
CHAPTER THIRTY SIX 

STATISTICAL PROPERTIES OF SHORT-TERM OVERTOPPING 

* ** 
Akira Kimura  and Akira Seyama 

1. INTRODUCTION 

It has been recognized recently that large waves tend to 
form a group in random sea waves. Overtopping tends to occur 
particularly when a group of high waves attacks a sea wall. 
If the capacity of a storage reservoir inside the sea wall 
is not sufficiently large enough to store a total amount of 
overtopping brought about by a single group of consecutive 
high waves, and if a drainage facility is not large enough 
to pump out sufficient water from the storage reservoir 
before the next overtopping starts, there is a danger of 
flooding inside the sea wall. Hence, storage and drainage 
facilities should be planned to be able to cope with the 
total amount of overtopping produced by a single group of 
high waves which overtop the sea wall consecutively. The 
term "short-term overtopping" referred in this study is that 
caused by a single group of high waves (see Fig.l). This 
study aims to clarify the following points: 

(1) the statistical properties of the amount of short-term 
overtopping, 

(2) the method to evaluate a security factor inside a sea 
wall against flooding by overtopping and an extension of 
the theory to the short-term overtopping from a compara- 
tively long sea wall. 

2. PROBABILITY DISTRIBUTION OF SHORT-TERM OVERTOPPING 

Short-term overtopping from a vertical (steep) sea wall 
located off a breaking zone is investigated in this paper. 
Following three assumptions are made to introduce statis- 
tical properties of short-term overtopping amount from a sea 
wall: 

(1) characteristics of an overtopping of zero-up-crossing 
wave from a sea wall can be approximated by a existing 
theory for periodic wave, 
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Fig.l  Explanation of the short-term 
overtopping and schematic 
illustration of the sea wall, 
storage reservoir and drainage pump 

(2) characteristic of an overtopping is not affected by 
neighboring waves but can be evaluated only by 
properties of an individual wave, 

(3) statistical distribution of wave height can be 
approximated as the Rayleigh distribution. 

Beside above assumptions, wave period of overtopping waves 
are assumed to be constant, since high waves in random sea 
tend to have a constant wave period as recent studies on the 
joint probability distribution of wave height and period 

have pointed out ' '   ' . ,-*. 
The overtopping equation by Kikkawa et al. ' was applied in 
this study. They gave a simple overtopping equation in terms 
of a wave height, period and properties of a sea wall as 
follows. 

q'/TH/2gH"= 2/15.m0k
3/2(l-Z/kH)5/2 

(1) 

in which q1: overtopping amount of a wave from a unit length 
of a sea wall, H: incident wave height just outside a sea 
wall, T: wave period, Z: sea wall height, m^k: constants 

which characterize a shape and location of a sea wall (for a 
vertical sea wall located off a breaking zone, the value of 

m„ = 0.5, k=0.6 are recommended by Kikkawa et al. •* , g: gravi- 

tational acceleration. From eq.(1) an overtopping amount of 
the mean wave (H,T) in case of Z=0 is given by 
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q  =   /87lS.m0k3/2g1/2tH3/2 

q'   in  eq.(l)   is  normalized with q  to  yield 

q'/q t^'hl-^12 

,4) 

(2) 

(3) 

in which t=T/f, h=H/fi and z=Z/kH. 
Analyzing the results presented by Goda't-' , it appears that 
wave periods of high waves tend to distribute around 1.1 
times of the mean wave period, t is put equal to 1.1 in this 
study. Thus a normalized overtopping amount is given only in 
terms of h when the properties of the sea wall are given. An 
amount of a short-term overtopping brought about by n high 

which  overtop  the   sea  wall waves   (h,,h? ,h ) 

consecutively is determined as 

% I     q(h ) 
i-1 (4) 

in which q(h.) (i=l,2,...,n) is given by eq.(3). 

If the above-mentioned n wave heights are classified into 
following ranks 

rank < h. < z 
I 

< h. < z+Ah 
l - 

z+(j-2)Ah < hj < z+Cj-l)Ah 

(5) 

and if these n waves belong to the ranks j, , j 2» ••• »J 

respectively and since the time series of zero-up-crossing 
wave height has close properties to those of the Markov 

chain ' ,   the probability that they appear in this order is 
given as 

p(jl,j2, ... ,jn) = PnVili2   •••   Pj(n-l)jn 
(6) 

in which p^ 

ji, P. 

. probability that wave h. belongs to the rank 
Jiiifi+11 fi=1>2>••••): probability that consecutive two 

waves belong to the rank ji and j(i+l)  in this order 
respectively and so on. These probabilities are given as 

follows in this study •' . 
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rz+(ji-l)Ah (1-> 
p       = P(h)dh ln 

J1        Jz+(ji-2)Ah 

and 

rz+(ji-l)Ah    rz+[j (i+l)-l]Ah 
P(h     h   )dh  dh 

•lz+(jl-2)Ah  -iz+Ij (i+l)-2]Ah 
Pj^(i+1)   " fz+Cji-l)Ah (8) 

P(h)dh 
Jz+(ji-2)Ah 

from the third assumption, P(h) and P(h,,h2) are given as ' 

P(h)   =  irh/2.exp(-irh2/4) (9) 

P(hi;h2)   =  h1h2.I0[h1h2p/A].eXp[-Ch^h2)/7rA]/A (1Q) 

and 
?       2 

A  =   4/ir   -   P 

in which I_: modified Bessel function of order 0,  p : the 

correlation parameter which has the following relation with 
the correlation coefficient of the consecutive two wave 

heights1^'6) . 

Yh = {E(TTp/2)-(l/2)(l-Tr2p2/4)K(>p/2)-Tr/4}/Cl-iT/4) 

in which y, : correlation coefficient of consecutive wave 

heights, K and E: complete elliptic integrals of the 1st and 
2nd kinds. When Ah in eq.(5) is sufficiently small, eqs.(7) 

and (8) can be replaced by eqs.(7)' and (8)' •* . 
2 

p..=  iTh . / 2 • exp (- irh. / 4 ] dh' pjx i i (7)- 

and 

Pjljd+l)   =   2h1+1/,A.I0(h.h.+lP/A) 

•exp[-(h2 + h2+1)/TrA + Trh2/4]dh W 

The probability that a short-term overtopping amount becomes 
qn, when the above mentioned n waves overtop consecutively 
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in  this   order   from  a  unit   length  of  the   sea  wall,   is   given 
as 

P1(q0)dq p . ,p. ......   p.,     ,..   dh., dh „. . . dh 
*jlr;jlj2 Fj(n-l)jn      12 n 

where D is the region which is determined as 

n 
D = q0 < I qCV < q0

+dq 
i = l 

(12) 

(13) 

D is schematically shown in Fig.2 when n=2 for example. 

h2 

^^^^/l  q(hi|t)  =  q0+c 

I 

i        .£-,q(h±|t) = q0 
!                  1=1                                                    r. 

0   z hi 

Fig.2  Region D (hatched area) 

Region D (hatched area) the boundaries of which are given by 
the equations 

I 
1=1 

q(h±|t) = qo 

2 

I 
1=1 

q(h.|t) -% + dq 

hl 
> z h2> z 

in which z: normalized sea wall height (eq.3). No over- 
topping takes place when an incident wave height is not 
larger than z. Since the region D and the probabilities p--, 

and p...f. ,-. in eq. (12) have complex forms, this equation 

is integrated numerically in this study. In such a case, the 
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more number of waves in a high wave group increases the 
longer becomes the computing time. But if a sea wall height 
is not so low, the expected run of waves in the longest high 
wave group which may appear during a single storm period is 

not so large. From the theory of a run of waves ' , the 
probability distribution of a run of high waves is given as 

?2{l)   =  p^"1 (l-p22) (14) 

where p?7- probability that consecutive two waves exceed the 

threshold wave height h*, which is given by 

CO    f CO 

P(h1,h2)dh1dh2 

P22 =-^—^ " ^ 
P(h)dh 

P(h) and P(h, ,h?) are given by eqs.(9) and (10) respec- 

tively. Therefor, the probability that a run of high waves 
does not exceed £*-l is 

£A-l 

P3CVD " I  P221 C1"P22) = Cl-P22
_1) (16) 

Among N sets of independent high wave runs, the probability 

that no run exceeds £*-l is given by (l-p22 *  ) • Therefor 

the probability that at least one run exceeds £*-l is given 

by l-(l-p,2 * ) . In the same manner, the probability that 

at least one run exceeds I^  is l-fl-p..-^*) . Probability 

distribution of the maximum run among N sets of high wave 

runs becomes I     is given as ; 

p4«*) = a-P2pN - ci-pfr1)" 
= exp[N.£n(l-p2*)] - exp[N.£n(l-p2*

-1)]     (17) 

in which In  : natural logarithms. 
8 *) Its expectation is ' 
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? (-Dn+1 NCn (18) 
n-1   l-p22 

= -[ZnQW   + 0.5772] / tn(p22) + (2p22+l)/(3+3p22) 

Fig. 3 shows probability distribution o£ the maximum run 
among 1000 sets of high wave runs ,£or example, for several 
threshold wave heights, (the value of P in eqs.(10) and 
(8)' is about 0.25 in case of the Pierson-Moskowitz type 
random waves). Solid lines in Fig.4 show the relation 
between E(£* )    and N when the same value of p and z as 

Fig.3 are used. From this figure, the expected maximum run 
during a single storm is evaluated as follows. 
The mean interval of a run of high waves (mean total run) is 

6) given as ' 

J l       +   1 

° =T^T Tp~~ (19) 
J- Pxl    J- P22 

where 

0 
jh* P(h1,h2)dh1dh2 

Pll =       ?K 
P(h)dh 

(20) 

0 

p22 is given by eq.(15). 

The total number of waves which arrive during a single storm 
of duration I  is N=I /(£QT)  (  £fi : mean total run). 

Substituting this value into eq.(18), the expected value of 
the longest run can be evaluated. For example, in case of hA 
=hl/10^=Hl/10^H=1-80-) ' T=10s and I

e
=24 hours in the Pierson- 

Moskowitz type random waves, N is about 860. E( I.  )    can * 'max 
be calculated by eq. (18) or read off from Fig.4 as about 
4.3. In case of the non-dimensional sea wall height z=5, 
E( £*)max is about 2.5. For the practical use these values 

should be raised to the next whole number, n in eq. (12) for 
above examples are 5 and 3. 
Fig. 5 shows an example of a cumulative distribution of the 
short-term overtopping amount qQ which is given by 
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Fig.3   Probability distribution of the maximum run 
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Fig.4   Relation of E(l*) and N 
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Fig.S  Cumulative distribution of the short- 
term overtopping amount q0 (z=3, n=6) 

Cl ' P1(q)dq (21) 

when z = 3.0, n=6 are used for the Pierson-Moskowitz type 
random waves. 

The security factor C, against a temporal flooding by a 

single short-term overtopping inside the sea wall can be 
read off from this Fig. 5 in terms of a capacity of the 
storage reservoir qc> For example, when a normalized 

capacity of the reservoir (qc/q) is 0.3, C±   is about 0.998 

in this case (dotted line in Fig.5). 

3. SECURITY FACTOR AGAINST FLOODING 

The total run of high waves is determined by a sum of a pair 
of one high wave group and the next one low wave group. 
Therefor if an amount of a short-term overtopping qn brought 

about by a single high wave group is pumped out until the 
next overtopping starts (within a total run), no flooding 
inside the sea wall takes place. When a _drainage pump the 
capacity of which per 1 wave period (LIT) equals q /r, is 

facilitated inside the sea wall (it takes r times of the 
wave period to pump out water of volume q  (Fig.l) from the 

reservoir) and if the next total run is longer than r+1, no 
overtopping takes place. 
Since the probability distribution of the total run is eiven 
a=6) 

(l-P^) (1-P22) 
T'2 2 w lpll P99 ) 

(22) 
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The probability that a total run exceeds r (£Q > r+1 ) is 
given as 

C,(r) =   I P (*„) 
2 l

0
=r+1 

(Pn-l)P22 - (P22-l)Pu 

Pll " P22 

(23) 

Since the expected maximum run of high wave of which length 
equals n is being discussed now, the total run is always 
longer than n  . Therefor 

C2(r) = 1 ( r < n) 
(24) 

Finally, the security factor during a single storm inside 
the  sea wall  is  given by  C,(q )C~(r)  when  the  given 

capacities of the storage reservoir and drainage pump per 1 
wave period are q and q /r, respectively. Fig. 6 shows 

examples of the security factor C,C7 when the given q  can 

cope with 99% of short-term overtoppings (C,=0.99) among 

entire short-term overtoppings brought about by high wave 
groups of length 6 (Fig.5). The parameter in the figure is 
the normalized sea wall height z. 
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Fig.6   Security factor in the case drainage 
pump is facilitated (C,=0.99) 
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4. SPATIAL DISTRIBUTION OF WAVE HEIGHTS 

Short-crestedness of random waves has to be taken into 
account to cope with the short-term overtopping from a 
comparatively long sea wall. In this study, such a long sea 
wall is divided into sections in which the water surface 
profile along the sea wall can be assumed to be uniform 
within the individual sections but independent of those of 
other sections. Overall security inside the sea wall is 
derived from the synthesis of the securities of all 
sections. In this respect, a simultaneous spatial 
correlation coefficient of wave profile along the sea wall 
may be a good property to determine the above mentioned 
range along the sea wall. 
Short crested random wave profile is usually expressed 

as 3), 

f 
n(x,y,t) = I      I  /2S(f.)G(f.,e )AfA6 

i=l j=l     113 

• cos (k. cos6 .x  +   k.sine.y   -   2irf.t   +   £..) 
i j i 3 i iJ 

(25) 

in which mf, m  : numbers of partitions of the energy 
1    6 

spectrum S(f) and directional function G(f,9 ), Af, AG : 
interval of S(f) and G(f,e), k. and 6.: wave number and 

direction of propagation, e^: initial phase. Directional 

91 function used is of Mitsuyasu type ' .     S  =50 at non- ' 'F      max 
dimensional water depth d/L, ,, = 0.1. Fully developed wind 

wave directional spectra usually take around this value of 

Smax in this water depth range •' . ( L,»3: significant wave 
length), significant wave period is 5s and main direction of 
wave propagation is normal to the sea wall. 
Fig.7 shows an example of a simultaneous spatial correlation 
coefficient along the infinitely long straight sea wall when 
a bottom slope is uniform and x-axis is set on the sea wall, 
y-axis is normal to the sea wall. 

R(xQ,y0) = j   n(x,y,t)n(x+x0,y+y0,t)dt ^6) 

This correlation coefficient R was approximated with the 
following function R' (dotted line in Fig.7) in this study. 

R*(x  ) K ± Kl 
I  0 ;        otherwise (27) 

where      L        was      selected     so      that      the      integration     of 
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R(x0)-R'(x0) from xQ = 0 to the point where R(xQ) first takes 

on 0, becomes 0. The long sea wall is divided into sections, 
the interval of which is 2L . If there are topographical 

configurations on the sea bottom, the local change of L  due 

to the refraction, diffraction and shoaling ' should be 
changed locally. To cope with the spatial changes in wave 
height and L  due to sea bottom configuration, probability 

distribution P1 (or cumulative distribution C, : Fig.5) for 

individual sections should be transformed so that they are 
expressed in terms of the real (not normalized) amount of 
short-term overtopping by multiplying 2L q to the horizontal 

axis at individual sections. 

Fig.7   Spatial correlation coefficient of 
wave profile along the sea wall 
(Smax=50> d/L1/3 = 0.1, T^-Ss) 

5. SECURITY FACTOR INSIDE THE COMPARATIVELY LONG SEA WALL 
AGAINST FLOODING 

In case the sea wall is divided into M independent sections 
and simultaneous amount of short-term overtoppings brought 
about by a single group of n consecutive waves from 
individual sections are q., q_, ... , q  respectively, the 

probability that the overall amount of a short-term 
overtopping becomes Q is 

P6(Q) = Pll(Cl*l)P12^*2) ••• 

'PlMCq*M)dq*ldcl*2 ••• dcl 
(28) 



544 COASTAL ENGINEERING-1984 

in which Pii(l*i) (i=]»2> ••• »M) : probability that an 

amount of the short-term overtopping at the section i 
becomes q*., S: the region where 

M 
S  :    Q < I  qAi < Q+dQ 

i = l 

Since P, . are introduced numerically in this study, eq.(28) 

is rewritten as 

iQ   1Q1   
iQM-2 

P6(Q) =11 I P^fiiAq) ••• 
V° V°  Vl = ° (29) 

•PKM-I^M-I^^IMCV^ 

in which 

m 

(m=l,2, ... ,M-1) 

When an amount of a single overall short-term overtopping Q 
is less than the capacity of the storage reservoir Q„, no 

flooding inside  the  long  sea wall  takes  place.  This 
probability is given by 

P11(i1Aq)---P1MCiMAq)      
C30) 

P7(QQ) = Prob. [Q < Q0] 

1Q 

=  I 
1,-0 

iQ      iQ Vl   VM-1 

I   ••• I 

in which 

iQ Aq = Q0 40 

When the drainage pump the capacity of which per 1 wave 
period is Q  (it takes r  times of one wave period to pump 

out water of the volume of Q„ from the reservoir : r =Qn/Q ) 

is facilitated, no overtopping takes place as far as the 
simultaneous total runs at all sections are longer than 
r +1. Since the probability that a total run exceeds r is 

given by eq.(23), the simultaneous probability that total 
runs at all sections exceed r  is given as 
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1 = 1 
Suffix    i    referes    to    the    properties    of    the     section     i. 
Totally,   the  security factor against  flooding  inside  the  sea 
wall  becomes 

MWru> (32) 

Supplemental security can be incorporated into eq.(32) even 
in the case a certain amount of water is left unpumped from 
the reservoir. Because if the total amount of unpumped water 
from the reservoir and that brought about by the next 
short-term overtopping do not exceed Qn, no flooding takes 

place, When the total run of the first high wave group 
becomes longer than r -j at every section, an amount of jQ 

is left unpumped from the reservoir at most. And in case the 
next short-term overtopping is Q', to pump out the total 
amount of Q'+jQ within the second total run, the second 

total run should exceed j+£'+l (£'=Q'/Q )• Therefor the 

security against flooding in this case becomes 

MViWVJ) (33) 
The maximum possible amount carried over to the second total 
run is Q„-(n+l)Q  because the minimum total run is n+1 in 

the present discussion. The security against flooding when a 
single carry-over of water to the next total run is 
permitted, is given as 

T P7«VJ WVJ) (34) 
i = 0 
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6. DISCUSSION 

The overtopping equation by Kikkawa et al ' . was used in 
this study. But to the extent which the three assumptions 
made in section 2 holds, other overtopping equations which 
are suitable for various situations considered may be 
utilized. 

The method to divide the long sea wall into independent 
sections used in this study is found not always appropriate 
one.  Therefor  a  more  effective  method  needs  to  be 

introduced ' . 

Some supplemental security factor was discussed in the last 
part of the section S. Further supplements are possible, 
however, in the same way by allowing carry overs of unpumped 
amounts from the reservoir to occur more than twice. Needed 
supplements should be determined in accordance with the 
degree of accuracy of the assumptions made for various 
situations considered. 
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