1-yp,/D ") tames the influence of the
versus D/ Dy, direction of the beach. This function 1is
shown in fig. A6.
Lthe 1vinuiae for a, and q., can be derived by differentiation
of (A34) and (A35) to-al%- and aIlz—x-espect:wely.
For\% equals

Influence

P 3
Lpbr_q)br

ax
Thus the derivative to 232 1s miru-~ d\%
ax r

The influence of the inshore on the beach has been neglected.
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