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ABSTRACT 

A comparison is made between two reference frames that can each be 
used to define "still water" for finite amplitude waves on water of 
finite depth. The reference frame characterized by zero mass flux due 
to the waves is used to find some exact relations between the wave 
integral properties. The averaged Lagranian (wave action) approach 
and the energy/momentum approach to the interaction of finite amplitude 
waves with slowly-varying currents are also derived in this reference 
frame. Results in many cases are simpler than those in the more 
commonly chosen reference frame characterized by zero mean horizontal 
velocity under the waves. 

An application of the integral properties is made to Vocoidal wave 
theory, which is defined in the zero mass flux frame. It is shown 
that the rotation present in the orbital velocity field of Vocoidal 
waves is not always negligible. 

INTRODUCTION 

In the study of periodic surface gravity waves of finite amplitude on 
water of finite depth, Stokes (1847) considered two reference frames 
that can be used to define "still water". These are: 

(i) reference frame Rl, characterized by zero mean horizontal 
velocity beneath the wave trough; 

(ii) reference frame R2, which has zero mass flux associated 
with the waves. 

Stokes showed that these two reference frames are not equivalent (see 
section 2, equation (2.7); also Peregrine (1976)) and a choice must 
be made between them. Most surface gravity wave theories have used Rl 
to define still water; Stokes (1847) and Cokelet (1977) are examples. 
An exception in this respect is Vocoidal theory, defined in R2. 
(Swart and Loubser 1978, 1979a, b). Despite the predominance of Rl, 
there has been recent interest in the use of R2. Reinecker andFenton 
(1981) note that wave tank measurements often have zero mass flux, 
which makes comparison with wave theories defined in Rl more difficult. 
Whitham (1974) and Jonsson (1978) consider R2 to be valuable in the 
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analysis of wavetrains on slowly-varying currents in water of slowly- 
varying depth. Stiassnie and Peregrine (1979) also speculate on the 
possible benefits of R2 for such wave/current work. 

In view of this interest in R2 and prompted by the availability of the 
Vocoidal wave theory defined in R2, it was decided to investigate in 
R2 both the wave integral properties of Longuet Higgins (1975) and the 
equations governing wave/current interactions as given by Crapper (1979) 
and Stiassnie and Peregrine (1979). Results are presented for the 
transformations of wave integral properties between Rl and R2, for 
exact relations between the integral properties in R2 and for the 
governing equations for finite amplitude waves interacting with 
currents varying slowly along the stream. In numerous cases the 
relative simplicity of the results in R2 compared to those in Rl is 
evident, particularly in the wave/current interaction equations. This 
is true for both the momentum/energy interaction equations (Phillips 
(1966)) and for the averaged Lagranian approach to wave/current inter- 
action (Whitham (1974)). 

An application of the integral properties is made in R2 to Vocoidal 
theory in order to ascertain the amount of rotation present in the 
only orbital velocity field. It is found that the rotation is 
negligible only for deep water waves of small amplitude (approxima- 
ting Airy waves) and for shallow water waves of large amplitude 
(nearly solitary waves). 

REFERENCE FRAMES FOR PERIODIC GRAVITY WAVES ON STILL WATER 

In this section the reference frames Rl and R2 are defined and compared. 
Two dimensional inviscid irrotational motion is assumed and periodic 
surface gravity waves are considered. The waves propagate in the 
positive x direction with the z axis vertical, positive upwards, and 
y is reserved for (later) use as the remaining horizontal coordinate. 
The bottom is flat and located at z = -h. 

The most general form of the velocity potential for a periodic surface 
gravity wave is (Peregrine 1976) 

<(. = *(x,z) + ux - yt, (2.1) 

where the phase x is related to the wavenumber k and frequency u 
(relative to a fixed observer) by 

X = kx - ot. (2.2) 

t is the periodic part of $  and the constants "u and y are determined 
by the choice of horizontal and vertical reference frames respectively, 
u represents a depth independent current and y is related to the mean 
water level. Here, t is taken as zero for convenience and y is dis- 
pensed with (although it can always be found from the Bernoulli 
equation) until later. 
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Vertical reference frame 

The choice made here is that z = o at the mean water level, i.e. 

n = o (2.3) 

—    1  A 
where n = j  / ndx (2.4) 

and n(x) is the wave elevation. 

Horizontal reference frame 

The reference frame is to be chosen so that there is no background 
current. There are two obvious choices, firstly to choose the mean 
horizontal velocity beneath the wave trough to be zero (reference frame 
Rl) and secondly to choose the mass flux associated with the wave 
(reference frame R2) to be zero. 

zero mean horizontal velocity (Rl): Tj = i / udx = o (2.5) 

zero mass flux (R2): TJm =  I JA Jn = o (2.6) 
Ah ° ~n 

u  is the mean horizontal velocity from the velocity potential $  and 
um is the (Eulerian) mass flux velocity. 

Stokes (1847) showed that U and um  are not equivalent, since um  can be 
rewritten as follows, using <t> from (2.1). 

um = L till it dzdx 
Ah   ax 

Since n = o,  TJm = A  ,x ,n   _a$ dzdx + Tj (2.7) 
Jo J-h 3x 

The remaining integral for « is the average mass flux velocity due 
to the periodic wave motion and turns out to be positive, so um > u. 

A choice must therefore be made between Rl and R2. The latter is not 
often used, despite the advantages mentioned earlier. These advan- 
tages are now explored below with the definition in R2 of wave 
integral properties and the relations they satisfy (following Longuet- 
Higgins' (1975) work in Rl), followed by the analysis of wave/current 
interaction in the following section. 

INTEGRAL PROPERTIES AND THE EXACT RELATIONS BETWEEN THEM 

Integral properties for periodic surface gravity waves involve wave 
properties that have been averaged over the phase x- If the averaging 
is done at a particular time t, this is equivalent to an average over 
the wavelength x.    Longuet-Higgins (1975) defined gravity wave 
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integral properties and derived relations between them, working in Rl 
in almost all cases. (See also Crapper 1979). 

Here the transformations between Rl and R2 are given, followed by 
definition of the integral properties in R2 and the derivation of the 
relations they satisfy. 

Notation: (i) printed quantities are those defined in R2 

(ii) an overbar (1 denotes II ;x ( )dx throughout 

Let IL be defined as the velocity of translation of R2 with respect to 
Rl. The velocities u and u and the velocity potential $  transform as 
follows: 

u' = u - Ur (3.1) 

u' = | JA u'dx = | JX udx - U_ 
A ' o \ ' o r 

u' = -Ur using (2.5) (3.2) 

*'=<(>- Urx (3.3) 

Integral properties for periodic surface gravity waves 

The following definitions of the wave integral properties are 
essentially of Longuet-Higgins with the density p inserted. They are 
not yet specific to any reference frame. All definitions are per unit 
horizontal surface area. 

Mean mass flux   I E £• /V u dzdx (3.4) 
A 'o J-h 

= ph Tjm      by (2.6) 

Mean kinetic energy      T = £- JA Jn (u2+ w2)dzdx        (3.5) 
ZA o -n 

Mean potential energy     V = £- J" /n gz dzdx (3.6) 

Radiation stress component Sxx= £- / £n
h [- + u2]dzdx - Jpgh2    (3.7) 

Mean energy flux        F = £• /*J_nh [£ + l(u
2+ w2)+gz]u dzdx (3.8) 
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Additional quantities used by Longuet Higgins are as follows: 

Mass flux in the steady flow relative to an observer moving with the 
phase velocity c 

(3.9) 

Bernoulli  constant      B E p + |  [u2 - 2uc+w2] + pgz (3.10) 

Total  head R E p +£ [(u-c)2 + w2] + Pg(z+h) (3.11) 

= B + Pgh + p£ 

Transformations of the integral  properties between Rl and R2 

The quantities defined in  (3.4-11) are transformed from Rl to R2 by 
using  (3.1-3).    The relations  (2.5, 2.6)  that define Rl, R2 are then 
used to simplify the results. 

eg.    mass flux      I'  = £• J* £n
h   u'dzdx                                              by (3.4) 

= I'oTh   (u"Ur)dzdx 

= I-phUr 

Since I1  E o,              I = PhUr                                                                      (3.12) 

T'=T - phU?. (3.13) 

2 

S'  = Sxx  -phUr (3.14) 

F' = F - Ur[3T-2V + ph(%F] {315) 

where ub is the u velocity component at the bottom ( z = -h),   the 
pressure p' = p and the vertical velocity w' = w. 

The constants Q', B', R' are found to be: 

Q' = Q (3.16) 

B' = B + pUr[c-Ur] (3.17) 

R' = R (3.18) 
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Exact relations between the integral properties in R2 

A number of exact relations between the integral properties are given 
by Longuet-Higgins (1975). All except his relation (2.4) are in Rl 
and here his approach is followed to derive the equivalent relations 
in R2, making use of the fact that I' = o and using some of the above 
transformations for confirmation of the results. The results of L.H. 
are given for comparison, with p inserted and referenced by his 
equation numbers (or letters). 

(3.19) 

L.H.(A) 

(3.20) 

essentially L.H.(2.4) 

L.H.(B) 

2T' = (i- ) /; n {c' - [l+(|ii)]2[2Rl - 2Pg(h+n)]
i}dx      (3.21) 

The corresponding expression for 2T is identical in form (L.H.(E)). (A 
typographical error in  L.H.(E) is the omission of the first n symbol). 
Note that the choice n = o (2.3) removes the nc' term after integra- 
tion. 

Six = 4 T' - 3V + ph("u^P (3.22) 

where       (uf,)2 = H2] + Ur
2 (3.23) 

The corresponding Sxx expression (L.H.(c)) is again identical in form 
to the R2 expression. 

Q'    = pc'h 

Q     = pch - I 

2T'  = pc'hUV 

= Q'Ur 

2T    = c I 

(f)J"o   " {C   -   [1+(|£)]J[2R 

"V 

ub 

(3.24) 

L.H.(3.10) 

Note that the energy flux relation issimplerin R2 since the I'  term 
is zero.    This type of simplification occurs frequently in the conser- 
vation equations to be derived     below   and   is   a   primary   advantage 
of working in R2. 

CONSERVATION    EQUATIONS    FOR    HAVES    ON    SLOWLY-VARYING    CURRENTS    OVER 
SLOWLY-VARYING TOPOGRAPHY 

Phillips  (1966) derived a set of conservation equations for waves 
interacting with depth-independent currents that vary slowly along or 
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across the stream. These equations are mass, momentum and energy 
equations that have been vertically integrated and then horizontally 
averaged. Whitham (1974) derived an alternative set via a variational 
approach and the two sets were made fully compatible by Stiassnie and 
Peregrine (1979). A general review of wave/current interactions is 
given by Peregrine (1976). 

All the above work is effectively in Rl; the mean horizontal velocity 
at a fixed point below the wave trough is the current velocity. 
Stiassnie and Peregrine speculate that it may be better to work in a 
reference frame in which the total mass flux divided by pd (where d 
is the water depth) is the current; i.e. the wave mass flux is zero, 
which is the defining property of R2. 

The present work follows Phillips' approach in R2 and confirmed that 
the governing equations take a simpler form than in Rl. The alterna- 
tive approach of Whitham is also investigated in R2 and expressions 
are found for Luke's Lagrangian (Luke 1967), the Bernoulli term y' 
(2.1) and Whitham's averaged Lagrangian. Once a suitable wave theory 
has been chosen, the wave action equation can be derived from the 
averaged Lagrangian given here. 

Notation and definitions 

Motion is now in three dimensions and Greek subscripts refer to com- 
ponents in the horizontal (xj = x, x2 = y) plane. Since slowly varying 
waves and currents may change the water level from its undisturbed value 
at z = o, the water depth is denoted by d(x^t). The slowly varying 
bottom is at z = -h(x^), and 3ag = 1 if a = B, else 3ag = o. 

d = I fA (n+h)dx (4.1) 

The integral properties (3.4-3.8) are easily generalised for motion in 
the (x,y) plane with mean water level at z = d-h; the overbar represents 
(as before) the average over the wavelength. 

flu'dz  = o (4.2) 

T' E P fnu(u'u' + w2)dz (4.3) 2 '-h * a a    ' 

V' E|[^- (d-h)2] (4.4) 

SaB E    pfh   (uX+£^)dz- |pgd2^ (4.5) 

Fa    E    p £n
h   uJKUgUg + w2) + £• + g(z+h-d)]dz (4.6) 
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Averaged mass, momentum and energy conservation equations. 

The kinematic conservation equation is common to both approaches and 
is (Peregrine (1976)): 

03' = a'   + k U (4.7) 

where to is (as before) the wave frequency relative to a fixed observer, 
a' is the frequency relative to the current and 0" are the components 
of the depth independent current. 

The mass, momentum and energy conservation equations in R2 are derived 
following Crapper (1979) - essentially Phillips' approach. In each 
case, the flow velocity is split into u' + u' in the local conservation 
equation and the equation is then integrated over depth and averaged 
over a wavelength, which introduces the integral properties (4.2-4.6). 
Boundary conditions and the zero mass flux condition (4.2) are used 
finally to simplify the results. The method is sketched below for the 
mass conservation equation and the results for mass, momentum and 
energy conservation are compared with the corresponding results in Rl 
obtained by Stiassnie and Peregrine. 

Mass conservation. 

Local continuity equation: J-  (U + u ) + — = o (4.8) 
oXct  Ot    Ot     dZ 

Now ,| Si   (U1 + u')dz - (u' + u')   . |$ - (u' + u')   3h 3X„ J-h   a   a'      o. a>z  = ^   3Xa    a   o^_h ^ 

+ wl,   - wl   .  = o (4.9), 

where Leibnitz1 rule has been used to reverse the order of differentia- 
tion and integration. 

The kinematic surface boundary condition is 

3n + (U' + uj |i = w   at z = n    (4.10) 

and the corresponding bottom condition is 

The mass conservation equation is obtained after inserting,(4.10) and 
(4.11) into (4.9), averaging over a wavelength and using Ia H O. 
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4 + !xa 
[><] = ° <4-12> 

Compare the result (in Rl) of Stiassnie and Peregrine: 

4  + !xa 
["dUa + !«] = ° <4-13> 

(The mass conservation equation also appears in the averaged Lagrangian 
approach described later.) 

Momentum conservation. 

The momentum conservation equation is found similarly, and is: 

}t(PdUJ + 3fB[PduX + S^ + i  pgd^aB]- Pgd |t = o 

(4.14) 

Compare the Rl expression: 

g|(pdUa + Ia) + g|e[(pdUa + Ia)(i| + UB) + Sa8 + |pgd
28aB -^1 

" P9d|£a - o (4.15) 

Energy conservation. 

Energy conservation in R2: 

|t[|pd(u')2 + Jpg(d-h)
2 + T + V 

+ ~ [U'{4(U')2 + pgd(d-h) + T'  + V'} + F;    + S'aB UB]  = o   (4.16) 

Corresponding equation in Rl: 

g| tlfdU2 + Jpg(d-h)2 + T + V + UaIa] 

^Ua{|pdU2 + pgd(d-h) + T + V + UB y + Fa + IJg(d-h)+|U2] 

+ S„RU„    -    o (4.17) 
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The relative simplicity of the equations in R2 is clear, since all 
terms involving 1^ are eliminated. 

Averaged Lagrangian approach to wave/current interactions 

Whitham's method (Whitham (1974), Peregrine (1976), Crapper (1979)) 
requires a Lagrangian to be chosen and an averaged Lagrangian to be 
obtained for the system. Here, Luke's (1967) lagrangian is used in R2. 

Luke's Lagrangian: L' E -pfh [||' + i(f±\ §£ + (ff)2 + gzldz (4.18) 

where          $'  = U^xa - a't + »(x',z), (4-19) 

and           x' = k^xa -ut (4.20) 

The averaged Lagrangian x'  is defined as 

£   E o- Si" L'dx' (4.21) 

Use of L' from (4.18) and choosing a particular value of t to make the 
phase integral equivalent to an integral over the wavelength, one 
obtains: 

t    = pd(Y' - JUX) " T' - V - i  Pg[(d-h)
2-h2] 

(4.22) 

Compare t   = pd(T - \  UaUa)+ T - V - £ Pg[(d-h)
2-h2], 

(4.23) 

obtained by Crapper (1979) in Rl. The discrepancy in sign of the 
kinetic energy term is removed if expressions for Y>Y' are found. 
The Bernoulli equation for the whole flow is evaluated at z = - h, 
averaged and then (3.20) is used in the R2 expression to obtain: 

Y- - g(d-h) +^ + ^X |z=_h +|Tl        (424) 

T = g(d-h) + ^!a. + ikstMaj _ (4.25) 
2    2 

On inserting these expressions into (4.22) and (4.23) respectively, 
the form of the averaged Lagrangians £.'  and £ is identical: 
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= P^lz.-h*?^ ~h (4'26) 

The averaged Lagrangian can be used to obtain a set of conservation 
equations for the wave/current interaction. These are the mass 
conservation equation (identical to (4.12)), consistency conditions 
replacing the momentum equations and the wave action equation which 
replaces the energy equation. (See Peregrine (1976)). This completes 
the analysis of the conservation equations in R2 and shows their 
relative simplicity compared to the more commonly used equations 
derived in Rl. 

APPLICATIONS OF THE INTEGRAL PROPERTIES TO VOCOIDAL WAVE THEORY 

Swart and Loubser (1978, 1979a,b) developed the Vocoidal gravity wave 
theory in an attempt to provide a theory that was relatively simple to 
use yet accurate. Swart et al (1979) found that Vocoidal theory 
matched 600 experimental data sets better than twelve other commonly 
used wave theories. (Cokelet's theory was not considered due to its 
complexity). Two rather unusual features of Vocoidal theory are that 
it is defined in R2 and that the orbital velocity field contains a 
small amount of rotation. The integral properties (3.4) - (3.8) have 
been defined for Vocoidal theory, but not the exact relations between 
them and the wave/current results above. These relations and results 
are valid only for irrotational wave motion. In this section, the 
amount of rotation in Vocoidal theory is checked by investigating the 
vertical dependence of TT" since Tf" is independent of depth for an 
irrotational motion. This is shown by considering 3u'. 

3z 

3U 
3Z       "      3ZLA 

ri/Vdx] 

l
xtff«* 

Irrotationality •*   f^-   =   f^ 
3Z 3X 

3U' 
3Z 

-    =     W1(X)   -  w'(o) 

= o by periodicity of w1 (5.1) 

Numerical integration of u' at various depths below the wave trough 
for Vocoidal waves of various steepnesses in a variety of water depths 
indicates that the theory is virtually irrotational both for low waves 
in deep water, where Vocoidal theory tends to Airy theory,and for high 
waves in shallow water, where the Vocoidal wave is virtually a 
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solitary wave. For situations in between these extremes, the 
rotation causes IP'tz) to vary considerably with z. Two typical 
results are shown below in Table 1 for a wave of period 4,0 seconds in 
1.0 m water depth. (The low wave/deep water equivalence of Vocoidal 
and Airy waves is not shown). The parameter Zrshows the relative 
depth under the wave trough at which ^"(z) has been calculated; Zr = o 
at the bottom and Zr = 1 at the trough. H is the wave height (crest 
to trough). 

Table 1: Mean horizontal velocity l?"(z) at various depths 

H(m) Zr u'(z) (m/s) 

0,20                  1,0 - 0,006 

0,9 - 0,009 

0,8 - 0,012 

0,7 - 0,014 

0,6 - 0,016 

0,5 - 0,018 

0,4 - 0,020 

0,3 - 0,021 

0.2 - 0,022 

0,1 - 0,022 

0,0 - 0,022 

1,40 1,0 - 0,522 

0,9 - 0,530 

0,8 - 0,536 

0,7 - 0,542 

0,6 - 0,547 

0,5 - 0,551 

0,4 - 0,554 

0,3 - 0,557 

0,2 - 0,559 

0,1 - 0,560 
0,0 - 0,560 

Because of the rotation present in the theory, the exact relations 
(3.21), (3,22), (3.24) are unlikely to be obeyed accurately. 
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Numerical integration of the appropriate Vocoidal expressions on the 
right hand side of (3.21,2,4) and comparison with the Vocoidal values 
for 2T1, S^, f7' respectively shows that there is good agreement in 
deep water but divergences of up to 50% elsewhere. 

CONCLUSIONS 

Although the existence of the two reference frames Rl and R2 have long 
been known, (see Stokes 1847) there has been little use made of R2. 
In this paper, some advantages of R2 are demonstrated, namely that the 
exact relations between the integral properties are as simple or 
simpler in form than those in Rl and that the equations for the inter- 
action of finite amplitude waves with slowly varying currents in water 
of slowly varying depth are considerably simplified. Transformations 
from Rl to R2 are also given to facilitate the use in R2 of a wave 
theory originally defined in Rl. 

Vocoidal theory is defined in R2 from the outset and could easily be 
used in the wave/current interaction equations presented here if it 
were not for the presence of a small amount of rotation. This 
rotation is investigated via the mass horizontal velocity below the 
trough and it is found that the rotation is small for deep water 
waves of small height and for steep shallow water waves. 

The presence of rotation is also reflected in the inaccuracies found 
when the exact relations ( 3.21, 2, 4) are tested for Vocoidal theory. 

A further test for rotation that would be of interest would be that 
proposed by Truesdell (see Serrin, 1959 - section 27) who defines the 
following parameter a  as a measure of rotation: 

(6.1) 

where oir is the magnitude of the angular velocity. Dij are the com- 
ponents (xz plane) of the deformation tensor 

Di^Hf£+!ff) (6.2) 

For irrotational motion, a  = o and for rigid rotation a  = °>. Serrin 
uses a <  10% as an indicator of the presence of significant rotation. 
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