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Abstract

In the surf zone on beaches, there are strong effects which cannot
be described by linear equations. This paper describes a number of
wave 1lnteractilons that can take place, using the simplest set of
equations that give an adequate qualitative description. The results
are of value for comparison with detailed experimental measurements and
for gaining understanding of surf zone processes.

Introduction

The regilon of breaking and broken waves on a beach 1s i1mportant
for the study of waves on beaches, from whatever point of view 1t 1s
approached. From a theoretical viewpoint the turbulent, unsteady, flow
presents many difficulties. The wave motions do not satisfy linear
equations, so that the superposition of solutions, which gives such power
to linear analysis and makes Fouriler techniques so revealing, 1s not
avallable. 1Indeed, the high level of turbulence means that accurate
equations for describing the flow are not known. In this paper particular
solutions of approximate non-linear equations are considered with a view
to gaining some understanding of the processes 1involved.

The equations are the finite-amplitude shallow-water wave equations,
which may be written:
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1n which, h 1s the total depth of water, hp 1s the depth below the still
water level of the sea bed, which 1s assumed to be rigid and impermeable,
and u 1s the mean horizontal water velocity. Multiple values arise 1n
solutions of these equations and these are excluded by introducing
discontinulties representing bores and satisfying the bore relations:

hy(uy; = V) = hy(u, - V), 3)
hyuy (o= V) + dgh? = hyuy(u,- V) + 4gh?, *)

These equations of motion are usually derived, e.g. in Peregrine
(1972), for the laminar flow of an inviscid fluid, however, similar
equations are found for long waves on shear flows (Blythe et al, 1972).
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For river flows 1t 1s found that turbulent dissipation 1s adequately
represented by the addition of a term - f ulu‘ to the right-hand side

of equation (1). It 1s likely that adding such a friction term may give quite
a good representation of real wave motions. Friction is discussed by
Longuet-Higgins (1972) and briefly by Meyer and Taylor (1972). It 1s not
included here since 1t impedes analysis of the equations and 1t 1s expected

to have only a quantitative, damping, effect on solutions.

The bore relations are found to be 1in agreement with experiment
for stationary bores (hydraulic jumps), e.g. see Rajaratnam (1967) for a
discussion. For travelling bores there are difficulties in measuring the
velocity V of the bore because of the strong turbulence at its front.
However, Miller's (1968) measurements, despite their wide scatter, are consistent
with the theoretical values.

It 1s important to realise the limitations of the shallow-water theory.
These are well 1llustrated by bores, which are represented mathematically
by abrupt discontinuities, but in reality the changes in level and velocity
are spread over several times the depth. Similarly the equations of motion
are only applicable to variations i1n velocity and amplitude that are also
spread over many times the depth. Close to the shoreline where the mean
depth of water 1s small these are quite acceptable limitations, but where
waves have just broken, or are moving shorewards as spilling breakers, the
shallow~water theory 1s inappropriate. Thus this theoretical treatment 1is
most pertinent to what may be called the “inmer surf zone”.

It 1s worth noting that the equations do not predict wave breaking.
When a solution reaches a point where the slope of the water surface becomes
large, and multiple values of the solution are avoided by inserting a
discontinuity, the correct interpretation 1s that the approximation of
long gentle waves, which 1s essential for the equations, 1s no longer valid.
In practice, 1t 1s observed that waves often break, and 1t 1s reasonable
to fit a bore discontinuity. However, 1f the assumed discontinuity has a
depth ratio of less than 1.6 any bore formed will be at least partly undular,
and 1t will be best described by the Boussinesq equations 1f no breaking
occurs.

A number of authors have used this analytical approach to waves
on beaches, usually of uniform slope. A bore advancing toward a beach
through still water 1s treated numerically in Keller et al (1960) and
by Freeman and Le Mehaute (1964), whilst an asymptotic analysis of 1its
approach to the shore line 1s in Ho and Meyer (1962). A standing wave
solution, without any bore 1s gilven by Carrier and Greenspan (1958).
Jeffrey (1964,1967) determines the time, 1f any, at which a sinusoidal
wave propagating into still water over a uniform slope would "break'".
Carrier (1966) gives results for waves approaching a shore when they
are sufficiently gentle that they do not break. By limiting attention to
very slowly varying depth Varley et al (1971) and Cumberbatch and Wen (1973)
deduce a number of results for waves entering still water. Run-up may be
discussed in the same theoretical context, results are reviewed by Meyer
and Taylor (1972).

The philosophy behind the present work is the accumulation of relevant
solutions of the non-linear equations that may assist the interpretation
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and collection of data so that empirical rules for wave properties may

be refined. Some relatively simple examples are discussed in this

paper, taking a horizontal bottom for simplicity, though the results

are directly transferable to situations with variable depth. In particular
the analysis of bore interactlons suggests a way of plotting field
measurements to learn more about actual surf zones.

Introductory Analysis

Analysis 1s simplified by introducing the "local long-wave velocity"

c, defined by
cZ = gh. (5)

Then equations (1) and (2), after some simple algebra may be written

3 3 _ dh,
[Bt + (u+c)aX ] (2c+u) = 8% * (6)
3 3 dh
— -c)— - = - 0
[Bt + (u C)Bx ] (2¢c-u) X (7)
Alternatively, these equations take the form
3(2¢c+uw) _ dh,
35 Gdx ° @)
3(2c-u) _ d
R Sdx ®
1f characteristic variables R,S defined by
2¢dR = dx - (utc)dt, (10)
2¢dS = dx - (u-c)dt, (1
are used. These define two families of characteristic lines:
., R= tant, X o yic; (12)
4 cons > G - utes
dx
C_, S = constant, q¢ = wee (13)

(e.g. see Stoker, 1957, or Abbot, 1969). It 1s the existence of the relatively
simple equations (8) and (9) that permits solutions, or some properties of
solutions, to be found 1in particular cases.

For a horizontal bottom these equations simplify and can be integrated
to give*

P = 2c+u = constant on C+ lines, (14)
Q = 2¢c-u = constant on C_ lines (15)

The variables P and Q are called "Riemann invariants". If one family
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of characteristics, e.g. C_, come from a region of uniform flow the
appropriate lnvariant, Q, 18 equal to the sameconstant everywhere; such
solutions are called "simple waves"  Characteristics may be thought of as
"elementary" waves of the system of equations - indeed they are the paths
m (%,t) space of small amplitude long waves.

If ¢ 1s used in the bore relations (3), V 1s given by

2 - 2

v =528 " cihy (16)
e? - o2
2 1

and then, after substitution for V, equation (4) becomes

ZC%C%(UI‘UZ)Z = (c%—c%)z(c%+c%). Qa7

"Reflection” from a bore

In a solution of the shallow-water equations with a bore fitted at
a discontinuity travelling in the +x direction, the bore and 1ts path are
determined by*

(1) the conditions in front of 1t (1.e. uy,c; or Py, Ql)’ since
v >u;+ ¢y 1t meets two characteristics on that side.

(11) the value P, of P on the C+ characteristic behind the bore
which catches 1t up since uste, > V.

This 1s shown in the (x,t) plane in figure 1.

Figure 1. The four characteristics passing through one point on a bore's path.
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In particular the velocity V and the value Q, of Q on the C_
characteristic behind the bore are determined. Q, 1s always less than
Q,, the difference can easily be evaluated in terms of the strength of
the bore,

B =c,/c;, 1.e. B2 = hz/hl’

by using equation (17), and 1s

2_ 2,174
c1[2(1—5) ) ] (18)

Q;7Q, B

= c]q;
say. Values of q=q(B) are displayed 1in figure 2.
— 3

Figure 2. The change in Q at a bore, divided by cy.

One way to interpret this result 1s to consider a bore travelling over a
flat bottom into uniform conditions P,, Q;, with the wave behind the bore
being of only limited extent before the same uniform conditions are
recovered. Then as the C_ characteristic from the bore propagates 1into

these uniform conditions they are disturbed because Q 1s less than Q.
In fact, for such a wave

u = u+fc;q and c = ¢ (1-{q).
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and thus since q>» O and c? = gh, the wave coming back from a bore 1s

a wave of depression., However, the C_ characteristic only travels backwards
1if u=-¢c <0, but u=-c¢-= u, =y + 3 c,q and 1s less than zero when

4 uj
q <z(1 - 2.
3 cy

(e.g. for the case u =0, g¢ 4/3 1mplies B < 2.695 or h,/h, < 7.263)
This wave of depression can be thought of as a form of "reflection" from
a bore.

On a beach, such a reflected wave would start when a wave breaks, at
least, 1f 1t breaks in sufficiently shallow water. However, 1t would be
propagating in the direction of increasing depth and from equation (19) one
may deduce that this causes § to 1increase Thus for waves incident on a
beach the amplitude of the wave would be due to both these opposing influences.

Small amplitude waves and bores

A small amplitude wave 1s most naturally described in the context of
the finite-amplitude shallow-water equations as a small change in P, (or Q)
travelling along the C (or C_) characteristics. There are three ways
in which a small amplitude wave can meet a bore travelling in the +x
direction, corresponding to the three characteristics; C, and C_ 1in front
and C from behind the bore. In all three cases the resulting wave
propagates along the C_ characteristic behind the bore. Thus for a wave
which originally travelled along a C+ characteristic, interaction with a
bore reverses 1ts direction of travel.

The magnitude of changes in the waves may be found by evaluating
dQZ/dPl,dqz/dQl, sz/dP2 at the bore, where suffices 1 and 2 refer to values

in front of and behind the bore respectively, and in each derivative the
other pair of Riemann invariants are kept constant. A straightforward
algebraic manipulation of the differential of the bore relation (17) together
with the definitions of P and Q gives

dq, _ BLU(BY+B?+2) + 2(B"-1)], (192)
dQ,; U(2B*+B%+1) + 2B(B%-1)

dq, BLU(B*+B2+2) - 2(B4-1)]

—2 - , (19b)
dp, U(2B*+B%+1) + 2B(B"-1)
dQ, _  -U(2B%+B2+1) + 2B(B%-1) (19¢)
ar, U(2B" +B2+l) + 2B(B“-1)

where U = (uz—ul)/c . Note, that in terms of U and B the bore relation
(17) 1s

2B202 = (B2-1)2(B2+1). (20)

From these results all changes in the wave's properties may be found.
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For example, consider a wave dQ, meeting the bore on a C_ characteristic.

The relative change 1in amplitude 1s

dhy = codey

dhj cpdey
but dc, = —i—dQ1 and dc, = % sz since dP1 = dP2 = 0 and thus
dh dqQ
¢hy _ 2
dh, BEIQ 1

Since both B > 1 and sz/dQ1> 1, this wave 1s always 1ncreased in amplitude.

From the geometry of the characteristics in the (x,t) plane, shown in figure
3, the change 1n length of a small amplitude wave may be calculated;

Figure 4. Arrangement of characteristics when a long small amplitude wave

meets a bore.

L, = B(B2-1)+U

1in this case (21a)
L, B2-1+B%U ’

B(B2-1)+U

= —pe——t—r  for an 1ncident wave dP (21b)

B U-(B2-1) 1’
2_

and = BB 1)U for an incident wave dP (21c)

B(B2-1)-U

A better measure of the change 1n a wave 1s the change in 1ts volume
(area for a two-dimensional wave), 1l.e.

dA = Ldh.
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B = c2/cl

1 H ’ 1 ) 1
2 3 4

Figure 4. The relative change i1n volume when a small amplitude wave meets
a bore. The curves are labelled with the corresponding Riemann invariants of

the 1incident wave.

Values of dA,/dA; for the three different types of incident wave are shown
in figure 4. The change 1in volume can be explained ny noting that there 1is

a small change dV 1in the velocity of the bore while 1t 1s interacting with
the incident wave. A number of cases lead to an amplification of the wave.
These results only apply to waves long enough to be described by the shallow-
water equations.

The energy density at a point 1s

E = jpu’h +pgh(3h-h ) = o (uP+c2-2¢ 2)c?/2g, (22)
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so that the energy of an infinitesimal wave 1s given by

gdE/p = c2udu + 2(c2—c%)cdc

%(cz—c% + cu)cdP + g(cz—c%-cu)ch. (23)

When an infinitesimal wave traverses any finite amplitude flow dE varies,

on the other hand for any flow over a flat bottom at least dP or dQ

will be constant, e.g. see Peregrine (1967) for a treatment of reflection of

an infinitesimal wave by a sloping beach. Thus the energy of an infinitesimal
wave 1s not very useful in this context.

Interaction of bores

'
When one bore meets, or catches up with, another the result of their
1nteraction may include one or two bores. The 1nteraction 1s most easily solved
by considering the (u,c) plane, The bore relation (17) defines a pair of lines

in the (u,c¢) plane for each point (u;, c;). The points on these lines are
possible values of (up,cy). This pair of lines is plotted in figure 5 for
the point (0,1) (effectively the relation (20) between B and U), for other
values of u] the lines are simply translated and for other values of ¢
the scale 1s changed appropriately

When omne bore catches another the initial configuration 1s as shown 1in
figure 6 where bore B, 1s necessarily travelling faster than B;. This can
be displayed in the (u,c) plane by representing the states (u ,c ) for » = 1,2,3
by points labelled F_s 1 = 1,2,3 with lines representing the'relevant bore
relations joining each state, as in figure 7. This makes 1t clear that after
the bores meet a single bore from F, to F, 1s not possible.

The alternative form of transition between two levels of water 1s a simple
wave of depression. That 1s a long wave propagating in the +x{or -x) direction

Uj3,Cq Ug,sCo Uy,Cq
T Ll L S 7 7 [t L 77

Figure 6, One bore catching another,
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U

Figure 7. One bore catching another: the (u,c) plane. Bore B1 connects

states F) and F, , bore B, connects states F, and F; , the corresponding
bore relations are shown by a continuous line. After the interaction the

single bore By connects states F, and F, and a simple wave connects states

Fk and F3 as 1indicated by the dotted line.
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Diagram of (x,t) plane showing one bore catching another, with the

Figure 9
Below and above the diagram are

C- characteristics and the bore paths shown.

representations of the 1initial and final states.
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Figure 10.

The amplitude of the simple wave resulting from a bore of depth

hy catching one of depth h, propagating into water of depth h;. The
resulting bore has depth hh behind 1t.
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with Q (or P) constant. The possible (u,c) states are thus connected by

the straight lines Q = 2c-u = constant, (or P = 2c+u = constant) as shown

in figure 8. (In the figures of the (u,c) plane the unit for ¢ 1s chosen

to be twice that for u, thus the lines P,Q constant are ate 45° to the u and

c axes.) Referring again to figure 7, the only simple wave which can propagate
back into the conditions (u3,c3) 1s one with P = constant. Thus after the
bores have met the (u,c) diagram 1s as indicated by the dotted line in figure
7, and the result 1s a bore plus a simple wave. Figure 9 1s a diagram showing
characteristics 1in the (x,t) plane for such an interaction.

The difference of levels may be calculated, using equation (17) and
equation (14) applied to the states F, and F,. Numerical results for
(h,~h,)/h,, shown in figure 10, indicate that the simple wave has a
relatively small amplitude e.g. when h3 = Sh1 the maximum value of (hs_hq)
1s 0.4h1 thus (h3_hb) = 0.08hj.

Other interactions between bores and simple waves may be analysed 1in
a similar manner. The result of each interaction 1s given in the table., In
the cases marked * the end result depends on the relative sizes of the bore
and the wave and the 1interaction takes a very long time to reach 1ts final
state.

N
AN
N\ r.h.s.
N N B, B. W, W_
1l.h.s AN
~
* B
B, W_ B, B_ B, W_ .
B_ do not meet B_ W, do not meet] *
W, * * do not meet | W_ W,
W_ do not meet * do not meet] do not meet

B = bore, W = simple wave of depression, suffix + represents travel in

+ X direction.
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A similar approach 1s used to study shock wave interaction in gas
dynamics (e.g. Courant and Friedrichs, 1948, section IIID). Other
solutions of gas~dynamic problems may be transferred to the water-wave
context. For example, this paper 1s confined to two-dimensional
examples but the intersection of bores at an angle to each other may
be solved by methods used for intersecting shock waves.

Analysis of observations

In the previous section the (u,c) plane 1s used to analyse bore
interactions. It can also be of value 1n 1nterpreting actual wave
motion. If measurements of velocity, u, and of total depth, giving c,
are avallable as functions of time for a point in the surf zone, then a
corresponding trajectory can be plotted in the (u,c) plane. If the
shore line 18 1in the +x direction the variation of Q will indicate the
amount of reflection whereas the variation of P will correspond to the
1ncident waves.

Conclusions

The examples give an 1ndication of some of the non-~linear processes
acting 1n the surf zone. An appropriate next step is to use numerical
modelling in conjunction with further analytical work to synthesize a
qualitative picture of all wave action in the surf zone. There 1s no
intrinsic difficulty in finding numerical solutions and there 1s plenty
of scope for further analysis.

Comparison with experiment and with prototype observations 1s desir-—
able. Firstly to obtain a good representation of turbulent dissipation,
and then to assess the 1mportance of other factors such as a mobile,
porous bed and effects at the instantaneous shoreline.

The most 1ntractable problem 1s probably that of providing an adequate
description of wave breaking 1n order to glve a good representation of the

input to the surf zone.

515
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