
CHAPTER FORTY SEVEN 

WAVE GROUPS IN THE FREQUENCY AND TIME DOMAINS 

Rodney J. Sobey1, M.ASCE and W. Wayne Read2 

ABSTRACT. The identification of wave groups in wave records 
is sought in terms of the classical linear analysis tech- 
niques in the frequency and time domains. Unwrapping and 
detrending of the phase spectrum identifies apparent order 
where none is assumed in the Gaussian random wave model. 
Similarly unexpected order is observed in the tail of the 
correlogram of both the wave record and the Rice envelope 
function. These aspects are strongly suggestive of wave 
grouping. 

INTRODUCTION 

Sophisticated design and analysis in coastal and ocean 
engineering requires a detailed description of incident sea 
conditions. Wave groups, a finite run of higher than normal 
waves, are frequently observed at sea and in wave records. 
They have an important impact on a wide range of coastal and 
offshore activities and some measure of wave groupiness 
needs to be included among the standard analysis and syn- 
thesis techniques routinely adopted by data collection 
authorities and coastal and ocean design groups. Despite 
the growing literature, the true nature and extent of wave 
grouping remains unresolved. There is sufficient evidence 
that wave grouping exists but insufficient evidence to con- 
firm the nature and extent of these groups. Neither theo- 
retical investigations nor numerical simulations can resolve 
these issues. The information must be sought initially from 
field data. Considerable recent research effort has 
focussed on the development of new analysis techniques to 
accommodate wave grouping. In contrast, the present paper 
will concentrate on linear wave theory and classical time 
series analysis techniques in the frequency and time 
domains. There is evidence to suggest that wave grouping is 
reasonably well described by these classical linear 
techniques. 
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DATA SERIES FOR ANALYSIS 

The basis of the present research is an extensive data 
base of deep water wave records assembled from sites off the 
eastern, western and southern coastlines of Australia. 
These are good quality records in computer compatible form. 
Data set A, obtained from the Maritime Services Board of New 
South Wales, comprises about fourteen hundred twenty-minute 
records off Newcastle and Botany Bay under generally winter 
storm conditions in the Tasman Sea. Data set B, obtained 
from Woodside Offshore Petroleum, comprises about three 
hundred twenty-minute records during six separate hurricanes 
on the North West Shelf. Data set C was obtained through 
Esso Australia for a site on the continental shelf of the 
Great Australian Bight. This region is exposed to Southern 
Ocean swell, recognized (Chelton, et al., 1981) as the most 
extreme wave climate in any of the world's oceans and the 
data set is an almost continuous record for several days of 
big, long-period swell. Together, these three data sets 
provide excellent samples of the common wave climate ex- 
tremes. 

Although the typical 20-minute wave record is the basic 
data series, considerable attention has recently been 
focussed on the data series of individual wave heights in 
the record, identified by the zero up-crossing method. Sta- 
tistical parameters commonly extracted are Rj,, the corre- 
lation coefficient between consecutive wave heights, and ji 
and j2, respectively the mean number of waves in a group and 
the mean number of waves between the start of one group and 
the start of the next group. Theoretical estimates consis- 
tent with the Gaussian random wave model have been developed 
by Goda (1970) for ^ and j2, and Arhan and Ezraty (1978) 
for RH. Field observations for j-^ (Goda 1976, Su et al. 
1982) and RTJ (Arhan and Ezraty, Su et al.) are consistently 
above the theoretical values, although there is qualitative 
agreement in the trends. It is apparent that wave groups 
are rather longer and more coherent than predicted by the 
Gaussian random wave model. Battjes (1984) has, however, 
obtained adequate agreement between field records and a 
theory that is based on a finite lag one auto-correlation 
between consecutive wave heights. 

As a sea state description, this data series of indivi- 
dual waves has considerable value, although the same cannot 
be said of its potential in the development of an appro- 
priate sea state model. A predictive model is ultimately 
sought, in which the reversibility of analysis and synthesis 
is a required property. The data series of individual waves 
focusses attention on amplitude relationships and considers 
time relationships only in an averaged sense. 

Much of the facility of the individual wave approach is 
implicit in the complex wave envelope A(t) introduced by 
Rice (1944, 1945). A carrier frequency, fQ, typically the 
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peak frequency fp, is identified and removed from the record 
n(t), such that 

n(t) = Real[A(t) ei27rfot] (1) 

In principle, the complex envelope function is the natural 
vehicle for wave group studies. No information is lost from 
the original record and attention is focussed on the enve- 
lope modulations. For typically narrow-banded sea states, 
the Rice envelope function |A(t) | is a good approximation to 
the wave envelope and the RH, j-^ and J2 statistics are 
readily extracted. 

FREQUENCY DOMAIN ANALYSIS OF DATA SERIES 

The standard statistical summary in the frequency domain 
is the variance spectrum E(f) of the water surface time 
history r]{t). The common model of an irregular sea state, 
the Gaussian random wave model, was introduced by Rice 
(1944, 1945) as a model of random noise. The water surface 
time history is represented as the superposition of many 
linear waves of amplitude an = [2E(fn)Af] 

1'2 and random 
phase *(fn): 

ri(t) = I an cos(2irfn + $n) (2) 
n 

The phase angle is randomly distributed over the range 
(-IT,it). This model has been the basis for analysis and 
design in coastal and ocean engineering for several decades. 

There is a growing literature of detractors and defen- 
ders of the Gaussian random wave model. Rye (1983) and Goda 
(1983) argue that it is a sufficient description of wave 
grouping. Mollo-Christensen and Ramamonjiarisoa (1978), 
Hamilton et al. (1979) and Funke and Mansard (1980) propose 
supplementation to include wave grouping. Sobey and Colman 
(1982) have investigated a theoretical alternative, the 
nonlinear Schroedinger equation and the scattering 
transform. The field evidence is inconclusive, although the 
balance remains in favor of the Gaussian random wave model. 

The intermediate step in the estimation of the variance 
spectrum is the complex Fourier transform F(a>) of the wave 
record n(t), defined as 

CO 

F(o)) = f n(t) e-iut dt (3) 

F(u) is a complex function of the angular frequency u>= 2irf, 
and may be represented as 
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(CO) F(a>)   =   |F(u) le1*^' (4) 

where |F(u)| and $(co) are respectively the amplitude and 
phase spectrums. The Gaussian random wave model assumes the 
phase spectrum to be completely random but Funke and Mansard 
(1981) have questioned whether it may indeed contain some 
useful information. Two problems are identified in inter- 
pretation of the phase spectrum, respectively phase unwrap- 
ping and phase trend removal, which may contribute to the 
apparently random character of computed phase spectra. 
These aspects will be considered separately. 

PHASE UNWRAPPING 

Phase unwrapping refers to the modulo 2 operation on 
phase angles. The phase angle returned by the Fast Fourier 
Transform (FFT) algorithm is in the range -ir to ir and is 
termed the principal phase <f> (w). Any principal phase angle 
may in fact be $p (co) + 2mr, where n is any signed integer, 
without changing either the complex Fourier transform or the 
variance spectrum. The "true" phase is obtained by "unwrap- 
ping" the principal phase through addition or subtraction of 
multiples of 2 ; this phase is called the unwrapped phase, 
$„ (w). The subscript u has been dropped but is implied in 
the subsequent discussion. 

It remains to determine the signed integer n. The 
Schafer algorithm (Oppenheim and Schafer, 1975) assumes the 
unwrapped phase to be a continuous function of u, the only 
discontinuities being those introduced by the modulo 2ir 
operation in determining the principal phase. A disconti- 
nuity is defined to exist when the change in principal phase 
between adjacent values exceeds a given threshold. This 
process, however, is inconclusive and does not guarantee a 
unique result, as demonstrated by Tribolet (1977). 

A unique result, however, does seem to be possible as 
the slope of phase spectrum is uniquely defined at all 
frequencies and uninfluenced by the modulo 2TT operation on 
the principal phase (Oppenheim and Schafer, 1975). Taking 
the natural logarithm of both sides of Eq. 4 and differen- 
tiating with respect to to gives 

w  •*—      =      -a—      In   F +1-3— (5) F du cico ii' clco * 

from which 

^    =       *•«*   <  F %>  > <«> 
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Similarly   differentiating   Eq.    3   with   respect to to gives 
dF/dto  as 

dF                       I     .    ...   -iut   ,, ,-,. 
s    =    -  i   J    tn(t)e          dt (7) 

where the integral is recognized as the Fourier transform of 
tn(t). The slope of the phase spectrum d$/duis thus 
uniquely defined, at least in theory. Integration of Eq. 6 
should yield the unwrapped phase spectrum but there are a 
number of problems in practice. 

The first is a familiar one in discrete frequency domain 
analysis. The d$/du estimates from the discrete Fourier 
transform of tn(t) are raw estimates and their erratic 
nature significantly complicates the numerical integration. 
Some theoretical assistance is available in that the princi- 
pal phase prediction should be identical with that available 
from the Fourier transform of n(t) , but these discrete 
estimates are also raw estimates; Advantage can be taken of 
both estimates. The second problem is the specification of 
the phase and the phase gradient at zero or near zero magni- 
tude points for the Fourier transform. This problem arises 
in the specification of the initial conditions for numerical 
integration of Eq. 6 and at any other frequency where |F(to) | 
~ 0 and 1/|F(W)| ~ *> in Eq. 6, a situation that is not 
uncommon given raw estimates of F(to). 

Tribolet (1977) considers the former problem in the 
context of the complex cepstrum, proposing an algorithm 
based on adaptive stepsize integration using the trapezoidal 
rule. If the difference between the unwrapped phase esti- 
mate and the principal phase estimate at each to is not 
sufficiently close to an integer multiple of 2TT, then the 
frequency interval Ato is continually halved until the speci- 
fied accuracy is achieved. The discrete Fourier transform 
is used to estimate the Fourier transform by interpolation 
at intermediate points between those on the FFT raster. The 
initial phase was assumed to be zero, without discussion. 
The coding for this algorithm has been published and initial 
experiments utilized this code. Results were rather erratic 
for wave records and it was apparent that detailed consid- 
eration of the singular or near-singular points was essen- 
tial. 

These singular points can be accommodated by classical 
limit theory. L'Hospital's rule confirms that the principal 
phase and the phase derivative both exist and are given by 
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F(k+1) 

Vu) = tan_1 -W~ (8) 
F

R 

p(k+2)_,(k+l)   _   p(k+l)_(k+2) 
d*  _      1 I R    I R 
^55       *+Z „(k+l)    (k+1) (k+l)_,(k+l) 

*R *R rI rI 

(9) 

where |F<k)(io)| = 0, j = 0,1, ... k and | F (k+1) (w) | ^ 0 and 
the bracketed superscripts represent differentiation with 
respect  to   ID: 

F(j)   +   t  F(j)   =     djF(M) 
R * doP 

These higher derivatives can be calculated in a similar 
manner to Eq. 7, from the discrete Fourier transforms of 
t^n(t) respectively. A further enhancement of the algorithm 
has been the adoption of Simpson's rule for numerical inte- 
gration. Fourth order Runge-Kutta integration was initially 
utilized but Simpson's rule is numerically equivalent and 
has some coding  advantages. 

PHASE TREND REMOVAL 

If the time origin of the record n(t) is shifted from t 
= 0 to t = tQ, the .Fourier transform of the origin-shifted 
record becomes F(a))ela) o. The amplitude spectrum and hence 
the variance spectrum is not changed but the phase spectrum 
is changed by the addition of a linear trend wt0 to 
$(a)) + wtQ. For an origin shift even as small as a few 
discrete record time steps At, this would impose a saw tooth 
variation on the principal phase, which potentially contri- 
butes to the random appearance of the principal phase spec- 
trum. Although any linear trend is accommodated by phase 
unwrapping, the question of the "true" phase spectrum again 
arises. Interpretation of the phase spectrum will certainly 
be facilitated by the removal of any non-physical in- 
fluences. 

Funke and Mansard (1981) observe that a phase spectrum 
including a linear trend component will approach +» as u 
becomes very large and suggest that the correct choice of 
time origin (and this choice is arbitrary) will have zero 
slope, d*/da> -> 0, as <D-> °°. This is a compelling argument 
but there are difficulties in implementation. The phase 
spectrum is known only as far as the Nyquist frequency 
WN = V^t and not to infinity. Also, energy levels beyond 
two to three times the peak frequency are very small for 
typical records and raw phase estimates are increasingly 
unreliable. 
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A reasonable compromise would be to take advantage of 
the phase estimates where they are expected to be most 
reliable, which is in the vicinity of the spectral peak. 
Accordingly the origin shift has been estimated from a 
least-squares curve fit of 

<Mw)   =   $(w =  0)   +     ait_ (10) 

to the raw, unwrapped phase spectrum, weighted by the raw 
variance  spectrum.      This  requires  minimizing   the  sum 

S(tQ)   =     I Etuj)    [$(Wi)   -   4>(co =   0)   -   Wit0]2 (11) 
i 

where the ^ are the FFT raster points. The trend u)tQ is 
then substracted from the unwrapped phase spectrum. A num- 
ber of variations on this approach and that suggested by 
Funke and Mansard (1981) were investigated but the Eq. 11 
approach appeared to be the most consistent. This is recog- 
nized,  however,   as a subjective  judgement. 

Figures 1 and 2 are typical results from the phase 
unwrapping and detrending algorithms, showing the raw but 
unwrapped and detrended phase spectrum together with the raw 
variance    spectrum. The    results     are    presented     non- 
dimensional ly in terms of the peak frequency fQ and trun- 
cated at 3f_ along the frequency axis. The oscillations in 
the tail of the phase spectrum are a computational effect in 
the phase unwrapping. A tolerance level must be set to 
define a near-singular point and to invoke the L'Hospital 
rule algorithm. These oscillations can be damped by appro- 
priate choice of  the tolerance  level. 

Similar results are consistently achieved, strongly 
indicating the existence of some coherent structure in the 
phase spectrum, against a background that has a distinctly 
random  character. 

TIME  DOMAIN  ANALYSIS   OF  WAVE  RECORD 

The standard statistical summary in the time domain is 
the correlogram R(T), which forms a Fourier transform pair 
with the variance spectrum E(f). In principle, both sum- 
maries describe the same information but from different 
perspectives. In practice, however, this equivalence be- 
comes confused. The FFT algorithm yields the raw variance 
spectrum (Figures 1 and 2) which is then subjected to fre- 
quency domain smoothing, but the nature and extent of that 
smoothing is an especially subjective operation. Variations 
from a visually smooth result are commonly regarded as noise 
and given little attention; it remains possible that these 
variations from the smooth and expected result in fact 
describe  wave  grouping.      This  possibility   is   indeed   sugges- 
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Fig. 1  Raw Variance and Unwrapped Phase Spectrum 
in Deep Water off Botany Bay, 5:20 hrs 
on 9 July 1981 

in 

f/f„ 

Fig. 2.  Raw Variance and Unwrapped Phase Spectrum 
in Deep Water off Botany Bay, 7:20 hrs 
on 9 July 1981 
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ted by the correlograms in Figures 3 and 4, corresponding to 
the same records as Figures 1 and 2, where T is the time lag 
and a the record variance. The time lag scale is non- 
dimensional ized by the peak frequency, as were the frequency 
domain results. If the phase spectrum is indeed random, the 
envelope of the correlogram should go asymptotically to zero 
in about five wave periods. This is not observed in Figures 
3 and 4 (solid line), where the dominant feature is the 
ordered tail. The correlogram is inherently smoothed in a 
reasonably unbiased manner and the ordered tail is strongly 
suggestive of wave groups. These are typical results for 
moderate sea states and were not specially selected for 
presentation. 

It remains posible that the oscillations in the correlo- 
gram tail are a computational effect. It is well known 
(Kendall and Stuart, 1966) that the correlogram for short 
series can be unreliable and may not damp out as rapidly as 
expected; as a rule of thumb, only the first twenty percent 
might be given any credence. Wave records are moderately 
long series, typically 2048 points over seventeen minutes. 
Figures 3 and 4 present the correlogram for non-dimensional 
lags fp up to twenty. This corresponds to approximately 
twenty waves, about one-fifth of a typical wave record of 
one hundred waves. Further Kendall and Stuart give the 95% 
confidence  limits of  the correlogram  for  a  random process  as 

CL  =  -1/N  +  2/(N)1/2 (12) 

where N is the number of points in the record. For N = 
2048, the 95% confidence limits are -0.00 + 0.04. The 
amplitude of the oscillations in the tail of Figures 3 and 4 
is of order 0.15, well outside the 95% confidence limits for 
a random process. This conclusion is not influenced by the 
adoption of the "unbiased estimator" for the autocorrela- 
tion, which uses the factor l/(N-k) in place of 1/N in the 
estimation of R(T= kAt). In this case both the correlogram 
tail and the confidence limits are scaled up by the factor 
N/(N-k) . 

TIME  DOMAIN  ANALYSIS   OF   RICE  ENVELOPE  FUNCTION 

In the initial discussion of data series for analysis 
it was observed that the complex envelope function A(t) 
defined by Eq. 1 appeared to be the natural vehicle for wave 
group analyses. A procedure for extracting the complex 
envelope function from the wave record is described by Sobey 
and Colman (1983). It involves the computation of the 
discrete Hilbert transform fi$t) from the wave record n(t) 
using the FFT and inverse FFT algorithms. Then follows the 
definition of  the pre-envelope function 

n(t)   +   i n (t)   =  Attje^o1 (13) 
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Fig. 3  Correlogram of Record and Rice Envelope Function 
in Deep Water off Botany Bay, 5:20 hrs 
on 9 July 1981 

Fig. 4  Correlogram of Record and Rice Envelope Function 
in Deep Water off Botany Bay, 7:20 hrs 
on 9 Julv 1981 
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where w0 = 2iff0 is the carrier frequency. The carrier fre- 
quency is identified as the peak frequency 2irfp and esti- 
mated as 

f     -     /fE°(f)df (14) 
P /Ed(f)df 

Multiplying both sides of Eq. 14 by exp(-iwQt) recovers the 
complex envelope function A(t). The Rice envelope is simply 
the modulus of A(t). 

Sample   computations   of   the  Rice  envelope   function   and 
comparison wit   Rice envelope is simply 
the modulus of  A(t). 

Sample computations of the Rice envelope function and 
comparison with the wave record confirm that it is indeed an 
excellent representation of the wave envelope. It is this 
property of the Rice envelope function that was used by Rice 
(1944, 1945) and later Longuet-Higgins (1952) to establish 
the Rayleign distribution as an excel lent approximation to 
the probability distribution for wave heights. In the con- 
text of wave grouping, the Rice envelope function very 
conveniently concentrates attention on the wave envlope 
and hence the wave groups. A similar identification of wave 
groups was the rationale for the definition of the SIWEH 
function by Funke and Mansard  (1980). 

The considerable attention recently given to the data 
series of individual wave heights might also be considered 
in the context of the Rice envelope function. Amplitude 
domain arguments led Rice and Longuet-Higgins to the Ray- 
leigh distribution. Time domain or correlogram arguments 
appear to lead to RH (the correlation coefficient between 
consecutive wave heights) and j2 (the average number of 
waves between the start of one wave group and the start of 
the next group). The correlogram of the Rice envelope 
function  is  shown   as   the  dashed   lines  on  Figures   3   and   4. 

The initial exponential decay is closely related to 
typical statistics extracted from the data series of indivi- 
dual  wave heights.     In particular RH  might be defined as 

RH =  R(xfp =  l)/a2 (15) 

and   J2   from   the   first   zero  crossing  of   the correlogram  as 

R(tfp =   1/2   j2)   =   0 (16) 

Alternately the zero-crossing frequency rather than the peak 
frequency could be used in these definitions. The differ- 
ence is typically small; the peak frequency has rather more 
dynamic   significance   while   the    zero-crossing    frequency   oc- 
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curs  naturally in  the  theory of  random  noise.      Note  that  R„ 
defined   in    terms   of    the    zero    crossing    frequency    is    the 
parameter   proposed   by   Battjes   (1984)    as   the   sole   spectral 
shape  parameter   determining   the   group   statistics. 

The long period persistence in the tail of the Rice 
envelope correlograms is  again suggestive of  wave grouping. 

CONCLUSIONS 

Evidence suggestive of wave grouping has been sought in 
the frequency and time domain. Ordered structures have been 
identified in the phase spectrum and in the tail of the 
correlogram, both for wave records and for the Rice envelope 
function. There is a reasonable expectation that wave 
grouping will be adequately described by these classical 
linear   techniques   of   time  series   analysis. 
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