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SYNOPSIS 

Kakutani's equation is extended to include the effects of variable 
width of the channel and the bottom friction.  Based on the equation, 
several solutions are derived and compared with experimental results. 
For example, Green's law is obtained if the nonlinearity, dispersion and 
bottom friction are neglected.  With the nonlinearity included, it is 
shown that the wave amplitude follows Green's law and at the same time the 
wave profile deforms due to the nonlinear effect. 

Discussion of the present paper is mainly focused on the effect of 
the bottom friction. From the experimental results of cnoidal waves in 
a channel of constant depth and width, on the bottom of which artificial 
roughnesses are planted, it is shown that the friction coefficient esti- 
mated from Kajiura's theories gives good agreements, thus confirming the 
validity of the method of conversion, proposed in the present paper, 
between sinusoidal and cnoidal wave motions. 

Change in height of cnoidal waves on a slope is also solved.   The 
friction coefficient determined from wave characteristics and bottom 
conditions, by means of Kajiura's theories and the method of conversion 
stated above, is used in the comparison with experimental results. 
Theoretical prediction agrees very well with experimental results. 

INTRODUCTION 

In shallow water, long waves transform under several effects such as 
nonlinearity, dispersion, topography and bottom friction.  As for the 
first three effects, the present author has derived an equation and solved 
in one of his previous papers [l]. 

In the present paper, an equation which includes all four effects is 
derived and, therefore, is considered a fundamental equation for water 
waves in shallow water.   In other words, the equation is an extension of 
Kakutani's equation [2], because if the bottom friction and the effect of 
the variable width are neglected, it is reduced to Kakutani's one. 

The bottom friction here is assumed to be proportional to the square 
of the horizontal velocity of water particle.  This is normally done if 
the flow is turbulent near the bottom.  We encounter two questions as for 
the expression of the bottom friction.  The one is how we select the 
representative horizontal velocity, and the second problem is how we can 
estimate the magnitude of the friction coefficient. 
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In the following derivations, the horizontal Telocity of the first 
order approximation, that is, the horizontal velocity of the linear long 
waves is used as the representative velocity.   Since it has a uniform 
vertical distribution, it is easy to connect it with the water surface 
elevation r\,  for which the equation is derived.  At the same time, there 
is neither ambiguity nor complexity in the definition of the bottom friction. 

For the friction coefficient in an oscillatory flow, Jonnson's empiri- 
cal formula [ 3 ] and Kajiura's theories [k],   [5] are available.   In the 
present paper, an attempt is made to connect cnoidal waves with Kajiura's 
theories which assumed sinusoidal waves.   It is assumed here that the 
mean energy dissipation is the same for sinusoidal and cnoidal waves, thus 
providing the method of conversion of the friction coefficients. 

Kajiura derived his first theory, on assuming that the boundary layer 
thickness is very big and covers the whole water depth. This corresponds 
to tsunamis or storm surges in natural conditions. 

Kajiura's second theory is for wind waves or swells in shallow water. 
It is assumed that the boundary layer thickness is very thin compared to 
the water depth. 

In the experiments, artificial rectangular roughnesses are planted on 
the bottom of the channel and on the slope.  For a given size and spacing 
of the roughnesses, Adachi's empirical formula [6] is used to calculate the 
coefficient of the bottom friction and the roughness length z0 in steady 
flow.  The friction coefficient thus obtained is always smaller than that 
required for unsteady flow.  Therefore, the roughness length is used to 
estimate the friction coefficient for unsteady flow, combined with the 
horizontal velocity of linear long waves, by Kajiura's theories. 

Decay of cnoidal waves in a channel of constant depth and width are 
at first tested in order to examine the validity of the expression of the 
bottom friction.  Dimensions of the roughnesses used in the experiments 
are big for the water depth, compared with the natural condition.   The 
friction coefficients computed from experimental results are quite big 
compared with that estimated for steady flow and fall between two Kajiura's 
theories.   Therefore, it is concluded that the present theory combined 
with Kajiura's theories provides reasonable basis for transformation of 
nonlinear long waves in shallow water. 

Experiments are also carried out on a slope of 1 on 20, on which the 
same artificial roughnesses are planted.  Mean value of the friction 
coefficient is used to predict the change in wave height and the results 
agree very well with experimental results. 

FORMULATION 

The equations to be solved are; 
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U  + V  + W  =0 
x   y   z 

u. + uu + vu +wu = - — p + — t    x    y    z    p x  p 

v, + uv + vv + wv = - — p 
t    x    y    z    p *y 

W,  + UW  + VW  + ¥¥ t    x    y    z p„ 

(1) 

in which the x-axis is taken horizontally and parallel to the direction 
of wave propagation, the y-axis horizontally and normal to the x-axis, and 
the z-axis vertically and positive upwards.   It is assumed that the bottom 
friction mainly contributes in the x-direction only. 

Boundary conditions are as follows. 
On the free surface z = ho + Tl, 

nt + unx + vny = w 

x = 0 

(2) 

On the sea "bottom z = h(x) 

uh = w 
(3) 

At the side wall of the channel y = * b(x), 

ub W 

In these expressions, it is assumed that the centerline of the channel 
coincides with the x-axis and the water depth does not vary in the y- 
direction. 

Equations and conditions are expressed in dimensionless form by using 
Johnson's method [7] and are expanded into series by Kakutani's method of 
perturbation [2].  The details are not stated here because they are almost 
the same as are given in one of the author's previous papers, except that 
the bottom friction is developed as T ,1/2 ,3/2 

Tl + 
With this expression, the effect of the bottom friction does not appear in 
the first order approximation but in the second approximation. 
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Solutions  of the  first order  approximation are given as  follows. 

uo = v 1„» vo  = 0, w0   = — n  .(1 - d -  z), po   = n„ vo    o a    o c, o 

(5) 

where every quantities are expressed in terms of the elevation of free 
surface no-  Up to this point, no restriction is given to the wave profile. 

Second order approximation is solved and every terms are expressed 
again in terms of no and are integrated once with respect to the y-direction 
in order to include the side wall condition in the equation, and vertically 
once thus taking into consideration the bottom and free surface conditions. 
Finally we have the following equation for the first order surface eleva- 
tion in dimensional expression. 

nx + fg-l/2d-3/2nn5 + ig-3/2^^n5?s+id-dxn 

+ |b_1 txn   + \ dd"2 n In I = o   (6) 

in which the subscript o is omitted for simplicity.  Letter subsripts 
in the equation denote differentiation with respect to them. 

The first term in the equation denotes the spatial rate of change in 
wave profile and others are the causes.  The second term is the effect of 
finite amplitude, referred hereafter, as the effect of nonlinearity. 
The third is the effect of dispersion.  The fourth is the effect of the 
variable water depth.  With these four terms only, the equation is reduced 
to Kakutani's equation. 

The fifth term gives the effect of the variable width of the channel. 
With this term included, the equation is extended to two dimensional cases 
which are important in practical problems such as_refraction problem. 
The bottom friction is given by the last term in which the bottom friction 
is expressed as T = pCi u|u|. 

notations used are as follows.  The term x denotes the horizontal 
distance, 5 a modified time defined by £ = /(l//gd)dx - t, t the actual 
time, g the acceleration of gravity, d the undisturbed water depth, b the 
width of the channel and Cj the friction coefficient. 

EXAMPLES OF SOLUTION 

Decay of linear long waves 

Equation (6), with the second and third terms neglected, is reduced to 

n   -, b   , d   . I I 
^ + I^ + }Jt« = o   (7) 
n   2 b   h   d   2  dz 



and the solution is 

n 
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•x   CiM b1/2 a1/* = no ^o1/2 do1/" exp[- fx   f^dx]     ( x0 2  d* 

If the friction term is neglected, the equation is reduced to Green's law 
of shoaling. 

For a sinusoidal wave in a channel of constant depth and width, when 
the effect of bottom friction is assumed small enough to be replaced by 
an equivalent linear friction, then for a small travel distance x, the wave 
profile is given by 

n = no exp[-  3-^2 J  (9) 

where a0 is the initial wave amplitude. 

Decay of shallow water waves due to bottom friction 

It is assumed here that the depth and width of the channel are con- 
stant.  Equation (6) is reduced to the following expression. 

\ +1s_l/2 a_3/2 nns+ lla-2 n|r)| = °      (10) 

For the positive n. the equation is simply expressed by 

n + Annr + BM
2
 = 0   (11) 

X       c, 

and its solution which satisfies the boundary condition n = f(-t) at x = xo 
is given by 

f[5 + £ ln{l - Bn(x - x0)}] — on\±. - rani - X0;JJ  ij2) 

1 + B(x -  x0)   f[ C+ t ln{l - Bn(x - xo)}] 

For the negative n, B in the equation is replaced by -B.  In these expres- 
sion A = 3/2'g"1'2 d~3'2, and B = Cid~2/2. 
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CHA1JGE IN WAVE HEIGHT OF CNOIDAL WAVES 

Equation 

For  simplicity,   equation  (6)   is written as 

nx + o^nrig + a2n?^ + a3n|n|  + a„n = 0 (13) 

The wave profile is divided into two parts; the one is the principal 
part rio which is cnoidal waves and the other minor part a modification. 

Ho H en2g + 6, A[ 5- Bx] 
k L It d* J 

(lit) 

It is assumed that the principal part of the wave profile always keeps the 
cnoidal shape.  Main change can occur in its wave height, phase and the 
position of wave trough.  And even if the higher order term is included, 
the latter should not increase secularly with respect to x.  Otherwise, 
at some time later, the magnitude of the higher order term exceeds that of 
the basic cnoidal waves and, then, the perturbation applied here is no 
longer valid.  As for the details of the manipulation, one can refer 
References [l], [8] and [9]. 

Under this assumption, the following equation is derived and gives 
the change in wave height. 

1 d& 1 du 
H dx      2U dx HI,

1
 H dx ~  U dx  a" + «3H Y° 

(15) 

where U2 is a kind of Ursell's parameter defined "by gHT2/d2, and others ar 
are as follows. 

Ci ,_2 
a 3 = g  d 

a* = ^ b~' b + f d"1 d H  2     x  h x 

6 " - k21 K 

[„ = /_k
k ( an2B  + | )2 | en2$  + | | 

Ii = /_k an i. 

I2 = I_l cn2t 

(16) 
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There are difficulties in the above equation if one want to solve it 
analytically.  They are due to two terms, 6I2/HI1 and I0/Ii. 

Approximations of 5l2/HIi and Ip/Ii for large Ursell's parameter 

For Ursell's parameter larger than 50, the following approximation 
was obtained in Ref. [l], 

6I2. =  2/3 - (1T) 
HIi     U 

and if we allow errors of 3.5 %  at most, this approximation is extended 
down to U2 = kO. 

As for another coefficient I0/I1 , we have to approximate it in a form 
convenient for integration.  At first the integral I0 is rewritten as 
follows for convenience of numerical computation. 

Io = /_k
k (cn28  + £)2 \cnH  + £ | d& 

= 2/Q
k  (c»2B + |)2   |Cn2g +||  dQ 

= 2 fQ
&1   (en2B + |)3 d& - 2 I^ien1? + f)3 d& 

= k /Q
Bl   (en2g + |)3 dfi - 2 /Q

k (en2?, + f)3 dfi 

(18) 

where Bi is the value which satisfies 

en2g1 + I = 0   (19) 

The above equation is approximated for large Ursell's parameter, that 
is, for large K, by 

1    = 16 _ ii u-i + 32 u-
2         (2°) 

0  15  /3 

Figure 1 shows the comparison between numerical value of Io and its 
approximation, Eg.. (20). Taking into consideration the fact that Eq..(20) 
is no longer applicable down to Uz = 100 and is still inconvenient for 
integration, a set of I0/I1 shown in Table 1 is proposed as the approxi- 
mation for integration. 
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100 1000 
U* = gHT2/d2 

Fig.l.  Io as a function of Ursell's parameter 

U2 \l   \ 

1*0 200 0 05251* u1* 5 

200 - 1 000 0 1516 u2/5 

1 000 - 2 500 0 3025 u1/5 

2 500 - 1 1 _ 5/3 ) 
u  ' 

Table 1.  Approximate values of IQ/II 

Case 1. Constant depth and constant width 

To examine the validity of the expression of the bottom friction and 
to correlate the friction coefficient for cnoidal waves to Kajiura's 
theories, solutions without the topographical effect are derived and are 
to be compared with experimental results.   Since d is constant in this 
case, Ursell's parameter varies with wave height H.  Then, we have 

„2   „     H     U. 
U H T=2 

X 
U 

(21) 

where D is d2/gT2 and takes a constant value, because the wave period T is 
also considered constant. ' 

For Ursell's parameter between 1*0 and 2500, the coefficient I0/Ii is 
expressed by 

= Flf75 (22) 

where F and m are constant for given ranges of Ursell's parameter and are 
given in Table 1. 

Equation (15) is now reduced to 
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| [ U'1 -J: U"2 ] £ + a3DFU
(l° + m)/5 = 0    (23) 

or further to 

t y-l-CiO + m)/5 _ i u-l-dS + m)/5 j ^ + 2 DF& = 0   . 
/3 3 
  (2)4) 

and the solution is given by 

(10 + m)/5     It 10 + m 1       it 10 + m ! 

^ U l  ~/3 15 + m UJ ~ L  /J 15 + m U„J 

= i2_±m ^x U„(l° + *>/5       (25) 

where the subscript 0 denotes the value at a reference point x = o. 

Although the wave height is given by Eq. (25), the equation is still 
a little complicated.  More simple relationship, if obtained, is conve- 
nient for practical purpose.   Therefore, the Ursell's parameter in the 
first square bracket is replaced by Uo.  A numerical examination shows 
that if the wave height H remains larger than 0.8H0, this replacement 
yields 3 %  errors at most.  The wave height Ho is the wave height at the 
beginning of an interval where the bottom friction is not negligible and 
H is the wave height at its end.  With the distance x of the interval well 
chosen so as to satisfy this restriction, wave height can be predicted by 
simple formulae as shown in Table 2. 

For Ursell's parameter larger than 2500, Eq.. (15) becomes of the 
following form. 

(f u- - ^ > §+?(i - ¥)a3Du2 = °    (26) 

For this range of Ursell's parameter, 5»3 U"1 is not larger than 0.17 
and the following approximation is used in the integration. 

^-lu-^-^u-^ + S" 
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The solution is given as follows. 

(2»-)2 [i + 2£_ i] _ [I+ ^ I    i|     2 x      

°      3/3 U      3/3 Uo   15 

Again the fact that 22/3/3"U-1is smaller than 0.15 is taken into consider- 
ation and U in the first square "bracket is replaced by Uo .  The result 
is also listed in Table 2. 

For a solitary wave as a limit when Ursell's parameter tends to infin- 
ity, we have 

H = H0/ (1 +1
i

5
5lfi)         (28) 

If one prefer Manning's n in place of Ci used in the present paper, he 
eplace Cihy gn2d-1'3 although there is an uns 

how to determine the value of n for unsteady flow. 
can replace Cihy gn2d 1's  although there is an unsolved problem, that is, 

ltO<gHT2/d2<200 

( f°)7/5- 1 = 0.0^90 ^ (^)7/5/ [1 - 1.70 (i^f1/2] 

200 <gHTz/d2 <1000 

( I")6'5- 1 = 0.121 ^ (^l2-)675/ [1 - 1.63 (^fV172 

1000 <gHT2/d2 < 2500 

II        ll/lO r        „ _JT    m21l/l0 D.U„T
2

    
_1^2 

( §°)        -1 = 0.222 2i_£_ (fi&l ) /[l_1.59(M-) 

2500 <gHT2/d2 

Ho     _x       =  8 Cl   Hpx  !   { h (KHpT2)-172] 
H 15 d2   '   L J   k     d2   ' ' 

Table 2. Decay of wave height in case of ai,= 0 
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Case 2. Cnoidal waves in general case 

Almost similar calculation is possible for this case except that the 
water depth in Ursell's parameter is also variable.   The following 
relationship should he substituted in place of Eq.(2l). 

- dV  = i &L     1 il   (29) 
U dx      H dx      d dx 

The equation to be solved is 

I*J+II*+lidd + £il2r ldV + lldb + 9 1 d&  , 
U dx      3 b dx      2 A dx      3 H Ij     U dx      2 b dx      h d dx 

+ | a3H i°= 0     (30) 
3 li 

For Ursell's  parameter between  Uo  and 2500,  the  equation  is  further 
reduced to the  following with the  aid of Eqs.(l7)   and  (22). 

U dx  U    /y UJ       2   L  b dx      2 d dx   J   l   3 "  /3 U 

+ |^2F u(10+m)/5  =  0     (31) 3 2gT2 

The  solution is  given by 

U2(U -  2/3)  b  d9/2  eapt/Sil Jiill^idx]  =  const. (32) 
gTz   V  -   2/3 

The value of U in the  exponential  function of the  equation can be replaced 
by Uo  under the  same consideration as  in  case of constant  depth and width 
of the  channel.       In terms  of wave height H,  the relationships  are  shown 
in Table  3. 

For Ursell's  parameter  larger than 2500,  the  equation  is  given by 

2 dU + 1 *i+idb9ldd + U Cj__ „2U -  5/3 =  Q 

U dx      U -  2/3 dx      b dx      2 & dx      5  gT2       u - 2/3 

    (33) 

and the  solution  is 
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U2(" -  ^  *  dV2   ,      - «*[- \ %? U2^L *] 
U0

2(U„   -  2/3)  b0d0
9/2 5  S" U -  2^ 

    (31*) 

In terms of H, the result is also shown in Table 3. 

With Ciset equal to zero, that is, with no friction, the right-hand 
sides of the results in Table 3 are reduced to unity and they coincide with 
the result of the author's previous paper which discussed the shoaling 
of cnoidal waves. 

Hb d5/2  (/gHTVaz - 2/3) 

Hob„do5/2 (/gH„T2/d2 _ 2/3) 

ItO < gHT2/d2< 200 

p2 9/5 

gT2" "~ "~lf 
y.M^^,"5/!^^.^] 

200 < gHT2/d2 <1000 

= «*[-  °-15gaC'X  (^)17/1°   /(^W - 2*}] 

1000 < gHT2/d2 < 2500 

ri2     8/ 5 

«*>[-    0-30g2
C'X    (^F)"      "     /(^W-    2/3}] 

2500 < gHT2/d 2/^2 

UCi H0 x 
=  exp{. |iaJk£ {/gHoT

2/d2  -  5^3)/{'/gH0T
2/d2  -  2^}] 

Table  3.   Change  in wave height  of cnoidal waves under the  effects 
of variable water depth,  variable  channel width and 
bottom friction 
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EXPERIMENTAL PROCEDURE 

Experiments were carried out in a wave flume 50 m long, 1 m wide and 
1 m high.   First series of the experiments was carried out in a channel 
of constant depth.  Water depths during the experiments were kept 10 cm, 
20 cm and 30 cm.  Wave period was kept constant as 2 sec.  Wave heights 
were varied between 2 cm at minimum and 12 cm at maximum.  At the end of 
the channel, a permeable slope of 1 on 25 was installed,packed with waste 
films.  Even with this wave absorber, we had normally 7-8 %  reflection 
from this end of the channel.  The maximum reflection observed during 
experiments was about 10 %. 

Artificial rectangular roughnesses were planted on the bottom in the 
middle part of the channel.  Height and width of a roughness are the same 
and 8 mm.   Its length is 1 m and can cover the whole width of the channel. 
Spacing of the roughnesses is 8 cm.  The roughnesses were arranged at 
right angles to the direction of wave propagation.  Total length of 
roughened bed measured along the direction of wave propagation is 10 m. 
From the beginning of this area, wave heights are measured at every 1 m 
intervals.  Since the reflection is not completely negligible, we draw, 
by using the experimental results, average curves of the change in wave 
height, from which the friction coefficient Cjis estimated. 

In the second series of the experiments, a slope of 1 on 20 was 
installed.  Total horizontal length of the slope was 6 m.  Water depths 
at the toe of the slope were i+0 cm, ^5 cm and 50 cm.   From the upper 
end of the slope, continues another horizontal bed, on which water depths 
during the experiments were 10 cm, 15 cm and 20 cm.  The same roughnesses 
as in the first series of experiments were planted on the surface of the 
slope.  Wave height was measured at every 50 cm intervals on the slope. 
Wave periods were varied between 2 sec and 10 sec.  Wave heights at the 
toe of the slope were varied from 1.5 cm to 10 cm. 

COMPARISON BETWEEN THEORY AMD EXPERIMEHT 

Characteristics of roughness in steady flow 

According to Adachi's empirical formula [6], the effect of the rec- 
tangular ribs arranged at right angles to the stream is expressed in terms 
of Nikuradse's equivalent sand roughness ks' by the following relation- 
ship. 

k; = 30 k m ( Rj/k )-e   (35) 

where Ri is the hydraulic radius of the channel, k is the height of a 
roughness, s is the spacing of the roughnesses, m and 6 are functions of 
s and k which were experimentally determined by Adachi. 
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m     =   0.79   (s/k   )"»-26 

   (36) 

e    = o.o2  (s/k )° '8 

The roughness length z0 is defined by k '/30.   For example, zo = 0.23 
cm'for d = 30 cm, k = 8 mm and s = 8 cm. 

The friction coefficient Ci for steady flow is computed "by 

C1   = [ 6.0 + 5-75 log10  ( d/k; ) ]"2  (37) 

and is 0.0227, 0.0137 and 0.0108 for water depth 10 cm, 20 cm and 30 cm, 
respectively, in the first series of the experiments. 

Estimation of the friction coefficient "by Kajiura1s theories 

Field data and experimental results obtained by many researchers show 
that the friction coefficient under wave action is different from that in 
steady flow.  Kajiura established two theories, on considering the average 
state of turbulence over one wave period and adopting the assumption of the 
eddy viscosity analogous to that for the steady turbulent flow.  According 
to his theories, the frictional coefficient is given as a function of 
certain dimensionless parameters constructed from known quantities of 
wave and bottom conditions. 

Kajiura1s theories are based on the assumption that the oscillatory 
motion is sinusoidal and the present theory used the cnoidal waves. 
Direct substitution of the results of Kajiura's theory is not recommended. 
In order to connect two different definitions of the friction coefficients, 
mean energy dissipation of sinusoidal motion is equated with that of 
cnoidal waves. 

For the case of long period waves [k],   in which the flow is fully 
turbulent, the mean energy dissipation is 

< E >= f £ choose S ^  <38> 

where u is the amplitude of the mean velocity vertically averaged over 
the water depth.   The angle 8 denotes the phase lead of the bottom stress 
relative to the vertically averaged velocity and U is the amplitude of a 
formally defined velocity corresponding to the pressure gradient. 

For the case of short period waves [5], in which the thickness of the 
bottom frictional layer is very thin compared with the total depth of 
water, the mean energy dissipation is given by 
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<  E >= | C 
k2 

cosQ   U= (39) 

where U is the amplitude of the horizontal velocity at the top of the 
bottom frictional layer.  The angle 0 denotes the phase lead of the 
"bottom stress relative to the velocity at the top of the frictional layer. 

For cnoidal waves in the present paper, the mean energy dissipation 
is given by 

< E > •• f 16 I C^3 Io /2K   (1+0) 

where u is the amplitude- of the horizontal velocity which is vertically 
uniform and I is given in Table k  in simple expressions convenient for 
practical application. 

Equating these three formulas, the coefficient used in the present 
paper can be estimated from Kajiura's theories. 

k2 
a * 
— C 
3TT  kl (-§-)2= 16 I C,(§)' (la) 

gHT2/d2 = U2 I 

kO  -  200 0.08089 u-1/5 

200 - 1000 0.2331* U"3/5 

1000 - 2500 O.U657 IT"/5 

2500 - 32  / ,   5/3 

15^   " U >£ 

Table h.     Values of I 

Experimental results in case of horizontal bottom 

The friction coefficients are determined from the experimental results, 
converted, by means of Eq.(ltl), to Kajiura's definition of the friction 
coefficient, and plotted in Fig.2.   In the same figure, Kajiura's theories 
are given by two oblique lines,and three short horizontal lines correspond 
to the friction coefficients in steady flow. 
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Fig. 2.  Friction coefficients compared with 
Kajiura's theories and Adachi's formula 

The friction coefficients in steady flow show very small values and 
are unable to be used for practical estimation of decay of water waves in 
shallow sea.  The experimental results fall between Kajiura's theories. 
This suggests that the conversion formula given above is practically valid. 

Taking into account the fact that the size of the roughness in the 
experiments is very big compared to the water depth and this condition 
does not frequently occur under natural conditions, it is concluded that 
the present theory with the friction coefficient converted from Kajiura's 
first theory can be used to predict the change in height of tsunamis and 
storm surges, while if combined with Kajiura's second theory it can be 
used to compute the case of wind waves and swells in shallow water. 

Change in wave height on a slope 

Since the method of evaluating the friction coefficient from given 
wave and bottom conditions is established, the present theory is compared 
with the second series of experiments.  Figure 3 shows an example. 
Although values of friction coefficient varies with water depth on the 
slope,  average value, 0.1 for this case, is used in calculation.  Broken 
line in the figure shows the shoaling of cnoidal waves when no friction 
is taken into account.  Solid line is with friction and agrees farely 
well with experimental results.   Scttering of the experimental data is 
considered due mainly to the reflection from the slope and the wave 
absorber installed at the end of the flume. 
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Fig.3. Change in wave height on a slope. 

COMCLUSIOHS 

A fundamental equation for long waves is derived by using Kakutani's 
and Johnson's methods.  The equation includes the effects of nonlinearity, 
dispersion, water depth, width of the channel and "bottom friction. 

In addition to several solutions obtained in analytical form, the 
change in wave height of cnoidal waves is given and listed in Tables 2 
and 3.  In order to obtain as simple and convenient formulas as possible, 
imposed, during the derivation, were restrictions which should be remember- 
ed at application.  The length of an interval,x, should be well chosen so 
as that the wave height H at the end of the interval remains larger than 
0.8 times H0 , the wave height at the beginning of the interval.   If this 
restriction is not welcome, Eqs.(25) and (27) should be used in place of 
formulas in Table 2, or H0 in the right-hand sides of the equations in 
Table 3 should be replaced by H. 

The friction coefficient Ci is estimated from known quantities of wave 
and bottom conditions.   In the present experiments, artificial rectangu- 
lar ribs are used, the roughness length, z0, of which is evaluated from 
Adachi's empirical formuls.   This roughness length and wave characteristics 
gives the friction coefficient for sinusoidal waves,  if one follows 
Kajiura's theories.  Kajiura assumed sinusoidal waves and the present 
theory cnoidal waves.   Conversion of the friction coefficient between the 
two different motions is possible through Eq.(lii), provided that the mean 
energy dissipation is the same for the two motions. 
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From the first series of experiments, the method of estimation of the 
friction coefficient is confirmed.  Results of the second series of the 
experiments show that the theoretical prediction of the change in wave 
height on a slope agrees very well with experiments. 

It is concluded that the present theory combined with Kajiura's 
first thoery which assumes that the flow is fully turbulent gives good 
estimation of the change in wave height of tsunamis and storm surges, and 
that with Kajiura's second theory which assumes a thin bottom fricional 
layer the theory predicts the change in height of swells and wind waves in 
shallow water. 
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