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ABSTRACT 

This paper presents the results of an extensive experimental investi- 
gation of the in-line and transverse forces acting on sand-roughened 
circular cylinders placed in oscillatory flow at Reynolds numbers up to 
1,500,000, Keulegan-Carpenter numbers up to 100, and relative roughnesses 
from 1/800 to 1/50. The drag and inertia coefficients have been determined 
through the use of the Fourier analysis and the least squares method. 
The transverse force (lift) has been analysed in terms of its maximum and 
root-mean-square values. In addition, the frequency of vortex shedding 
and the Strouhal number have been determined. 

The results have shown that all of the coefficients cited above are 
functions of the Reynolds number, Keulegan-Carpenter number, and the 
relative roughness height. The results have also shown that the effect of 
roughness is quite profound and that the drag coefficients obtained from 
tests in steady flow are not applicable to harmonic flows even when the 
loading is predominantly drag. 

INTRODUCTION 

The prediction of the forces generated by waves and currents remains 
as a basic problem in marine hydrodynamics. The complexity of the problem 
stems partly from the difficulty of accurately defining the kinematics of 
the flow field, partly from the difficulty of accounting properly for the 
effects of time-dependent separation and vortex shedding, and partly from 
the difficulty in extrapolating the laboratory findings to various condi- 
tions of the marine environment where three-dimensional effects and reduced 
spanwise coherence play important roles. 

The methods based on diffraction theory and classical hydrodynamics 
are applicable only to relatively simple cases, irrespective of the size 
and shape of the structure, where separation does not play an appreciable 
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role. It is a well-known fact that the shear-layer instability and the non- 
linear interaction between the shear layers lead to vortex shedding in 
steady flow past bluff bodies. The general characteristics of this shedding 
mechanism are fairly well understood through measurements, flow visualization, 
and numerical experiments for various bluff bodies, in particular for a 
circular cylinder held normal to the ambient flow. Any effect, such as the 
periodicity of flow, which interfers with the production of vorticity, 
position of the separation points, shear-layer instability, and the feedback 
mechanism causes additional time and history dependent non-linear inter- 
actions. The net effect of these interactions is to change the vortex 
shedding and hence the vortex-induced oscillations in both the forces and 
structure in both the in-line and transverse directions. The problem is not 
yet amenable to mathematical analysis and requires experiments of high 
intrinsic quality for at least a partial understanding of its many perplexing 
aspects. 

Much of the present knowledge on separated harmonic flows has been 
obtained by means of model tests at Reynolds numbers generally two to three 
orders of magnitude smaller than prototype Reynolds numbers. These model 
tests have relied heavily on the so-called Morison formula for expressing 
the force as the sum of a drag and inertia force. The values of the drag 
and inertia coefficients to be used in the Morison equation became the 
subject of many experimental studies in the last twenty years. The corre- 
lation of these coefficients with the relative amplitude of the waves (or 
the Keulegan-Carpenter number, hereafter referred to as K) has been 
generally inconclusive [1]. Furthermore, lift forces which are associated 
with vortex shedding have received relatively little attention. It thus 
became clear that much is to be gained by considering plane oscillatory 
flow about cylinders at high Reynolds numbers in order to isolate the 
influence of individual factors such as relative amplitude, Reynolds 
number, relative roughness, spanwise correlation, wall-proximity, etc. on 
vortex shedding and resistance. It is with this realization that a broad 
research program was undertaken to study the characteristics of periodic 
flow about bluff bodies. 

The results obtained with smooth cylinders in two U-shaped water 
tunnels have been previously reported by Sarpkaya [2-6]. The preliminary 
results obtained with rough-walled cylinders for one particular value of K, 
(K = 50), through the use of various types of distributed roughness elements 
(sand, sand paper, and polystyrene beads) have also been reported in [3] 
and [4]. 

The present paper deals with in-line and transverse forces acting on 
sand-roughened circular cylinders in harmonic flow in the range of Reynolds 
numbers from 10,000 to 1,500,000-, K values from about 4 to 100; and relative 
sand roughnesses from 1/800 to 1/50. 
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BACKGROUND ON THE EFFECTS OF ROUGHNESS 

Of the scores of papers dealing with fluid loading on offshore 
structures (see the reviews by Grace [7] and Hogben [8]), none seems to 
have treated the effect of roughness on the force-transfer coefficients. 
Yet it is a fact that the structures in the marine environment become 
gradually covered with rigid as well as soft excrescences. Thus, the 
fluid loading due to identical ambient flow conditions may be signifi- 
cantly different from that experienced when the structure was clean partly 
because of the 'roughness effect' of the excrescences on the flow and 
partly because of the increase of the 'effective diameter1 of the elements 
of the structure. 

In the absence of any data appropriate to the harmonic or wavy flows, 
it has been assumed that "the drag coefficients obtained from tests in 
steady flow" over artificially - or marine-roughened cylinders "are 
applicable to wave flows at least when the loading is predominantly 
drag" [9]. 

It is not generally appreciated that the consequences of all "nearly 
steady flows" are not always identical to those of "steady flows." The 
case in point is the harmonic flow under consideration. Even for large 
amplitudes of oscillations, there is only a finite vortex street comprised 
of vortices of nearly equal strength due to the "nearly steady" nature of 
the flow. As the flow reverses, the situation is not that of a uniform 
flow (with or without free stream turbulence) approaching a roughnened 
cylinder but rather that of a finite vortex street approaching a rough- 
walled cylinder. Such a flow cannot be regarded identical to steady flow 
with some turbulence of fairly uniform intensity and scale as the present 
results show. 

It is instructive to briefly review the salient features of the 
influence of roughness on the cross-flow around a cylinder in steady flow 
in order to delineate the differences between the steady, and harmonic 
flow about rough-walled cylinders. 

Among others, primarily the experiments of Fage and Warsap [10], 
Achenbach [11], Szechenyi [12], and Guven et al. [13] have shown that 
roughness in steady flow about a cylinder precipitates the occurrence of 
'drag crisis' and gives rise to a minimum drag coefficient which is larger 
than that obtained with a smooth cylinder. This is partly because of the 
transition to turbulence of the free shear layers at relatively lower 
Reynolds numbers due to disturbances brought about by the roughness 
elements and partly because of the retardation of the boundary-layer flow 
by roughness (higher skin friction) and, hence, earlier separation. 
Evidently, the drag crisis in steady flow about a roughened cylinder is a 
state even more precarious than that for a smooth cylinder for the 
occurrence of a laminar-separation and turbulent reattachment bubble is 
hastened by the retardation of the flow by roughness. It is also evident 
that the Reynolds number must be sufficiently high for a given roughness 
to bring about a drag crisis. 
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The conditions leading to the occurrence of the drag crisis are 
therefore quite important. Not only the relative size of the roughness 
elements but also their shape and distribution may be quite important in 
addition to the parameters characterizing the ambient flow about an other- 
wise smooth bluff body. It is in fact partly for the difficulty of 
uniquely specifying the 'roughness' and partly for the differences in other 
test conditions (free stream turbulence, relative length of the cylinder, 
end gaps, etc.) that there are considerable differences between the data 
reported by various workers, particularly in the drag crisis region. For 
example, the effective surface roughness may be larger or smaller than 
the nominal relative roughness based on the geometric size of the roughness 
element depending on the shape and arrangement of the roughness elements 
[14], Also, a higher turbulence level precipitates the drag crisis. Thus, 
the critical range is wider for higher free stream turbulence [13]. Attempts 
have been made [14] to experimentally determine an equivalent sand-grain 
roughness through the use of uniform flow in a channel. An equivalent 
roughness determined in this manner may not necessarily give a meaningful 
measure of the effect of roughness as far as the boundary layer flow over 
a circular cylinder is concerned. 

In the supercritical and transcritical regions, the drag coefficient 
for a roughened cylinder is considerably larger than that for a smooth 
cylinder primarily because of the larger wake which is brought about by the 
earlier separation due to the retardation of the boundary layer. Several 
facts are worth noting. Firstly, the transcritical drag coefficient 
depends on both the character of the flow and the surface condition of the 
cylinder. In other words, the particular value of the transcritical drag 
coefficient in steady flow over a roughened cylinder is not necessarily 
identical to that for a time-dependent flow over the same cylinder. 
Experiments with steady flow over roughened cylinders show that the drag 
coefficient in the transcritical region returns more or less to its steady 
sub-critical value. Other flows may exhibit a similar behavior provided 
that the spanwise coherence is maintained. In other words, the subcritical 
value of the drag coefficient for a given flow may give an indication of 
its transcritical value for the same flow over a roughened cylinder. 
Evidently, what is specified here is the functional dependence of velocity 
on time and not the magnitude of the characteristic velocity. 

Secondly, the larger the effective roughness, the larger is the 
retardation of the boundary layer. This leads to earlier separation and 
larger drag coefficient. Thirdly, the pressure distribution about the 
cylinder is affected not only by the location of the separation point but 
also by the development of the retarded boundary layer ahead of separation 
[13]. This in turn is affected not only by all the parameters character- 
izing the roughness but also by the character of the ambient flow (time- 
dependence, angle of attack, shear, turbulence, just to name a few of the 
parameters). 

It seems from the foregoing that the disturbances generated by the 
roughness elements cause an incalculable change in the critical region of 
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the flow and that a more thorough examination of the one-parameter 
characterization of roughness, k/D, is required in order to understand the 
effect of roughness, because the packing, size distribution, and shape may 
be important. Although, wind- and water-tunnel experiments on flow past 
rough-walled cylinders have been made for about 50 years, there is still a 
lack of precision in the definition of even the roughness let alone the 
force and pressure coefficients. The purpose of this paper is not to study 
this question but rather to show, among other things, that different types 
of roughness elements (sand paper, polystyrene beads, sand) can give rise 
to different drag-coefficient curves in the critical region appropriate to 
the particular flow. It is in fact partly for this reason that it has been 
thought advisable to investigate afresh the effect of roughness on cylinders 
in harmonic flow using only sand of uniform size and packing rather than 
three different types of roughness [3]. 

IN-LINE AND TRANSVERSE FORCES AND GOVERNING PARAMETERS 

The in-line force which consists of the drag force F. and the inertia 
force F7- is assumed to be given by [15] 

F = Fd + F. = 0.5CdLDp|U|U + 0.25CmLD
2Trp.dU/dt        (1) 

in which Cd and C represent respectively the drag and inertia coefficients 
and U the instantSneous velocity of the ambient flow. For an oscillating 
flow represented by U = -Umcose, with e = 2Trt/T, the Fourier averages of Cd 
and Cm are given by Keulegan and Carpenter as [16] 

Cd= -0.75/Vmcose/pUj.D)de (2) 

and 

V (^V/'^l/V^ine/pujLDlde (3) 

in which F represents the measured force. 

The method of least squares consists of the minimization of the error 
between the measured and calculated forces. This procedure yields [5] 

P 9 
Cdls= -(8/3TT)J (Fjcose[cose/PDLiyde      (4) 

and C , = C . Evidently, the Fourier analysis and the method of least 
squares yield identical Cm values and that the Cd values differ only slightly. 

The transverse force has been expressed in terms of the maximum lift 
coefficient defined by 

C^= (maximum amplitude of the transverse force in a cycle)/(0.5pDLU^) (5) 

In addition, the frequency of the oscillations of the transverse force and 
the Strouhal number have been evaluated. 
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It is recognized that the coefficients cited above are not constant 
throughout the cycle and are either time-invariant averages or peak values 
at a particular moment in the cycle.    A simple dimensional analysis of the 
flow under consideration shows that the time-dependent coefficients may be 
written as 

F/(0.5DLpUm) = f(UmT/D, iy)/v,  k/D, t/T) (6) 

in which P represents the in-line or the transverse force. Equation (6), 
combined with Eq. (1), assuming for now that the latter is indeed valid, 
yields 

Cd = f-,(K , Re, k/D, t/T) (7) 

Cm = f2(K , Re, k/D, t/T) (8) 

in which K = UmT/D and Re = UmD/v, and k/D represents the relative roughness. 
Evidently, it is assumed that the effect of roughness may be characterized 
by the parameter k/D alone, with k defined as the average grain size. 
Experiments necessary to obtain an equivalent sand height or some other 
representative length are costly and time consuming and are not available 
for the oscillating flow data analysed here. 

There is no simple way to deal with Eqs. (7) and (8) even for the most 
manageable time-dependent flows. Another and perhaps the only other 
alternative is to eliminate time as an independent variable and consider 
suitable time-invariant averages as given by Eqs. (2), (3), and (4). Thus, 
one has 

[Cd, Cm, CL, . . . . ] = f^K, Re, k/D) (9) 

It appears, for the purposes of Eq. (9), that the Reynolds number is 
not the most suitable parameter involving viscosity. The primary reasons 
for this are that the effect of viscosity is relatively small particularly 
for Re < 20,000 and that Um appears in both K and Re. Thus, replacing Re 
by g = Re/K = D2/vT in Eq. (9), one has 

C^a coefficient) = f^K, g, k/D) (10) 

in which g = D /vT and shall be called the 'frequency parameter.' 

From the standpoint of dimensional analysis, either the Reynolds 
number or g could be used as an independent variable. Evidently, g is 
constant for a series of experiments conducted with a cylinder of diameter 
D in water of uniform and constant temperature since T is kept constant in 
a U-shaped oscillating flow tunnel. Then the variation of a force coeffi- 
cient with K may be plotted for constant values of g. Subsequently, one 
can easily recover the Reynolds number from Re = gK and connect the points, 
on each g = constant curve, representing a given Reynolds number. 

From the standpoint of the laminar boundary layer theory, g represents 
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the ratio of the rate of diffusion of vorticity through a distance S 
(the boundary layer thickness) to the rate of diffusion through a distance 
D. This ratio is also equal to (D/fi)2 and, when it is large, gradients 
of velocity in the direction of flow are small compared with the gradients 
normal to the boundary, a situation to which the boundary layer theory is 
applicable. It should also be noted in passing that 8 is of special 
importance even for oscillations at very low Reynolds numbers. For example, 
for a cylinder or sphere undergoing harmonic oscillations without separation 
in a fluid otherwise at rest, the added mass and drag coefficients are 
uniquely determined in terms of 3 [17, 18]. 

A re-analysis of the data given by Keulegan and Carpenter [16] 
through the use of e> K, and Re in the manner just described clearly shows 
[3, 4] that (a) Cd depends on both K and Re and decreases with increasing 
Re for a given K; and that (b) Cm depends on both K and Re for K larger 
than approximately 15 and decreases with increasing Re. A similar analysis 
of Sarpkaya's data [2] also shows that Cj and Cm depend on both K and Re 
and that f^ increases with increasing Re. Notwithstanding this difference 
in the variation of Cm between the two sets of data, these results put to 
rest the long standing controversy regarding the dependence or lack of 
dependence of Cj and Cm on Re and show the importance of 8 as one of the 
governing parameters in interpreting the data, in interpolating the K 
values for a given Re, and in providing guide lines for further experiments 
as far as the ranges of K and 8 are concerned. 

BRIEF DESCRIPTION OF THE EXPERIMENTAL ARRANGEMENT 

The oscillating flow system consisted of a large U-shaped vertical 
water tunnel with a 3 ft by 3 ft test section. The cross-section of the 
two vertical legs is twice that of the test section. The two corners of 
the tunnel were carefully streamlined to prevent flow separation. The 
auxiliary components of the tunnel consisted of plumbing for hot and cold 
water, butterfly-valve system, and the air-supply system. Oscillations in 
the tunnel were obtained through the use of the butterfly valves (mounted 
on top of one of the legs of the tunnel) and a rack and pinion system 
actuated by an air-driven piston and a three-way control valve. The fluid 
oscillated smoothly with a period of T = 5.500 seconds. The elevation, 
acceleration, and the in-line and transverse forces were monitored 
continuously by means of appropriate transducers. The analogue traces 
were absolutely free from secondary oscillations so that no filters were 
used between the outputs of the transducers and the recording equipment 
(see sample trace in Fig. 1). 

Circular cylinders with diameters ranging in size from 2 inches to 
6.5 inches have been used in this study. The cylinders were turned on a 
lathe from aluminum pipes or plexiglass rods. The length of each cylinder 
was such that it allowed 1/32 inch gap between the tunnel wall and each 
end of the cylinder. A doubleball precision bearing was inserted at each 
end of the cylinder in aluminum housings which sealed the cylinder air tight. 
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In view of the 
discussion concerning the 
one-parameter characteri- 
zation of the roughness in 
terms of k/D, it was decided 
to use only one type of 
roughness element. The 
possible use of sandpaper, 
glass beads, wire screens, 
etc. was disregarded for 
they would have exhibited 
different packing as well as 
different size distribution 
characteristics. Clean sand 
was sieved through the use of 
standard ASTM sieves in order 
to obtain a given grain size. 

Each cylinder was 
mounted horizontally on a 
specially constructed, 
manually operated, rotating 
apparatus and covered with 
a thin layer of air-drying 
epoxy resin using a brush. 
When the epoxy coating 
reached a certain degree of 
consistency, then the finely pre-sieved sand was transferred into a slightly 
larger sieve and sprinkled over the rotating cylinder. Within about 10 
minutes, the epoxy hardened and the cylinder was left alone for the epoxy to 
cure. Then the cylinder surface was cleaned to remove excess sand and extra 
sand particles that at times attached to each other forming an easily 
breakable spike. This procedure has been followed for all cylinders and has 
invariably resulted in cylinders of roughness with perfect uniformity. A 
sample photograph of the rough surface, taken with a scanning electron 
microscope, is shown in Fig. 2. 

In order to determine 
the variation of the force 
coefficients with Reynolds 
number for a given 
Keulegan-Carpenter number 
and relative roughness, 
all cylinders were tested 
at the same relative 
roughnesses (k/D = 1/800, 
1/400, 1/200, 1/100, and 
1/50), and the experiments 
were carried out at three 
or four water temperatures. 

Fig. 1 Sample in-line force and acceleration 
traces. 

^^113^ 
Fig. 2   Distribution of sand particles, 

(k = 0.0055 inch). 
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Two identical force transducers, one at each end of the cylinder, were 
used to measure the instantaneous in-line and transverse forces. The gages 
had a capacity of 500 Lbf with an overload capacity of 200 percent. The 
deflection of the gages under 500 Lbf load was 0.01 inch. For the largest 
cylinder and amplitude encountered in the experiments, the maximum load 
was less than 200 Lbf, and the deflection of the beam was less than 0.008 
inches. 

The in-line and transverse forces were simultaneously recorded with 
the instantaneous acceleration on two two-channel Honeywell recorders 
running at a speed of 10 divisions per second. The amplitude of the 
transverse force, instantaneous value of the in-line force, and the flow 
characteristics such as UmT/D and Re were determined from these traces. 
The root-mean-square value of the lift force was determined for each cycle 
by reading the force at every division or 0.1 second intervals. 

Three transducers were used to generate three independent d.c. signals, 
each proportional to the instantaneous value of the elevation, velocity, 
and acceleration. These transducers were calibrated and their linearity 
checked before each series of experiments. In addition, the velocity at 
the test section was directly measured with a magnetic velocity meter. 
Suffice it to say that all four methods gave nearly identical results and 
yielded the amplitude, velocity, or acceleration, to an accuracy of about 
two percent relative to each other. These comparisons, as well as the 
perfectly sinusoidal and noise-free character of all pressure and force 
traces, speak for the suitability of the unique test facility used in this 
study. The additional details of the apparatus and procedure are given 
in Ref. [3]. 

DISCUSSION OF THE RESULTS 

The drag and the inertia coefficients, obtained through the use of 
equations (2) and (3) have been plotted for each cylinder and relative 
roughness as a function of K for various constant values of B- Then the 
Reynolds number for a particular value of K has been calculated simply 
through the use of Re = Kg. As described earlier, such a procedure 
enables one to express Cj or Cm as a function of the Reynolds number for 
a given K and k/D. In view of the fact that each coefficient depends on 
at least three independent parameters (Re, K, and k/D), it is not possible 
to show on two-dimensional plots the variation of either Cj or C• for all 
values of Re, K, and k/D. However, this difficulty is alleviated by the 
fact that the variation of a given force coefficient for a given Re and 
k/D is not very strong from one K to another. Thus it has been decided 
to choose five representative K values, namely K = 20, 30, 40, 60, and 100, 
to present the variation of Cj and C,,, with Re. 

Figures 3 through 12 show Cj and Cm for five values of K as a function 
of the Reynolds number. Each curve on each plot corresponds to a particular 
relative roughness. Also shown on each figure is the corresponding drag 
or inertia coefficient for the smooth cylinder at the corresponding K value. 
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Fig. 12 C versus Re for K = 100. 

The k/D = constant curves on each C(j plot are quite similar to those 
found for steady flow about rough cylinders [10-13]. For a given relative 
roughness, the drag coefficient does not significantly differ from its 
smooth cylinder value at very low Reynolds numbers. As the Reynolds number 
increases, Cd for the rough cylinder decreases rapidly, goes through the 
region of drag crisis at a Reynolds number considerably lower than that for 
the smooth cylinder and then rises sharply to a nearly constant transcritical 
value. The larger the relative roughness the larger is the magnitude of the 
minimum Cj and the smaller is the Reynolds number at which that minimum 
occurs. However, there appears to be a minimum Reynolds number below which 
the results for rough cylinders do not significantly differ from those 
corresponding to smooth cylinders. In other words, the Reynolds number 
must be sufficiently high for the roughness to play a role on the drag and 
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flow characteristics of the cylinder. 

The figures for the drag coefficient also exhibit a few other in- 
teresting features. First, even a relative roughness as small as 1/800 
can give rise to transcritical drag coefficients which are considerably 
higher than those for the smooth cylinder. Secondly, the asymptotic 
values of the drag coefficient for roughened cylinders (e.g., k/D = 1/100), 
within the range of Reynolds numbers encountered, can reach values which 
are considerably higher than those obtained with steady flows over cylinders 
of similar roughness ratios. In other words, it is not safe to assume 
that the transcritical drag coefficient in harmonic flows will be identical 
to those found in steady flows and will not exceed a value of about unity. 
On the basis of the present results it may be said that such a conjecture 
is not accurate even for K values as large as 100 (corresponding to a wave 
height-to-diameter ratio of about 30). It is therefore important to 
remember that the effect of roughness depends not only on the relative 
size of the roughness element but also on the characteristics of the ambient 
flow as well as on the body about which this flow takes place. The charac- 
teristics of the ambient flow determine to a large extent the state of the 
flow (subcritical, critical, and transcritical) during a given cycle of 
oscillation. The geometry of the body dictates, together with the flow, 
the variation with time of the separation points. It is therefore not 
easy to draw a parallel between the behavior of steady flow and that of 
harmonic flow over a smooth and rough cylinder. In fact, the steady as 
well as the oscillating flow results for rough cylinders show that, in 
either case, the transcritical drag coefficient nearly returns to its 
subcritical values. 

The Reynolds number at which the drag crisis occurs gives rise to an 
'inertia crisis.1 In other words, for a given relative roughness, Cm rises 
rapidly to a maximum at a Reynolds number which corresponds to that at which 
Cj drops to a minimum. At relatively higher Reynolds numbers, Cm decreases 
somewhat and then attains nearly constant values which are lower than those 
corresponding to the smooth cylinders. It is also apparent from the 
inertia coefficient curves that the smaller the relative roughness the 
larger is the maximum inertia coefficient. For relatively smaller roughnesses 
such as k/D = 1/800, the terminal value of Cm is nearly equal to that of a 
smooth cylinder. The behavior of Cm is not entirely unexpected. It has 
long been noted [16] that whenever there is a rise in the drag coefficient, 
there also is a decrease in the inertia coefficient. 

Before closing the discussion of the drag and inertia coefficients, 
it is necessary to point out the remarkably consistent behavior of the 
data points, particularly for CJ. Perhaps it would not have been too 
surprising had the data been obtained for one relative roughness through 
the use of only one cylinder. In the present investigation, the use of 
several cylinders and several temperatures for a given cylinder always 
provided data for nearly identical k/D, Re, and K values. For instance, 
the Cjj and Cm values obtained at a given K, Re, and relative roughness k/D, 
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using a 5 inch cylinder at a low temperature corresponds to the Cj and 
Cm values using a 4-inch cylinder at a high temperature. Remembering the 
fact that not only the actual size of the cylinders but also the size of 
the sand grains differed in order to obtain the same k/D, and the fact 
that the experiments were carried out at different temperatures and times, 
one fully realizes that the correlation of the data and the relatively 
small scatter are indeed quite remarkable. This is due not only to the 
repeatability of the tests but also due to the vibration-free operation 
of the entire tunnel system. 

The correlation length along the cylinders was not directly measured. 
However, one series of experiments was conducted with a 2.18-diameters 
(12 inches) long, centrally located, section of a 5.5 inch cylinder which 
'floated' on the ends of the force transducers with small gaps (1/32 inch) 
between the section and the rest of the rigidly supported 12-inch long 
sections. The floating and the dummy sections were coated with sand for 
a relative roughness of k/D = 1/100. The comparison of the lift, drag, 
and inertia coefficients obtained with the short section with those 
obtained with the longer section spanning the entire test section has 
shown (at least for five Reynolds numbers, five K values, and one k/D) 
that the two sets of coefficients are nearly identical. Evidently, the 
force-cancelling effects of phase shifts which may have been brought about 
by three-dimensional effects were either insignificant or non-existent. 
Thus, it is concluded that both the three-dimensionality effects and the 
boundary-layer effects play very little or no role in the present expri- 
ments. However, the comparison of the results shown in Figs. 3 through 
12 with the previously reported [4, 6] preliminary results for K = 50 
alone indicates the effect, particularly in the drag-crisis region, of 
the type of roughness element used on the variation of the force-transfer 
coefficients with the Reynolds number. Previously, sand paper, sand, and 
polystyrene beads were used as roughness elements for a given cylinder in 
order to achieve the desired relative roughness in a given Reynolds number 
range. A detailed study of the effective roughness of each type of 
roughness element and the discussions with the manufacturer have shown 
that the effective roughness of the sand paper is larger than the height 
of the mean sand particles applied on it. Furthermore, the gluing of the 
sand paper on the cylinder invariably resulted in a 'joint' along the 
cylinder which might have generated larger disturbances and promoted 
earlier transition. The polystyrene beads, on the other hand, present 
an effective-roughness height which is often smaller than their actual 
size [14]. In spite of these differences in the 'effective roughness' of 
various types of roughness elements, however, the terminal values of the 
drag coefficients in the transcritical region remained practically the 
same for a given actual effective relative roughness whether the data 
were obtained with sand alone or with a combination of other roughness 
elements. Evidently, it will be most interesting and desirable to carry 
out similar experiments with cylinders roughened in the ocean environment. 
The testing of such cylinders with steady uniform flow [9] is not sufficient 
for the purposes under consideration, namely the determination of the 
fluid loading on offshore structures. 
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APPLICABILITY OF MORISON'S EQUATION 

Since its inception, questions have been raised regarding the 
applicability of Morison's equation to time-dependent flows in general 
and to wavy flows in particular. It has been known that the equation 
predicts quite accurately the in-line force for both very small values of 
K (K smaller than about 10) and for large values of K (K larger than about 
20). For intermediate values of K, differences have been observed between 
the measured and calculated values. These differences have been attributed 
either to the imprecise measurement of the kinematics of the flow or to 
the shortcomings of the equation. It is now realized that not only these 
two factors (namely the heuristic nature of the equation and the difficulty 
of measuring the local velocities and accelerations) but also the three- 
dimensional nature of the wavy flows and decreased spanwise coherence 
must be partly responsible for the differences between the measured and 
calculated forces. In fact, it would have been extremely difficult to 
draw meaningful conclusions concerning the applicability of Morison's 
equation through the use of the field data. It is only through the use 
of carefully conducted two-dimensional harmonic flow experiments that one 
can ascertain the degree of applicability of Morison's equation. 

Figure 13 shows the calculated and measured forces normalized by 
0.5pDLU^ together with the normalized velocity and the difference between 
the measured and calculated forces for a relatively large value of K. 
It is evident that there is often a remarkable correspondence between 
the measured and predicted forces particularly for K values larger than 
about 20. This is also true for K values smaller than about 10. In the 
disturbance-sensitive region of vortex formation, the onset of asymmetry 
(K = 4.5) and the subsequent growth and shedding of single or alternating 
vortices have profound effects not only on the measured in-line force but 
also on the coefficients calculated. Morison's equation assumes that the 
in-line force F is an odd harmonic function, i.e., F(e) = -F(e+ir), for a 
flow represented by U = -Umcose. Thus, the drag and inertia coefficients 
calculated through the use of an in-line force for which F(e) j*-F(e+ir) 
are not quite correct. Thus, it is clear that part of the reason for the 
larger differences between the measured and calculated forces even in two- 
dimensional harmonic flows is due to the use of the force-coefficient 
expressions [Eqs. (2) and (3)] which are derived by assuming the in-line 
force to be given by an odd harmonic function. In the range of K values 
from about 10 to 20, particularly for low values of Re, this assumption is 
not quite correct as evidenced by the present experiments [3, 4, 6], 

The reason for the asymmetry in the magnitude of the in-line force 
and the differences between the measured and calculated forces is primarily 
the fractional shedding of vortices and vortex induced oscillations in the 
in-line force. It is a well-known fact that in steady flow the vortex 
shedding causes a gradient of fluctuating pressure across the body and 
gives rise to periodic force fluctuations in the in-line force. In harmonic 
flow, the fully grown vortices move back and forth about the cylinder and 
do not necessarily shed alternatingly. Thus, it is possible that the 
oscillations in the in-line force due to eddy shedding are relatively larger 
than those in steady flow. The effect of these oscillations may be incor- 
porated into Eq. (1) as follows, 
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F/(0.5PDLlj2) = (ir2D/UmT)Cmsine - Cd|cose|cose - nCLcos(St.K.e -$)  (11) 

in which TI represents a coefficient, nCj_ the amplitude of the normalized 
difference between the measured and calculated forces, St the Strouhal 
number defined by fyD/Um with fv as the frequency of lift oscillations, 
and <(> the phase angle. In the range of K values from 10 to about 15, 
St.K should be taken equal to 3. For larger values of K, St.K may be 
taken equal to 0.20K. Extensive calculations through the use of appropriate 
values of the parameters cited above with n = 0.1 have shown that the 
above equation considerably reduces the difference between the measured and 
calculated in-line forces. These calculations will not be reproduced here 
for their purpose was simply to demonstrate that the eddy-induced in-line 
oscillations can account for most of the error in the predictions of the 
Mori son equation in the range of K values from 10 to about 20. For larger 
K values, the predictions of the Mori son equation are indeed excellent as 
evidenced by Fig. 13. 

FMEASured 

FCALCULATED 

calculated forces for large values of K and Re. 
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In considering the relevance of the coefficients presented herein 
and of the equation devised by Morison to wave induced loads on offshore 
structures, it is of course important to take into account the differences 
between uniform two-dimensional harmonic motion and the wave motion where 
the velocity vector both rotates with time at a point and decays in 
magnitude with depth. The spanwise variations of the flow in general lead 
to reduced spanwise coherence. It is safe to assume that both the three- 
dimensionality of the flow and the reduction of the correlation length 
along the cylinder, in an ocean environment, tend to increase the base 
pressure and thus give rise to transcritical drag coefficients which are 
smaller than those obtained with purely two-dimensional flows. The drag 
coefficients presented herein obviously represent their maximum possible 
values since they have resulted from a uniform, two-dimensional flow where 
the instantaneous wake of the cylinder has the highest possible degree of 
spanwise coherence. The similarity between the reduced drag coefficient 
due to lack of spanwise coherence in wavy flows and the drag coefficient 
in steady flows (both for roughened cylinders) is pure coincidence and 
certainly the wrong reason in arriving at the right value. It is rather 
unfortunate that even the experiments with wavy flows cannot be expected 
to isolate the effect of reduced spanwise coherence since such experiments 
surely bring in other factors whose influence is combined in a complex way 
with that of the reduced correlation. Thus, the value of the results 
presented herein lies in the fact that the designer now knows the maximum 
possible value of the coefficients under consideration, if not the values 
which might be more appropriate to the conditions under which the structure 
must survive and function. These conditions might include, among other 
things, currents and wave induced oscillations. Under these circumstances, 
the coefficients obtained either with two-dimensional harmonic flows or 
with waves without a current superimposed on them cannot be expected to apply 
to the design of the structures. Furthermore, the equation proposed by 
Morison needs major changes to accommodate the existence of the currents. 

TRANSVERSE FORCE 

The transverse force coefficients for smooth cylinders have been 
presented in Refs. [3, 4, 6]. The results for the rough cylinders are 
presented in Fig. 14 as a function of K for various values of e and one 
particular value of k/D. Additional details and data may be found in [19]. 

Evidently, CL does not vary appreciably with either g or Re. The data 
presented in [19] for other values of k/D show that C|_ does not vary with 
k/D also within the range of the parameters encountered. If there is some 
variation with these parameters (Re and e), it is certainly masked by the 
scatter in the data. The transverse force coefficient inevitably exhibits 
a larger scatter than that for the in-line force coefficients because of 
the somewhat random nature of the shedding of the vortices. Consequently, 
it is not too uncommon to obtain a variation of 20-25% for a given K value. 
This fact is of importance in discussing the effect of the Reynolds number 
on the lift coefficient. 
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Fig. 14 Transverse force coefficient for various values of $ for k/D - 1/200. 

Also shown in Fig. 14 is the lift coefficient for smooth cylinders for e in 
the range 1000 to 2000. It is rather surprising that the smooth cylinder 
data at relatively low values of $ form more or less the upper limit of the 
rough cylinder data. In other words, the lift coefficient for rough cylinders 
does not depend on Re and become almost identical with those for smooth 
cylinders at very low Reynolds numbers. The consequences of this observation 
for model testing purposes are rather obvious. 
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As noted earlier, the alternating nature of the transverse force is 
as important as its magnitude. It is for this reason that the frequency 
of the alternating force has also been calculated [14]. A close examina- 
tion of the frequency ratios shows that fr/K remains essentially constant 
at a value of about 0.22. To be sure, there are variations from one 
cylinder to another and from a given combination of Re and K to another 
one. Nevertheless, the Strouhal number (St = fvD/Um = fr/K) is fairly 
constant for all roughnesses, relative amplitudes, and Reynolds numbers 
larger than about 20,000. This fact is of special importance in 
determining the in-line and transverse vibrational response of the 
elements of a structure to wave-induced transverse forces. Once again 
it should be kept in mind that the spanwise coherence along a vertical 
cylinder in the ocean environment is reduced by the variation of the 
velocity vector with time and depth and that the coefficients presented 
herein represent the maximum possible values of the transverse force. 

CONCLUSIONS 

The extensive investigation of the in-line and transverse forces on 
roughened circular cylinders in harmonic flow warrants the following 
conclusions: 

1. The drag and inertia coefficients depend on Re, K, and k/D. The 
effect of size distribution and packing of the grains has been minimized 
by using only sand and applying it as uniformly as possible over the test 
cyli nders; 

2. The drag coefficient undergoes a 'drag crisis' depending on the 
relative roughness and rises to an asymptotic value within the range of 
Reynolds numbers tested. The asymptotic values of the transcritical drag 
coefficient are larger than those corresponding to the smooth cylinder 
case. Furthermore, the larger the relative roughness the larger is the 
asymptotic value of the drag coefficient; 

3. The inertia coefficient also undergoes an 'inertia crisis' at Re 
values corresponding to the 'drag crisis' at which Cffl reaches a maximum 
value and then asymptotically decreases. The terminal values of Cm depend, 
as in the case of C^, on K and k/D; 

4. The predictions of the Morison's equation through the use of the 
Fourier-averaged drag and inertia coefficients are in excellent agreement 
with the measured forces in the range of K values smaller than about 10 
and larger than about 20; 

5. Within the range of parameters tested, C|_ does not depend oh Re. 
Its distribution is, surprisingly enough, very close to that obtained with 
the smooth cylinders at very low Reynolds numbers. The Strouhal number for 
rough cylinders remains nearly constant for all Reynolds numbers at about 
0.22 with the possible exception of those at very low Reynolds numbers. 
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