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Abstract 

In the surf zone on beaches, there are strong effects which cannot 
be described by linear equations.  This paper describes  a number of 
wave interactions that can take place, using the simplest set of 
equations that give an adequate qualitative description.  The results 
are of value for comparison with detailed experimental measurements and 
for gaining understanding of surf zone processes. 

Introduction 

The region of breaking and broken waves on a beach is important 
for the study of waves on beaches, from whatever point of view it is 
approached.  From a theoretical viewpoint the turbulent, unsteady, flow 
presents many difficulties.  The wave motions do not satisfy linear 
equations, so that the superposition of solutions, which gives such power 
to linear analysis and makes Fourier techniques so revealing, is not 
available.  Indeed, the high level of turbulence means that accurate 
equations for describing the flow are not known.  In this paper particular 
solutions of approximate non-linear equations are considered with a view 
to gaining some understanding of the processes involved. 

The equations are the fmite-amplitude shallow-water wave equations, 
which may be written: 

(1) 

(2) 

in which, h is the total depth of water,  h0  is the depth below the still 
water level of the sea bed, which is assumed to be rigid and impermeable, 
and u is the mean horizontal water velocity.  Multiple values arise in 
solutions of these equations and these are excluded by introducing 
discontinuities representing bores and satisfying the bore relations: 

hjCuj - V) = h2(u2 - V), (3) 

hlUl(ur V) + £ghj = h2u2(u2- V) + |gh|, (4) 

These equations of motion are usually derived, e.g. m Peregrine 
(1972), for the laminar flow of an mviscid fluid, however, similar 
equations are found for long waves on shear flows (Blythe et al, 1972). 
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For river flows it is found that turbulent dissipation is adequately 
represented by the addition of a term - f u| u| to the right-hand side 
of equation (1).  It is likely that adding such a friction term may give quite 
a good representation of real wave motions. Friction is discussed by 
Longuet-Higgms (1972)  and briefly by Meyer and Taylor (1972).  It is not 
included here since it impedes analysis of the equations and it is expected 
to have only a quantitative, damping, effect on solutions. 

The bore relations are found to be in agreement with experiment 
for stationary bores (hydraulic jumps), e.g. see Rajaratnam (1967) for a 
discussion.  For travelling bores there are difficulties in measuring the 
velocity V of the bore because of the strong turbulence at its front. 
However, Miller's (1968) measurements, despite their wide scatter, are consistent 
with the theoretical values. 

It is important to realise the limitations of the shallow-water theory. 
These are well illustrated by bores, which are represented mathematically 
by abrupt discontinuities, but in reality the changes m level and velocity 
are spread over several times the depth.  Similarly the equations of motion 
are only applicable to variations in velocity and amplitude that are also 
spread over many times the depth.  Close to the shoreline where the mean 
depth of water is small these are quite acceptable limitations, but where 
waves have just broken, or are moving shorewards as spilling breakers, the 
shallow-water theory is inappropriate. Thus this theoretical treatment is 
most pertinent to what may be called the "inner surf zone". 

It is worth noting that the equations do not predict wave breaking. 
When a solution reaches a point where the slope of the water surface becomes 
large, and multiple values of the solution are avoided by inserting a 
discontinuity, the correct interpretation is that the approximation of 
long gentle waves, which is essential for the equations, is no longer valid. 
In practice, it is observed that waves often break, and it is reasonable 
to fit a bore discontinuity.  However, if the assumed discontinuity has a 
depth ratio of less than 1.6 any bore formed will be at least partly undular, 
and it will be best described by the Eoussmesq equations if no breaking 
occurs. 

A number of authors have used this analytical approach to waves 
on beaches, usually of uniform slope.  A bore advancing toward a beach 
through still water is treated numerically in Keller et al (1960) and 
by Freeman and Le Mehaute (1964), whilst an asymptotic analysis of its 
approach to the shore line is m Ho and Meyer (1962).  A standing wave 
solution, without any bore is given by Carrier and Greenspan (1958). 
Jeffrey (1964,1967) determines the time, if any, at which a sinusoidal 
wave propagating into still water over a uniform slope would "break". 
Carrier (1966) gives results for waves approaching a shore when they 
are sufficiently gentle that they do not break.  By limiting attention to 
very slowly varying depth Varley et al (1971) and Cumberbatch and Wen (1973) 
deduce a number of results for waves entering still water.  Run-up may be 
discussed in the same theoretical context, results are reviewed by Meyer 
and Taylor (1972). 

The philosophy behind the present work is the accumulation of relevant 
solutions of the non-linear equations that may assist the interpretation 
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and collection of data so that empirical rules for wave properties may 
be refined.  Some relatively simple examples are discussed in this 
paper, taking a horizontal bottom for simplicity, though the results 
are directly transferable to situations with variable depth.  In particular 
the analysis of bore interactions suggests a way of plotting field 
measurements to learn more about actual surf zones. 

Introductory Analysis 

Analysis is simplified by introducing the "local long-wave velocity" 
c, defined by 

c2 = gh. (5) 

Then equations (1) and (2), after some simple algebra may be written 

lo [jt + (u+c)i ] (2c+u) • gi *0 dx (6) 

Bdx 

Alternatively, these equations take the form 

(2c-u) = -g^O. (7) 

3(2c+u) 
3S 

dhn 
=       Q —U 

^dx • 

3(2c-u) 
3R 

BdT 

(8) 

(9) 

if characteristic variables R,S defined by 

2cdR = dx - (u+c)dt, (10) 

2cdS = dx - (u-c)dt, (11) 

are used. These define two families of characteristic lines: 

dx 
C+, R = constant, -j- = u+c; (12) 

dx 
C_,  S = constant, -r— = u-c. (13) 

(e.g. see Stoker, 1957, or Abbot, 1969).  It is the existence of the relatively 
simple equations (8) and (9) that permits solutions, or some properties of 
solutions, to be found in particular cases. 

For a horizontal bottom these equations simplify and can be integrated 
to give' 

P = 2c+u = constant on C lines, (14) 

Q - 2c-u = constant on C_ lines (15) 

The variables P and Q are called "Riemann invariants".  If one family 
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of characteristics, e.g.  C , come from a region of uniform flow the 
appropriate invariant, Q, is equal to the same constant everywhere; such 
solutions are called "simple waves"  Characteristics may be thought of as 
"elementary" waves of the system of equations - indeed they are the paths 
in (x,t) space of small amplitude long waves. 

If c is used in the bore relations (3),  V is given by 

cjuj 
(16) 

E
2 - 
2 

and then, after substitution for V,  equation (4) becomes 

2cfc|(uru2)
2 = (c2-c2)2(c2+c

2). 

"Reflection" from a bore 

(17) 

In a solution of the shallow-water equations with a bore fitted at 
a discontinuity travelling m the +x direction, the bore and its path are 
determined by 

(l) the conditions in front of it (i.e. u,,c. or F-^, Qj), since 
V>Uj+ c, it meets two characteristics on that side. 

(n)  the value P2 of P on the C  characteristic behind the bore 
which catches it up since u2¥c?    >   v- 

This is shown in the (x,t) plane in figure 1, 

Figure 1.  The four characteristics passing through one point on a bore's path. 
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In particular the velocity V and the value Q2 of Q on the C_ 
characteristic behind the bore are determined. Q is always less than 
Qj,  the difference can easily be evaluated in terms of the strength of 
the bore, 

B = c2/cj, i.e. B2 = h2/h , 

by using equation   (17),   and  is 

QrQ2  = Cj|2(l-B)   + (18) 

say.  Values of q=q(B) are displayed in figure 2. 

I~ 3 

Figure 2.  The change in Q at a bore, divided by Cj. 

One way to interpret this result is to consider a bore travelling over a 
flat bottom into uniform conditions P *1> with the wave behind the bore 
being of only limited extent before the same uniform conditions are 
recovered. Then as the C_ characteristic from the bore propagates into 
these uniform conditions they are disturbed because Q is less than Qj. 
In fact, for such a wave 

u = u,+icjq and c = CjQ-Jq). 
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and thus since q > 0 and ca = gh, the wave coming back from a bore is 
a wave of depression.  However, the C  characteristic only travels backwards 
if u - c < 0, but u-c=u-c+f c q and is less than zero when 

(e.g. for the case u = 0,  q < 4/3 implies B < 2.695 or h^/h,<  7.263) 

This wave of depression can be thought of as a form of "reflection" from 
a bore. 

On a beach, such a reflected wave would start when a wave breaks, at 
least, if it breaks in sufficiently shallow water.  However, it would be 
propagating m the direction of increasing depth and from equation (19) one 
may deduce that this causes Q to increase   Thus for waves incident on a 
beach the amplitude of the wave would be due to both these opposing influences. 

Small amplitude waves and bores 

A small amplitude wave is most naturally described in the context of 
the finite-amplitude shallow-water equations as a small change in P,(or Q) 
travelling along the C  (or C_) characteristics.  There are three ways 
in which a small amplitude wave can meet a bore travelling m the +x 
direction, corresponding to the three characteristics;  C and C_ in front 
and C  from behind the bore.  In all three cases the resulting wave 
propagates along the C_ characteristic behind the bore.  Thus for a wave 
which originally travelled along a C  characteristic, interaction with a 
bore reverses its direction of travel. 

The magnitude of changes m the waves may be found by evaluating 
dQ^/dPj,dQ2/dQj, dQ2/dP2 at the bore, where suffices 1 and 2 refer to values 

in front of and behind the bore respectively, and in each derivative the 
other pair of Riemann invariants are kept constant.  A straightforward 
algebraic manipulation of the differential of the bore relation (17) together 
with the definitions of P and Q gives 

dO^ _ B[u(B1>+B2+2) + 2(Blt-l)], (19a) 

dO.!    U(2B1*+B2+1) + 2B(BI*-1) 

dQ2   B[U(B
1,+B2+2) - 2(8^-1)] 

dPj ~   U(2BVB2+1) + 2B(B1(-1) 

dQ2 =  -U(2B'*+B2+1) + 2B(B**-1) 

dP2    U(2B
lt +B2+1) + 2B(Blt-l) 

(19b) 

(19c) 

where U = (u -u )/c .  Note, that in terms of U and B the bore relation 
(17) is 

2B2U2 = (B2-1)2(B2+1). (20) 

From these results all changes m the wave's properties may be found. 
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For example, consider a wave dQ, meeting the bore on a C_ characteristic 

The relative change m amplitude is 

dh2 _ c2dc2 
dh i  c j dc j ' 

but dCj = TdQj and dc2 = -r dQ2 since dP, 

dh 

dh' 
.2 = dQ, 
\ \ 

Since both B > 1  and dQ /dQ >1, this wave is always increased in amplitude. 

From the geometry of the characteristics m the (x,t) plane, shown in figure 

3, the change m length of a small amplitude wave may be calculated; 

Figure 4.  Arrangement of characteristics when a long small amplitude wave 

meets a bore. 

L, = B(B2-1)+U 
—2  —v~——£—- m this case, 
L,   B2-1+B2U 

(21a) 

B(BZ-1)+U        , ,     „ ,_ = —7 i—      for  an incident wave  dPn 

and 

U-(BZ-1) 

B(B2-1)+U 

B(B2-1)-U 
for an incident wave dP 

(21b) 

(21c) 

A better measure of the change in a wave is the change in its volume 

(area for a two-dimensional wave), i.e. 

dA = Ldh. 
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Figure 4.  The relative change m volume when a small amplitude wave meets 

a bore. The curves are labelled with the corresponding Riemann invariants of 

the incident wave. 

Values of dA2/dAj for the three different types of incident wave are shown 
in figure 4.  The change in volume can be explained ny noting that there is 
a small change dV m the velocity of the bore while it is interacting with 
the incident wave.  A number of cases lead to an amplification of the wave. 
These results only apply to waves long enough to be described by the shallow- 
water equations. 

The energy density at a point is 

E = Jpu2h +pgh(|h-ho) = p(u
2+c2-2c0

2)c2/2g, (22) 
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so that the energy of an infinitesimal wave is given by 

gdE/p = c2udu + 2(c2-c2|)cdc 

- !(c2-c2 + cu)cdF + J(c2-c2-cu)cdQ.     (23) 

When an infinitesimal wave traverses any finite amplitude flow dE varies, 
on the other hand for any flow over a flat bottom at least dP or dQ 
will be constant, e.g. see Peregrine (1967) for a treatment of reflection of 
an  infinitesimal wave by a sloping beach.  Thus the energy of an infinitesimal 
wave is not very useful in this context. 

Interaction of bores 

When one bore meets, or catches up with, another the result of their 
interaction may include one or two bores.  The interaction is most easily solved 
by considering the (u,c) plane. The bore relation (17) defines a pair of lines 
in the (u,c) plane for each point (^, cj). The points on these lines are 
possible values of (u2,c2). This pair of lines is plotted in figure 5 for 
the point (0,1) (effectively the relation (20) between B and U), for other 
values of ui the lines are simply translated and for other values of cj 
the scale is changed appropriately 

When one bore catches another the initial configuration is as shown m 
figure 6 where bore B2  is necessarily travelling faster than Bj.  This can 
be displayed in the (u,c) plane by representing the states (u ,c ) for I = 1,2,3 
by points labelled F s l = 1,2,3 with lines representing the relevant bore 
relations joining each state, as in figure 7.  This makes it clear that after 
the bores meet a single bore from F. to F is not possible. 

The alternative form of transition between two levels of water is a simple 
wave of depression. That is a long wave propagating in the +x(or -x) direction 

u3,c3                 u2,c2               "i>
ci 

T—=> r «" y—7—/"—7 7 7—7—s   S   S—X" -» 7 5> 7 7— 

Figure 6. One bore catching another. 
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Figure 7.  One bore catching another- the  (u,c) plane.  Bore B  connect 

states and , bore B2 connects states F2 and F3 

1 
the corresponding 

bore relations are shown by a continuous line.  After the interaction the 

single bore B~ connects states F,  and F^ and a simple wave connects states 

and F  as indicated by the dotted line. 
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~L_ 

Figure 9 Diagram of (x,t) plane showing one bore catching another, with the 

C- characteristics and the bore paths shown. Below and above the diagram are 

representations of the initial and final states. 
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Figure 10.  The amplitude of the simple wave resulting from a bore of depth 

h3 catching one of depth h2 propagating into water of depth hj.  The 

resulting bore has depth h  behind it. 
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with Q  (or P) constant.  The possible (u,c) states are thus connected by 
the straight lines Q = 2c-u = constant, (or P = 2c+u = constant) as shown 
in figure 8.  (In the figures of the (u,c) plane the unit for c is chosen 
to be twice that for u, thus the lines P,Q constant are ate 45° to the u and 
c axes.)  Referring again to figure 7, the only simple wave which can propagate 
back into the conditions (u3,c3) is one with P = constant. Thus after the 
bores have met the (u,c) diagram is as indicated by the dotted line in figure 
7, and the result is a bore plus a simple wave.  Figure 9 is a diagram showing 
characteristics in the (x,t) plane for such an interaction. 

The difference of levels may be calculated, using equation (17) and 
equation (14) applied to the states F3 and F^.  Numerical results for 
(ho-hit)/"!, shown in figure 10, indicate that the simple wave has a 
relatively small amplitude e.g. when h3 = 5hj the maximum value of (h -h ) 
is 0.4h. thus (hj-h^) = 0.08h3. 

Other interactions between bores and simple waves may be analysed in 
a similar manner.  The result of each interaction is given in the table.  In 
the cases marked * the end result depends on the relative sizes of the bore 
and the wave and the interaction takes a very long time to reach its final 
state. 

N 

s r.h.s. 

N 

l.h.s  NN 

B
+ 

B_ W+ W_ 

\ W_     B+ B_   B+ * W_    B+ 

B_ do not meet B_   W+ do not meet * 

w
+ 

* * do not meet w_ w+ 

w_ do not meet * do not meet do not meet 

B = bore,  W = simple wave of depression, suffix + represents travel in 

+ x direction. 
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A similar approach is used to study shock wave interaction in gas 
dynamics (e.g. Courant and Friedrichs, 1948, section HID).  Other 
solutions of gas-dynamic problems may be transferred to the water-wave 
context.  For example, this paper is confined to two-dimensional 
examples but the intersection of bores at an angle to each other may 
be solved by methods used for intersecting shock waves. 

Analysis of observations 

In the previous section the (u,c) plane is used to analyse bore 
interactions.   It can also be of value in interpreting actual wave 
motion.   If measurements of velocity, u, and of total depth, giving c, 
are available as functions of time for a point in the surf zone, then a 
corresponding trajectory can be plotted in the (u,c) plane.   If the 
shore line is in the + x direction the variation of Q will indicate the 
amount of reflection whereas the variation of P will correspond to the 
incident waves. 

Conclusions 

The examples give an indication of some of the non-linear processes 
acting in the surf zone.  An appropriate next step is to use numerical 
modelling m conjunction with further analytical work to synthesize a 
qualitative picture of all wave action in the surf zone.  There is no 
intrinsic difficulty m finding numerical solutions and there is plenty 
of scope for further analysis. 

Comparison with experiment and with prototype observations is desir- 
able.  Firstly to obtain a good representation of turbulent dissipation, 
and then to assess the importance of other factors such as a mobile, 
porous bed and effects at the instantaneous shoreline. 

The most intractable problem is probably that of providing an adequate 
description of wave breaking m order to give a good representation of the 
input to the surf zone. 
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