
CHAPTER 204 

WAVE INDUCED OSCILLATIONS OF HARBORS WITH VARIABLE DEPTH 

by 

F. Raichlen1 and E. Naheer2 

ABSTRACT 

A numerical method is presented to treat the wave-induced oscillations of 
a harbor with a variable depth and width. A two-dimensional finite difference 
approach is used inside the harbor matched at the entrance to a solution for 
the open-sea based on the Helmholtz Equation which includes incident, reflected, 
and radiated wave energy. Examples of the response and the modal shapes of the 
water surface are presented for harbors with simple and complex shapes. 

INTRODUCTION 

In recent years significant progress has been made in developing analytical 
models to determine the response of harbors to incident waves. The ultimate 
objective in such research is to be able to treat a harbor with variable depth, 
planform, and coastline configuration, and with a variable interior reflectivity. 
Such a model would be extremely useful in preliminary design work and guiding 
laboratory studies of the phenomenon. 

Early theoretical investigations of harbor resonance concentrated on harbors 
with constant depth and simple geometric shapes.  Examples of these studies are: 
Miles and Munk (196.1) and Ippen and Goda (1962) . One of the major results of 
these investigations was the realization that the open-sea was important in 
allowing for the loss of energy radiated from a harbor. For the steady-state 
excitation of a harbor the radiated energy from the harbor to the open-sea is an 
important aspect of the response problem, and provides a form of "dissipation" 
in an otherwise inviscid theoretical approach. Methods were presented which 
demonstrated, quite well, (particularly the study of Ippen and Goda (1962)) the 
effect on the harbor response of geometric characteristics of the harbor, such as 
the ratios of: width to length and entrance width to harbor width. 

Lee (1969), Hwang and Tuck (1970), and Lee and Raichlen (1971) investigated 
the problem of the wave-induced oscillations of constant depth harbors of arbitrary 
shape. Numerical methods were developed to treat the problem of a complex harbor 
with perfectly reflecting interior boundaries.  In the study of Hwang and Tuck 
(1970) the open-sea and the harbor were treated as one region; Lee (1969) and Lee 
and Raichlen (1971) treated the harbor and the open-sea separately, then matched 
the solutions at the harbor entrance.  (This difference leads to the study re- 
ported herein.) 

Several approaches have been proposed to determine the response of harbors 
with variable shape and depth to incident waves, e.g., Raichlen (1965), Wilson 
et al. (1965), Olsen and Hwang (1971), and Chen and Mel (1974). Comments are made 
by Miles (1974) relative to the applicability of certain of these methods, and 
the interested reader is directed to that publication. 

A two-dimensional approach was presented by Raichlen (1965) to treat the 
oscillations of long waves in closed basins of arbitrary planform and variable 
depth.  This was extended, in an approximate fashion, to the case of a harbor 
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connected to the open-sea.  The major assumption in the case of the harbor was 
that a node existed at the harbor entrance.  It was realized at the time that 
this was a serious limitation to the analysis, especially in view of the work of 
Ippen and Goda (1962) where it was shown, for rectangular harbors, that only for 
small ratios of width to length and large ratios of entrance width to harbor 
width is this assumption reasonable.  Suggestions were made for improving this, 
but these were not attempted at the time. 

The objective of the study reported herein is to eliminate this imposed 
entrance condition and develop a simple method which allows the wave amplitude 
at the entrance to adjust naturally to the external and internal waves similar 
to the analyses presented by Ippen and Goda (1962) and Lee (1969) for simple and 
complex shapes, respectively. The harbor and the ocean are considered as two 
separate regions with the wave amplitude and the water surface slope obtained in 
each region matched at the harbor entrance.  In this manner, it is possible to 
use analytical approaches which are different in each of the two regions. 

ANALYTICAL CONSIDERATIONS 

In this section the analytical method used will be discussed considering in 
order: the solution inside the harbor, the solution in the open-sea, and the 
solution for the combined region.  There are certain limitations which are placed 
on the solution which may or may not restrict its application.  These are: 

(1) Only shallow water waves are considered. 
(2) The problem is reduced to a two-dimensional problem; no surface 

variations are allowed in the harbor in a direction perpendicular 
to the talweg  of the harbor. 

(3) The open-sea has a constant depth equal to the average depth at 
the entrance. 

(4) The coastline is assumed to be straight. 

Harbor Region 

The solution for the interior of the harbor follows the method proposed by 
Raichlen (1965), and it will be summarized here. A body of water is considered 
with a length I  measured along the natural coordinate direction s, see Fig. 1. 
The natural coordinate is directed along the talweg  which is the line which 
smoothly connects the deepest parts of the body of water.  The variation of 
surface width and cross-section area perpendicular to the s-direction are denoted 
as b(s) and A(s), respectively. 

Harbor Region 

Open-Sea 
Region 

B 
(n=l) 

As 
Talweg 

C ' 

Fig. 1. Definition Sketch of Harbor and Open-Sea Regions. 
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For long waves with small amplitude the equation of continuity for the fluid 
body may be written as: 

where u is the water partical velocity in the s-direction averaged over the cross- 
section and n is the amplitude of the water surface relative to the mean water 
level. 

Neglecting friction, the equation of motion in the s-direction for two- 
dimensional flow (without body forces) is: 

3t + u 3s    p 3s K ' 

where p is the density of the fluid and p is the local pressure. For small ampli- 
tude shallow water waves, the pressure can be assumed hydrostatic: 

p = Y(n-z) (3) 

where Y is the specific weight of the fluid and the coordinate direction z is 
positive upwards. Neglecting the convective acceleration in Eq. 2 (which is 
reasonable for this small amplitude approach), Eqs. 2 and 3 can be combined to 
give: 

3n    3u/3t ,,, 
3s ~ "  g W 

Eq. 4 states that the local water surface slope in the s-direction is given by the 
ratio of the local acceleration to the acceleration of gravity.  It is assumed that 
the amplitude variation of the free surface can be expressed as a separable function 
of space and time as: 

ri = n(s) cos at (5) 

where a is the circular wave frequency, 2fT/wave period. Differentiating the con- 
tinuity equation (Eq. 1) with respect to time, substituting for the local 
acceleration from Eq. 4 and using Eq. 5 in the resulting expression, the following 
is obtained: 

3 r« 3n1 . bo2   . -r-   A •—• +   n = 0 3s [  3sJ   g (6) 

Eq. 6 can be expanded into an equation of the Sturm-Lionville form: 

Ad£n +|A dr, + (7) 
ds^ ds ds   m 

"n? where X    =          m = 1-2,...., M 
m   g 

and X is a characteristic or an eigenvalue of the problem, and A and h  are 
functions of s alone. Wilson et al. (1965) describe two boundary conditions that 
may exist at the end of the basin opposite to the entrance: 

(1) The cross-section area tends to zero or, 
(2) there is perfect reflection from the end. 

From Eq. 7, these conditions can be expressed respectively as: 

(1)   A'- 0        ^^+Xbn = 0 (8a) 
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A*r, 
(2)     £.0 AfLa+y„ = o (8b) 

If both conditions exist simultaneously, the trivial case of n= 0 is obtained 
from Eq. 7.  In addition, inherent in the assumption of A=0 at the end is the 
fact that b/0 at that point; if not, Eq. 7 reduces to M Jl = 0. Thus, the two 

ds ds 
boundary conditions at the closed end of the harbor are somewhat restrictive, 
although they do cover most of the interesting problems. 

To obtain a numerical solution to Eq. 7, the basin is divided into N cross- 
sections spaced a distance As apart, where As = £/(N-l); the cross-sections are 
perpendicular to the talweg.     The section n - 1 is the closed end of the basin 
and n=N is at the entrance which communicates with the open-sea.  The first and 
second derivatives are expressed in finite difference form using central differ- 
ences, and Eq. 7 becomes: 

a   ,n , +a  n + a  ,-n ,- = A n (9) 
n,n-l n-1   n,n n   n,n+l n+1   m n 

where: 
a   n =-i~ I A -f<A ^i ~A i)        a   = 2A /b n,n-l   b   n 4 n+1  n-1 J       n,n    n n 

a  J.I =-r~  |A +r(A .- -A _)       A = A As2 n,n+l   b   n 4 n+1  n-1 m   m n L J 

For the boundary condition where the area at the end section (n=l) goes to 
zero, Eq. 8a, forward differences are used to define the derivatives and Eq. 8a 
becomes: 

"l,!"! + al,2n2 = Vl (10a) 

where: 

al,l = (A2/b2)=-al,2 

Therefore, the wave amplitude at the next section (n = 2) can be expressed in terms 
of the amplitude at section n = l from Eq. 10a as: 

/  b.a2As2 \ 

*2 = (1~i^-)"l"Vl (10b) 

In the case of perfect reflection from the end boundary (n=l) when the depth 
does not go to zero, the water surface slope becomes zero in accordance with Eq. 
8b.  This equation could be written in difference form similar to that shown in 
Eqs. 10a and 10b. However, to obtain a solution a zero water surface slope can be 
forced to occur at the end by using the "mirror-image" method proposed by Raichlen 
(1965).  In that method the basin is extended one cross-section beyond the end 
wall to construct a mirror image; for example, for reflections at n=l a cross- 
section at n = 0 is defined with AQ = A2, Dn = D2 anc* rl0~n2*  *n tn^-s manner, by 
symmetry about n = l, a zero water surface slope is forced at n=l.  The difference 
equations written for this are: 

"I^ 
+ ai,ini= Vi (lla) 

where al 1 = (2A-/10 = - a, „ 
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Hence, the wave amplitude at n = 2 can be expressed In terms of the amplitude at 
the end of the basin as: 

b o2As2 

2gA, a2  "1 
(lib) 

It should be recalled, the analytical method used is to obtain a solution 
inside the harbor that can be matched at the entrance to a solution obtained by 
a different method for the outside region (the open-sea).  To accomplish this, 
an inside solution must be evaluated at the entrance, n = N.  Eq. 9 and the 
appropriate boundary condition (Eq. 10b or lib) is used for this. In this regard, 
it is instructive to look first at the wave amplitude at the cross-section n=3. 

3    A2+t(W 
4(A3-V-A2 

2A„ 
b,o-2Asz 

nl"E3nl 
(12) 

Therefore, knowing the wave amplitude at the end of the basin, n = l, and the 
cross-section geometry and wave period, the wave amplitude at n= 3 can be 
evaluated. Proceeding iteratively, the amplitudes at arbitrary cross-sections 
are expressed as: 

"n-1 En-1 "1 
and 

(13a) 

(13b) 

where E is a coefficient which can be evaluated easily, 
n 

Using backward differences, the water surface slope at the entrance (n= N) 
is approximated as: 

ds 

where 

As 

EN-1 

= h\ (14) 

For any cross-section, En (and ultimately F„) is determined by arbitrarily setting 
n^ = 1 and the calculating ti2, 13  tijj iteratively. Dividing nN and Hfj_i by r\j_, 
the desired values of EM and E«i are obtained, and the slope of the water surface 
(or the velocity) at the entrance is defined. 

The wave amplitude n is a complex quantity which, at the entrance (n - N), can 
be written as: 

(15) GO . •   (I) nN = \  +^nN 

where n„   and n„   are the real and imaginary parts of the entrance wave 
amplitude, respectively, and thus provide both amplitude and phase information. 

Open-Sea Region 

The solution for the open-sea region is taken from Lee (1969) and will be 
summarized here; the interested reader is directed to the publication cited for 
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a more comprehensive description. As mentioned previously, for this development 
the open-sea is assumed to be a constant depth equal to the average depth at the 
harbor entrance.  If a separable solution of the velocity potential $ is sought, 
within the limitations of small amplitude wave theory, the following expression 
can be used for the velocity potential: 

a.g cosh k(h+z) 

and hence: 

(x,y,z;t)= -4           f(x,y)e (16a) *• >'•   '   ' in cosh kh       '•" 

n(x,y;t) = a.f (x,y)e""Wt (16b) 

wherein a is the wave amplitude, k is the wave number, and h is the depth. From 
Laplace's Equation (V2*=0) it is found that the spacial wave function, f, must 
satisfy the Helmholtz Equation: 

+ -5-| + k2f = 0 (17) 32f , 32f 

3xz 

In the outside region the wave function is defined as: 

f, = f.  + f  . + f  , (18a) out       vno       ref       pad 

where f.  is the incident wave function, f  - is the wave function for the vno ref 
ted wave, and £paj  is the wave function f 

outward from the harbor entrance. From Eq. 16b the wave amplitude can be 
expressed as: 

* "  ai «ine + V + We"'" <18b) 

Referring to Fig. 1, the following boundary conditions are imposed on f  , . 

3f  .          _ 
(1) 3p   = 0 on AC and BC at y = 0 (19a) 

3f  ,         
(2) ^°UV  - - C on AB at y - 0 (19b) 

(3)      W* (£**+W as <^y2>+" (19c) 

The first boundary condition implies a zero velocity along the impermeable coast- 
line where n is the normal to the boundary. The second boundary condition 
expresses the average velocity across the entrance in terms of the solution of 
the velocity obtained from inside the harbor.  (This does not pertain to the 
immediate solution sought, but it is presented here for its usefulness later.) 
The third boundary condition ensures the radiated wave system, ^-pad*  disappears 
with increasing distance from the harbor entrance and the wave becomes simply a 
standing wave at infinity. 

Lee (1969) obtains the radiated wave function using Weber's solution for 
the Helmholtz Equation (Eq. 17) letting the standing wave amplitude at infinity 
be a^ i.e., (f-£n(2 + f^gf) 

Ml- Thus the wave function along the entrance is 
written as: 

fo^(x,0)=l-|yc(x,0)Ho
(1)(kr)dx (20) 

AB 
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where H   (kr) is the Hankel function of the first kind and zero order chosen 
as a fundamental solution of the Helmholtz Equation.  If variations in amplitude 
and velocity across the entrance in the x direction are considered small, £0ut 
and C(x,0) in Eg. 20 can be_ replaced by their values averaged over the width 
of the entrance: f^^.and C. Hence, from Eq. 20 one obtains f  .and C. out 

out = 1 4|~J +i J-Y 1 b„,C 
2 I  c   IT cj N (21) 

where: 2 /   60 \ 2 

1 
1008 

kV6 

25920 

kbv 

(*\ 
tol- + y--. 

•V" 
60 \ 2 

•L  /kb, 

25920 \ 2 

fkK 
ln[ 

V 2 

')' 
to 

kb. 

kb„. /kb 

55 
30 

+ Y 

1 
1008 

kb. 

+ Y- 

6 

to 
kb. 

+ Y 
353 

'168 

826 
360 

and: Y = 0.5772157 (Euler's constant).  (To handle relatively large 
ratios of entrance width to wave length, the numerical computations for Jc and 
Yc are carried to terms of order (kb„/2)

8.) 

Solution for the Combined Regions 

Eq. 21 provides a first approximation to the outside wave function, 
and hence the wave amplitude in terms of an unknown average water surface slope, 
C, at the harbor entrance.  Since the C can be complex, it is described by the 
derivative of Eq. 15 with respect to the s-direction, i.e., C = (1/a^)(dnjj/ds). 
This substituted into Eq. 21 provides a general expression for the wave function 
at the entrance averaged over the entrance width.  Separating the resulting 
expression into the real and imaginary parts the following are obtained: 

'-out' 

n (R) a. 
l + 4 

(I) (R) 
dT1N      2    d\ 

J T^  + J-Y -3-=  c ds     J c da (22a) 

(I). 
d", (R) 

c ds 

<H 
ft    c ds 

(I)"! 
(22b) 

Substituting Eqs. 13 and 14 obtained from the interior solution into Eqs. 22, the 
latter can be rewritten as: 

.„ (R) _ i . 1 jcVi(I)+iKvi (R) (23a) 
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C« 
•Wl 

00 
IT c N 1 

(23b) 
J  N 

Eqs. 23a and 23b can be solved simultaneously for the real and the imaginary 
parts of iii, the amplitude at the end of the harbor (n = 1) : 

"l00 " 3i(EN i Y Rh ,)/<\, TT c N N  N 
(24a) 

where: 

(I) 
-ai(-2JcVN)/aN 

2 2 

(EN-KFNM +(HVN)* 

(24b) 

If the response function for the harbor is defined as the ratio of the 
wave amplitude at a position in the harbor (e.g., at the backwall, n= 1) divided 
by the amplitude at the entrance if the entrance were closed, then from Eqs. 24 
this becomes (for the backwall): 

t[K(R>)2+K(i)n 1/2 (25) 

The amplification factor, R-^, can be evaluated by setting the standing wave ampli- 
tude to unity (a^ = l) and substituting Eqs. 24a and b into Eq. 25. With reference 
to Eq. 13, the response at any other location becomes: 

R - E R, 
n   n 1 

(26) 

where En is defined, as before, from an expression similar to Eq. 12.  Therefore, 
from Eqs. 24, 25, and 26 the response of a variable depth harbor to incident waves 
can be investigated keeping in mind the restrictions imposed on the solution by 
the assumptions stated previously. 

DISCUSSION OF RESULTS 

In evaluating this method of analysis, a harbor of simple geometry was 
considered first. This was a rectangular harbor with a width w, a linearly 
varying depth, and a fully open entrance connected directly to the open-sea. 
The depth of the open-sea region was set equal to the depth at the harbor entrance. 
The ratio of the depth at the backwall of the harbor to that at the entrance varied 
from zero to unity.  The ratio of the harbor width to the length for the case 
considered was: w/Jt -  0.194; the same ratio as the constant depth case considered 
by Ippen and Goda (1962) and Lee (1969). 

The response curves obtained are presented in Fig. 2 for four ratios of 
depths at the backwall to the entrance: h1/h2 = 0, 0.67, 0.33, 1.0.  The 
ordinate is the response function as defined by Eq. 25 and the abscissa is the 
product of the harbor length and the wave number based on the wave period and 
the depth of water at the harbor entrance. The response for h-,/!^ = 1 is the 
same as obtained by Ippen and Goda (1962) and Lee (1969). As the slope of the 
bottom increases the amplification at resonance increases significantly and the 
maximum response shifts to smaller values of k^^. Note that as k2& tends to 
zero (the wave length tends to infinity) the response tends to unity, i.e., 
the wave length is so large that the wave essentially does not "see" the harbor 
and the amplitude is the same as the standing wave with the harbor entrance 
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closed.  The variation of the amplification and the product 1^)1 at resonance with 
the depth ratio are presented in the inset to Fig. 2; it is apparent that the 
effect of the change in depth on the amplification at resonance is much more 
significant than the effect on the resonant wave number, k,. The former can be 
considered an effect of shoaling; the latter also is an effect of shoaling and 
represents a change in the resonant wave length caused by the change in mean depth. 

In Fig. 3 the response of a fully open rectangular harbor with a linearly 
varying depth is presented for two cases: a width to length of 0.1 and 1.0; the 
fundamental mode is shown for each case.  (It should be noted, the response 
function is presented logarithmically along the ordinate.)  The amplification at 
resonance is reduced by nearly an order of magnitude by increasing the ratio of 
width to length in the same amount.  In addition, the resonant wavelength in- 
creases as the width of the harbor increases (the resonant wave number decreases). 
In fact, it appears that if the width were great enough compared to the length, 
the response at the backwall would be equal to unity independent of wave number. 
This is the case where the harbor is so wide compared to the length that it simply 
becomes like the coastline. 

In Fig. 4 the variation of the relative amplitude with relative length is 
shown for the fundamental mode of three harbors with a varying ratio of width to 
length. For the three cases the ratio of the depth at the backwall to the depth 
at the entrance is zero. The results of the numerical analysis are shown along 
with the exact solution of Lamb (1945) for a long wave in a canal with a linearly 
varying depth, and the agreement is good. At x/£ = 1 the entrance effect can be 
seen, and as the ratio of width to length, w/I,  decreases, the relative amplitude 
at the entrance also decreases.  In fact, it appears that if w/Jl » 1 the amplitude 
in the harbor would be approximately uniform in the x-direction; this is the same 
trend observed in Fig. 3 as w/J. increases. 

An example of the response of a harbor with a more general shape is the case 
of Apra Harbor, Guam, M. I.  This harbor was chosen because of the availability 
of the results of hydraulic model tests which were conducted in the late 1940's 
to evaluate certain inner harbor modifications and the design of a proposed 
breakwater (see Knapp and Vanoni (1949)). 

A schematic drawing of the harbor is presented in Fig. 5.  In the analysis, 
the outer harbor was limited near the East end by a series of shoals; in the 
hydraulic model one proposed method to protect the inner harbors was to build a 
series of breakwaters connecting certain of the shoals.  In the analytical model 
the shoal-breakwater location and the LST berth were considered to be closed ends 
and the results were compared to the experimental results with the breakwaters 
in place.  The general direction of the talweg  is shown in Fig. 5 and the areas 
and surface widths of sections perpendicular to the talweg  are shown in Fig. 6. 
The depth averaged over the cross-section varies from approximately 60 ft at the 
entrance to a maximum of 113 ft about one-third of the harbor length from the 
entrance and 18 ft near the LST berth. 

A response curve obtained for this harbor is presented in Fig. 7; the 
ordinate is the ratio of wave amplitude at the LST berth (see Fig. 5) to that at 
the harbor entrance with the entrance closed.  The abscissa is the product of the 
wave number and the harbor length along the talweg;  the length used is 16,000 ft 
with the harbor divided into 33 sections. The theoretical response curve 
exhibits six modes of oscillation for the range of kJl shown. This response 
curve must be somewhat in error, since the oscillations corresponding to the 
response shown in Fig. 7 are two-dimensional and three-dimensionality would 
probably become important in such a harbor for the higher modes of oscillation. 
Nevertheless, this does show certain aspects of the response in a variable depth, 
arbitrary shaped harbor. 
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Fig. 4. Relative Wave Amplitude vs. Relative Length for the Fundamental Mode 
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Fig. 5.  Schematic Drawing of Apra Harbor, Guam, M.I. 
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The experimental data presented in Fig. 7 were obtained by Knapp and 
Vanoni (1949); the definition of the response function used in that study was 
not precisely the same as that used in the theory.  In their experiments the 
amplification factor was defined as the ratio of the maximum amplitude at the 
location of interest to the maximum amplitude outside the harbor with the 
entrance open.  Since there must be an effect on the outside wave due to the 
harbor, in comparing the experiments to the theory one would expect differences. 
In Fig. 7 the agreement in the shape of the response curve perhaps is reasonable 
for the second and third modes but considerably poorer thereafter. This may be 
due to the failure of a two-dimensional theory in describing the higher modes 
of oscillation where three-dimensionality must be important as well as the 
differences mentioned between the theory and the experiments. 

The periods of the various modes are shown in Fig, 7 next to the peaks. 
It is noted that the lowest mode, the fundamental, has a period of 27.9 min; 
the maximum amplification for 0 < k£ < 19 is exhibited by the third mode with a 
period of 3.7 min.  (These periods are based on an average depth of 84.7 ft 
inside the harbor.) The shape of the water surface for the first three modes 
are shown in Fig. 8 where the local amplification factor 0^ in Eq. 26) is plotted 
as a function of distance from the LST berth along the talweg. By plotting in 
this manner, the relative importance of mode shape at a given location can be 
observed. An interesting feature of Fig, 8 is the water surface amplitude at 
the entrance (n = N). For these three modes the classical condition of a node at 
the entrance certainly is not met. Thus, the approach proposed by Raichlen (1965) 
and Wilson et al. (1965) would be in error in predicting both the resonant periods 
and the mode shapes. 

For a rectangular harbor with a similar geometry (2b/£ =s 0.33 and d/b^O.5) 
the value of kJi at resonance for the first mode would be 1.15.  (It should be 
noted, the width of both the harbor and the entrance used for this computation 
are approximate.) Referring to Fig. 7, the value of k£ at resonance for the first 
mode, the pumping mode, is about the same as that predicted for the corresponding 
mode for the rectangular harbor. Hence, the fact that a node does not exist at 
the entrance is partly due to the aspect ratio of the harbor and partly due to 
the partially closed condition. 

The second basin investigated was Monterey Bay, California.  This bay has 
experienced problems due to long period oscillations in the past, and in connec- 
tion with an approximate numerical model presented by Raichlen (1965) and Wilson 
et al. (1965) it is of some interest.  This is a large bay with a length along 
the talweg  of approximately 56,000 ft from the shore to the entrance, a maximum 
width near the entrance of 138,000 ft and an average depth which decreases from 
581 ft at the entrance to nearly zero at the shore. The longitudinal variation 
of the surface width and cross-section area are presented in Fig. 9. For the 
numerical calculations the harbor was divided into 20 sections. 

The response curve for a location at the shoreline (n = l) is presented in 
Fig. 10.  It is interesting that due to the shape of the basin, the modes of 
oscillation are not defined as distinctly as those for Apra Harbor shown in Fig. 
7. Nevertheless, the first three modes of oscillation are evident in Fig. 10 
and are defined therein. For this harbor the ratio of width to length is nearly 
2.5, thus three-dimensional effects would be expected for higher modes of oscilla- 
tion.  The results of the two-dimensional analysis of Raichlen (1965) and Wilson 
et al. (1965) for this case are indicated along the abscissa; in those analyses 
a node was assumed at the entrance. That this is not so is evident from Fig. 10 
and is emphasized even more in Fig. 11 where the shape of the water surface is 
shown for the first three modes of oscillation.  It is seen that nodal conditions 
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are not met for any of these modes of oscillation.  This emphasizes the 
importance of not imposing entrance boundary conditions for a harbor. The 
conditions at the entrance must respond naturally, depending upon the shape of 
the basin and the period of the incident waves. 

CONCLUSIONS 

The following major conclusions may be drawn from this study: 

1. Using matching conditions at the entrance to a harbor it is possible to use 
two completely different methods of analyses in the two domains: the harbor 
region and the open-sea region. 

2. Reasonably good agreement is found for the period of the lower modes of 
oscillation measured experimentally compared to the results of the numerical 
analysis for a harbor with a relatively complex shape. 

3. The boundary condition at the entrance of a harbor must be allowed to develop 
naturally and a particular amplitude such as a node cannot be forced to occur. 
In the event this is done, the response of a harbor determined numerically 
may be considerably in error. 
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