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Wave trapping by refraction can give rise to resonance of a kind 
unfamiliar in oceanography.    Trapping over realistic seabed topographies 
is incomplete,  but conversely,  possesses a mechanism for direct, 
harmonic excitation from the open sea that is unknown in classical 
resonance.   These phenomena have been studied for the simplest example 
of an axisymmetric island of typical shape with small seabed slope. 
Asymptotic analysis has led to simple formulae for resonant frequencies, 
energy leakage rates and resonant response coefficients.   Resonances of 
extraordinarily large but narrow response have been found. 

I.   Introduction 

Localized natural surface wave modes in the open sea had long been 
known to be impossible, because their energy could propagate away freely. 
Edge waves, however, are just such modes, and their practical significance 
has come to be appreciated rapidly since their mathematical discovery 
[ Ursell 19 52] .    Meanwhile, much more unfamiliar resonances have been 
studied, which are also caused by refraction.    The key example of a round 
island exhibits these novel phenomena in their simplest form, and the 
following summarizes some recent results. 

The mechanism of trapping by refraction is simple.      The propagation 
velocity of surface gravity waves on water increases with depth.   Therefore, 
if parts of a wave crests lie over deeper water, those parts travel faster 
and in brief, all wave crests over water of uneven depth always turn 
towards the shallows, during propagation.   The possibility thus arises that 
waves coming from shore might be turned back shoreward, by and by, before 
they can reach the open sea:   such waves are trapped.   (The invisible 
barrier beyond which they do not travel seaward is called a caustic by 
analogy with optics.)    If the phase relationships are just right, moreover, 
then resonance becomes a plausible possibility. 

Such a direct approach, however, proves inadequate because 
realistic trapping turns out to be much less straightforward.   Over an 
axisymmetric seabed topography, for instance, the depth level lines 
themselves are circles and to be trapped, the crests must therefore be 
turned faster than the local level circle.   That is impossible [ Longuet- 
Higgins 19 67, Shen, et al. 19 68]   at sufficiently large distances from the 
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center.    The far field is therefore always a field of progressive waves 
radiating energy from and to the open sea.    This stands in striking 
contrast to edge waves which decay exponentially with distance from 
shore (a behavior now recognized as rather special and exceptional). 

Figure 1   shows the most typical pattern of wave crests for a trapped 
wave mode around an island.   An inner wave ring around the island is 
separated from the far field of radiation by a quiescent zone,  in which the 
motion is damped exponentially rapidly with distance from the zone edges. 
All the same, since the damping zone has   finite width, the two wave 
motions separated by it cannot be independent.     For instance, if such a 
wave mode be set up and left to develop freely, without further energy 
supply, then a non-zero amount of wave energy will pass through the 
damping zone to the outer wave field, whence it will ultimately be radiated 
to infinity.     Such "leakage" makes complete trapping impossible.    There 
can be no resonance in the clear-cut classical sense.   Rather, any 
resonance must be a matter of degree, depending on the leakage rate. 

II.   Natural Frequencies 

A first question is what trapped wave modes are possible and at what 
frequencies?     Shen, Meyer and Keller [ 1968]   obtained estimates for 
round islands of quite realistic seabed topography by an approximation 
based on smallness of the seabed slope   e.    If horizontal distances are 
measured in units of the island radius   L   and vertical distances,   in units 
of   eL,   then the standard equations [ e.g. Stoker 1957]   of the classical, 
linear theory of surface waves for the velocity potential  $ = <p(x, y, z) 
exp(-iait) read 

^± + Sl± + e"2 *1± =   0 for   0 > z > -h(x,y) 

d <p/Qz =    scu2</> at   z =   0 (1) 

e      3z + 9x8x+ayayUat (X*y' 

The first is Laplace's equation, the second combines the linearized, 
kinematical and dynamical surface conditions, the last expresses 
impermeability of the seabed; viscosity and surface tension are ignored. 
In the form (1),  for   e << 1,    they lead to a refraction approximation for 
gentle water depth variation, but not to any short- or long-wave 
approximation in a usual oceanographical sense. 
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Figure 1 
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The manner in which   e  appears in  (1)   suggests application of 
Keller's [1958]   Geometrical Optics Approximation, a sophisticated and 
very powerful form of familiar ray methods.     The fuss with rays and 
orthogonals,  etc.,  is cut out by the simple idea that a natural mode must 
accommodate precisely an integer number of wave lengths both   (i)   around 
the island and   (ii)   between shore and the inner caustic circle bounding 
the trapped wave ring   (Fig. 1.   Only patterns with a single trapped wave 
ring will be considered here; more complicated patterns and spectra are 
possible,  but rare for round islands [ Shen et al. 1968] ).     Condition   (i) 
is easy to apply at a caustic circle because the crests must be perpendic- 
ular to this refraction boundary.     The wave length along the inner caustic 

2 2 r =  r,   is therefore  X, = 27T/[CO  k(r.)] ,   if to  k(r)   denotes the wave number 

magnitude  (this notation reflects convenience of scaling for   e<<l), and 
(i) says simply 

27^/)^ =  rjk^) =  n n=  1,2,3, ••• (2) 

For  (ii),   it will be seen in Section V below that to   |(r)/2n with 

£(r) =   /V-n2/P4r'2)|1/2dr' (3) 

counts radial distance in units of local wave length (which varies greatly 
with the radius r), if the wave number function k(r) is determined from 
the full dispersion relation   [e.g. Stoker 1957] • 

ktanh (kh) = 1. (4) 

Condition   (ii),   actually, is not quite correct as first stated.   A full 
propagation loop goes,  say, from shore through refraction at the caustic 
back to shore (Fig. 1), and the radial distance 

CD    E, (r,)/27T  from shore to inner caustic in wave length units must 

therefore be a half-integer, 

2       rl 1/2 
^   J     | k2 - n2/(to4r2)|        dr =  m-1, m=l,2,... (5) 

The extra   -y   stems from the phase shifts of shore reflection and caustic 

refraction [ Shen and Keller 1975,  Shen et al. I968]    and may serve as a 
reminder that the simplicity of the present account represents, of course, 
use of hindsight for shameless corner-cutting; for slightly longer, more 
tenable derivations see [Shen et al. I968,  Meyer 1971]  • 

Given   n   and   m,    (2)   and   (5)   are two equations for the frequency 
u>   and caustic radius   q,    which turn out [ Shen et al. 1968]    to have at 
most one solution for realistic topography  h(r).     Those are the discrete 
eigenfrequencies and it is clear from   (i),  (ii)   that   n   counts the number 
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of crests around the island at fixed radius, while  m   counts (twice) the 
number of crests radially outward from shore to caustic and back.   Of 
course,   q < «>  for a pattern as in Fig. 1   and a closer look at (2)-(5) 
[ Shen et al. 1968]   shows this to set an upper bound to the values of 
m   (and hence, also of <£)   for which (2), (5) do have a solution, given  n. 
That bound, moreover, usually rules out the lowest pairs   (n, m),   which 
general experience would have suggested to furnish the most prominent and 
important modes.. .   For a conical island, for instance, there is no natural 
mode for any pair   (n, m)   with   n < 3 [Shen et al. I968]  . 

For each   n,   on the other hand,   (2)   and   (4)   can be satisfied with 
rj = 00   (which makes condition   (ii)   irrelevant)   for any frequency cu 
exceeding a "cut-off" value, and those are the continuous spectra.   In sum, 
there is a countably infinite discrete spectrum embedded in a continuous 
spectrum of countably infinite multiplicity.    That is, as the frequency 
increases, the continuous spectrum gains more and more progressive wave 
modes coexisting at the same frequency; but always, further discrete 
frequencies are encountered at which trapped modes also exist.    It is 
remarkable that so complicated a physical situation can be described by as 
simple and practical a set of formulae as   (2),   (4)   and   (5);   Keller's 
Geometrical Optics Approximation can therefore cope with more complicated 
circumstances and holds promise of a practical approach to real topographies. 

The simple version [Keller 1958, Shen et al. 1968]   of this theory 
actually fails at shore and caustics, but Shen and Keller [1975]    have 
constructed a uniform approximation which now offers a practical approach 
to the estimation of wave amplitudes at just those places   where they are 
maximal and of most direct interest. 

III.   Leakage and Response 

The theory so far outlined ignores, however, that every natural wave 
mode must involve leakage of energy from the trapped wave ring through 
the damping zone to the far field whence that energy is radiated away to 
the ocean.    All eigenvalues are therefore complex.   (The real part will 
continue to be called frequency and the imaginary part will be called 
" leakage rate.")    The flaw in the use of this form of refraction theory for 
the present purpose is not only that it is logically based on reality of the 
eigenvalues, which its own results on natural modes show to be impossible. 
A more weighty objection is that resonance is now a matter of degree, and 
we need actual estimates of the leakage rate before we can distinguish 
effectively resonant eigenvalues from harmlessly damped ones. 

Indeed, the organic connection between the waves trapped near 
shore and the associated waves in the far field implies an equal possibility 
of energy leakage outward and inward across the damping zone.   It thereby 
creates a mechanism for direct excitation of resonant modes by plane waves 
of the same frequency incident from the ocean.    This is a new mechanism, 
entirely absent in classical water wave resonance. 
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Classical edge waves [Ursell 1952] , for instance, have no far 
field and, therefore, linear theory has no mechanism by which they could 
possibly be excited (short of an earthquake, which Ursell [19 52]   had to 
use for his experiments).     Accordingly,  they remained academic until 
Galvin [1965]   showed how to excite them subharmonically, a process 
dependent on small effects of the second order.    That is typical of 
classical resonance.   "Leaky modes, " by contrast,  possess an inherent, 
first-order,  and therefore potentially highly effective, mechanism' of direct 
harmonic excitation by the natural wave environment, which is new in 
oceanography although not unfamiliar in some other fields. 

This first-order mechanism also implies an opportunity of 
calculating, from the classical linear theory, the amplitude response of 
the water surface around an island to a given wave input from the ocean. 
It turns out to depend greatly on the energy spectrum of the input which, 
in turn, depends a good deal on the circumstances.    The extreme cases 
are a single, plane wave pulse and a steady monochromatic plane wave 
input.     In the absence of fairly definite specification of the input 
spectrum, the latter,   standing-wave extreme may be the most practical 
estimate,  conservative in that it overestimates the response to be expected 
in a real situation.   For that extreme, the "response coefficient, " that is, 
the standing trapped wave amplitude for unit incident wave amplitude,  turns 
out,  plausibly enough, to be just the reciprocal of the leakage rate 
[Longuet-Higgins 1967, Lozano and Meyer 1976]  • 

This reciprocal relation, on the other hand, creates the paradoxical 
situation that an estimate of the imaginary part of the eigenvalues is the 
more important, the smaller this imaginary part.   The main engineering 
interest is precisely in the most negligibly small needles in the haystack, 
and this imposes a severe demand for precision on any approximate analysis. 

These notions of leakage and response were first set out by 
Longuet-Higgins [1967]   and Summerfield [1972]   in their long wave 
approximation for wave trapping by a "hedge, " that is,  a steep slope 
terminating a pronounced shelf around an island.   (They also offer helpful 
estimates and comments on the relation between input spectrum and trapping 
response in their approximation.)    That somewhat exceptional topography 
lends itself,  in the long wave limit, to idealization by a topography of 
piecewise constant depth, for which the natural modes can be represented 
classically in terms of Hankel functions.   Detailed computation of many 
complex eigenvalues was made possible thereby,  and among many others, 
also quite a number of modes of very large response were found.   Their 
frequency band width of response is so narrow [Longuet-Higgins, I967] , 
however, that they are virtually inaccessible to a more directly numerical 
approach.   Indeed,  some brilliant computational efforts [ Lautenbacher 
1970]   have been defeated by this feature of the response. 
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IV.   Generalized Refraction Theory 

The Geometrical Optics Approximation, on the other hand, is 
defeated by the complex eigenvalues, which are incompatible with its 
basic formulation [Keller 1958]   as an asymptotic expansion in powers      , 
of the small parameter   e.    Leakage introduces factors exponential in   e~ , 
which transcend approximation to any order in powers of. e.     Such 
inherent contradictions are,  of course, less obvious in more vaguely based 
ray methods.   In short, the better known refraction methods are designed 
for self-adjoint problems and fail decisively,  like many well-known 
mathematical methods, for non-self-adjoint problems such as trapping. 

A more general refraction approximation to   (1)   is therefore needed. 
Preferably, it should not be a long wave approximation because we have 
already seen in Section II that the usual, longest modes are absent, whence 
the longest actually present are doubtful candidates for strong resonance. 
For application to the most common topographies,  it should be based on 
the gentleness of seabed variation expressed by the parameter   e,    that is, 
on the assumption that the seabed topography varies only on a scale large 
compared with the local wave length.     Such an approximation has been 
proposed independently by a number of authors who arrived by diverse 
reasoning at the hypothesis that,  over such "gentle" topographies, the 
vertical velocity profile depends to the first approximation only on the 
local water depth, but not also on the horizontal derivatives of the water 
depth. 

To express this, write the exact potential 

S (x, y, z, t) = 4>s(x, y; e)F(z;x, y, s) exp(-icot) 

with   F(0;x, y, e)sl   so that   <ps   is the surface value of the potential. 
Then  F   expresses the vertical structure and its dependence on   z   must, 
to first approximation, be that predicted by the classical linear theory for 
waves over water of uniform depth equal to the local value of  h(x, y). 
But that is well known [Stoker, 1957]   and implies that  a(h)F   is to be 
approximated by 

FQ =  e"kh cosh [k(z + h)] , k tanh(kh) =   &s? (6) 

(The convenience factor   a = y[l + exp(-2 kh)]     is used to avoid 

formal degeneracy as   h —00.)    Vertical averaging of   (1) [ Lozano and 
Meyer 1976]   then shows    y = a-1 <PS  to be governed by the short-scale 
Helmholtz equation 

G_1V(Gy)+ e~2k2Y=   0, (7) 

with 
0 

G =    f    F„dz = [ sinh(2kh) + 2kh] /[4k exp(2 kh)] . 
-h     ° 
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Equations of the form   (7)   have been proposed by Battjes[l968] 
and derived by Berkhoff [l973]from an assumed asymptotic expansion of 
the potential which, however,  is known [Shen and Keller 1975]   to be 
incorrect,  especially in the present context.     To avoid such pitfalls, 
Lozano has given a vertical averaging argument   [Lozano and Meyer 1976] 
supporting   (6), (7),   but a mathematical proof is not claimed.   On the 
other hand,   (6), (7)   are there shown to include as special cases all known 
exact solutions of  (1), and all the best known approximations (including 
Geometrical Optics and other ray approximations). 

From an oceanographers viewpoint, it is noteworthy that the 
generalized refraction equations   (6), (7)   encompass long and short 
waves impartially:   the full, exact dispersion relation  k tanh (kh) = ECD 
is used. 

V.   Leakage Rates 

The Generalized Refraction Equations   (6), (7)  have been applied to 
trapping by axisymmetric islands,  since those are the simplest topographies 
exhibiting the new physical effects.   Apart from that symmetry, a general, 
realistic topography is envisaged:   the water depth   sh(r)   increases 
monotonically and (analytically) smoothly from shore to ocean.    To restrict 
attention to the simplest and most common trapping pattern (Fig. 1), 
exceptionally pronounced shelves are excluded (which makes the study 
complementary to Longuet-Higgins1 [1967]    and Summerfield's [1972] , who 
specialized on the effect of such shelves).     Attention has also been 
restricted to natural modes harmonic in the angular variable because the 
geometrical optics approach [Shen et al. 1968]   has not revealed any others 
and the new study does not, in any case, aim at an exhaustive calculation 
of all possible such modes.   The surface potential can then be written as 

4>s =  ein9 [a(h)/g(r)]   w(r), n= 1,2,---- (8) 

in polar coordinates   r, 0   based on the island center, with factor 

g(r) =  (rG)1/2 = j e"kh[2 rh + (r/k) sinh(2 kh)] 1/2 

introduced to simplify the differential equation for the unknown function 
w(r). 

Substitution in   (7)   shows that equation to be 

^M^ + ^'jw,      ' (9) 
dr s g 

f(r) =   (ne/r)2 - k2, (10) 

k tanh(kh) = eco2. (11) 
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It is formidable, not only because of the complexity of the coefficient 
9 

g"/g,   but because even the main coefficient,   f(r)/e ,   can be defined 
only implicitly through the dispersion relation   (11)   for  k(r).    The 
general form of  f(r)   is determined by the assumption of a simple trapping 
pattern (Fig. 1), which implies [Shen et al. 1968]    that  f(r)  has precisely 
one maximum for 1 < r < ».    With  ne  chosen to exceed a certain cut-off 

value—which implies   n=  0(e~ ),    i.e.,  a rather large number of wave 
crests around the island—f(r)   then has precisely two roots,   r,   and  r9 > r. 

(Fig. 2).     They mark the caustic radii because the basic form of   (9)   is 

e2w" - f w=  0(e2) (12) 

so that the solution are oscillatory for  f < 0,   i.e., in the trapped wave 
ring  1 < r < r, (Fig. 2)   and the far field   r > r,.    For  r, < r < r,,   f > 0 

and the solutions are non-oscillatory; this is the damping ring. 

Since  f(r)  varies so much (Fig. 2), comparison of  (12)   with the 
standard equation  y" + y =  0   is assisted by the variable 

|(r)= /  |-f(r')|1/2dr' 

which brings   (11)   into the form 

2 
2 d w  ,     /A.dw  , 

This shows   £/(27Te)   to measure radial distance in local wave lengths and 
2 

explains   (3)   (with the normalization   eco   =1). 

Actually, all this holds only for real a>,   which has been seen to 
be impossible for natural modes!   With leakage,  k(r)   is complex for 
real   r,   by  (11),   and so are  f(r)   and its caustic roots   r.»r2,   which 
Fig. 3   shows in the complex plane of the radius   r. 

That figure also shows the Stokes lines of the differential equation 
(9) with each of which is associated an abstract pair of exact solutions of 
(9) of progressive wave character.    The pair of  LQ   (Fig. 3)   represents 
the fundamental, incoming and outgoing, wave solutions near shore, the 
pair of  L     represents those in the open sea.   The main object of the 
analysis °° is to calculate the matrix  T  which relates these pairs of 
fundamental solutions of  (9), or at least, to estimate  T   adequately. 
The difficulty is that adequacy, in view of the importance of modes of the 
very smallest leakage rate, implies a precision unprecedented for 
differential equations of the generality and inexplicitness of  (9) - (11). 
Adequate precision, however, has now been achieved [ Lozano and Meyer 
1976]    in respect of the leakage fate. 
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Figure 2 
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Figure 3 

The exact wave solution pairs of the Stokes lines   L0   and   L^   are of 
interest because physical boundary conditions are most naturally 
phrased in their terms.   To-date, the radiation condition adopted for 
natural modes has been that no energy be supplied by radiation from 
infinity:   we envisage a trapped wave mode to be set up, and watch it 
decay slowly in time by radiation damping.    The shore boundary condition 
adopted to-date has been boundedness of the water velocity at the shore. 
The reason for it is two-fold, despite its implication of perfect reflection. 
First, it is successful in edge wave theory [Ursell 1952]    and secondly, 
while a better shore condition could be incorporated into the analysis just 
as readily, none appears to be known... 

The matrix  T, which depends on <a,   connects these boundary 
conditions into a characteristic equation [Lozano and Meyer 1976]    which 
can be solved abstractly to deduce rigorous estimates for the eigenvalues. 
The result is that the frequencies  CD       of Shen, Meyer and Keller [1968] 

(cf. Section II)   are confirmed, with a correction factor of only 
-4 2 1 + 0(CD     ) =  1 + 0(e ).    In addition, the imaginary part of the eigenvalues 

is found to be 
2 

im(u) ) (2q)~   exp(-47rd)    as en -1/2 (13) 
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where 
1/2 

d=   (2TT)"V      f " I \f - n2/(a>4   r2)|       dr (14) 
rl 

would be the width of the damping zone in local "wave lengths, " if there 
were waves in the damping zone...     The leakage rate (13) is therefore 
seen to be exponentially small in   e  and reciprocally, the response 
coefficient is exponentially large!    In (14),  <x>       is found from (2), (5), 

with   k(r)   found from the dispersion relation (4).     Similarly, 

q =   /V-n2/^2)!'172       *2f 
j mn 1 + (k2 - l)h 

is readily computed by the help of (4). 

VI.   Quasiresonance 

One of the immediate applications of this result is to the standing 
waves around an island, i.e. monochromatic waves of real frequency CD 
and surface potential (8).     For real frequency,  (1) exhibits energy 
conservation in fixed space-domains [ Stoker 1957]    and   (6),  (7) preserve 
this property.    A ratio of respective energy flux levels in the trapped wave 
ring and in the far field in the open sea is therefore definable [Lozano 
and Meyer 1976]    and its square root represents an amplitude ratio 
p(co)   characteristic of wave amplification by trapping.     This amplification 
may be computed from the matrix  T,   given the shore condition of bounded 
velocity, and is found extremely frequency-dependent.   It varies from 
an exponentially small minimum 

min p = j exp(-27rd)[ 1 + 0(e)] 2 

at a frequency midway between successive eigenfrequencies to an 
exponentially large maximum 

max p =   exp(2Trd) [ 1 + 0(e)] (15) 

close to an eigenfrequency [Lozano and Meyer 1976] . The occurrence 
of such large standing wave amplifications is called quasiresonance in 
quantum mechanics. 

An advantage of the analytical approach is that it promotes an 
understanding of cause-and-effect relations.   The amplification (15) is 
expressed directly in terms of the intrinsic width (14) of the damping 
zone that separates the trapped waves from the far field of progressive 
waves extending to the open sea.     This confirms the plausible idea that 
the wider (in an appropriate sense) the zone of damping, the more it 
inhibits leakage and promotes amplification.     Closer scrutiny permits 
us to distinguish two effects which promote amplification.   First,  natural 
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modes with a large number m   of half-wavelengths counted radially across 
the trapped wave ring have usually a correspondingly wide damping zone. 

(There are exceptions when  n/w      is close to the cut-off value so that 

the maximum of  f(r)   in Fig. 2   is small and the interval   (r,,r2) of positive 

f-values is narrow.) 

Secondly, natural modes with   n >> m,   i.e., with many more crests 
around the island than radially across the trapped wave ring can occur, and 
such crests have local character akin to edge waves on a straight coast, 
which have no leakage.    Indeed, as   n-»°o,   the analysis can be shown to 
cover the modes with   m   not large, even  m =  1,   and the trapped wave 
ring then becomes narrow by comparison with the island radius.   For the 
spectral conditions   (1), (ii)   of Section II, however, the relevant scale is 
the width of the trapped wave ring, and on that scale, the island radius 
tends to  «,   the shore appears straight, the waves approach ordinary edge 
waves, the leakage almost disappears.    An indication of this second effect 
is numerically apparent in Longuet-Higgins' [ 19673    and Summerfield's 
[1972]    results for long wave trapping by idealized "hedges."     Both effects 
can combine to produce exceptional amplifications due to leakage rates as 
tiny as [Lozano and Meyer 1976] 

2 -1   2n-l lm CD   ~ - 7r     e       , n-»oo 

where   s  denotes the small beach angle. 

The asymptotic estimates for the eigenvalues also permit estimation 
of the half widths of the resonant peaks of the   p(co)   curve of amplification 
vs. frequency as 

(4qcDmn ^ 3)_1 exP(~47rd) 

[Lozano and Meyer 1976] .    The frequency band width of resonance is 
therefore seen to be exponentially narrow! 

This feature balances the large amplification to some extent, but the 
resonant modes should still be prominent under many circumstances 
[Longuet-Higgins 1967] —much in contrast to oceanographical experience 
and intuition (based on the classical prominence of the lowest modes). 
Of course, a balanced judgment of such unfamiliar phenomena is not easy 
at this early stage of their study. 

The narrow band width of resonance also suggests experimental and 
observational difficulties.   Scale effects, however, dominated the first 
experiments  [Pite 1973] , which indicated the resonant modes to be 
suppressed by viscous damping in a table-top tank.    Laboratory tests on 
a larger-scale [Barnard and Pritchard 1976]   have now detected some of 
the resonant modes of a sill [Longuet-Higgins 1967] • 
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