CHAPTER 205

IRREGULAR WAVE TRANSFORMATION IN A BOUSSINESQ WAVE MODEL
H. -H. Priiser * / H. Schaper * / W. Zielke *

1. INTRODUCTION

Numerical wave models for shallow water waves are of parti-
cular importance for the calculation of the wave climate in
harbours and coastal areas. Especially nonlinear time
domain models, which are based on the Boussinesq-Wave-
Equations, may be helpful in the future for simulating the
interaction of currents with refraction, diffraction, re-
flection and for simulating shoaling of irregular waves in
natural areas; a potential which has not yet been fully

developed.

During the 1last ten years numerical models, based on these
equations, have been published; such as ABBOTT et. al. ,
HAUGUEL and SCHAPER / ZIELKE . Research on this topic is

currently being carried on.

Some efforts have been made to verify the capability of the
models to describe the various physical phenomena. However,
up to now, verification has been limited to regular waves.
The aim of this paper therefore is, f£o consider questions

concerning irregular, nonlinear waves
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A numerical model. based on the solution of the Boussinesaq
equations. was used to calculate the behaviour of wave spec-
tra and bichromatic waves in a one dimensional wave flume
with constant water depth or with mild slove. The &enera-
tion of long waves and the energy transfer between indivi-
dual frequency components in the numerical model was of
particular interest. Comparisons with analytical solutions

and hvdraulic measurements have been made

2. NUMERICAL MODEL

All computations have been done usin# the BousSsinesq wave
model described in detail bv SCHAPER / ZIELKE. 1984. Experi-
mental data from a hvdraulic wave flume were available.

Therefore the studv has been restricted ¢to the onedimen-

sional case. The basic eduations read:
2 3 2 3
Sp, & B e _ bh &) Dpy _Dh 6 b
5t T axRT) o9t % 2 &7 T 6 aezer )
6c 4 Sp -
5t * 3x =0
h =D + 7 : total water devnth D : mean water level
p : werticallyv integrated flux z ¢+ waterelevation
& acceleration due to fravitwv

Solitary and <cnoidal waves can be rexarded as special
solutions of the Boussinesd edquations. They have been used
in the initial stafe of model develonrment to investifate the
accuracv of the numerical solution for waves up to limiting
heiZht.

In short shallow water waves, the nonlinear amplitude-
dispersive terms on the left hand eide and the nonlinear

frequencv-dispersive terms on the right hand side are of the
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same order. It is therefore necessarv to include all these
terms into the computation. In the numerical model. the
Boussinesq eduations are solved with a third order correc-
ted. implicite finite difference method. using two time

levels and central differences.

A nonreflecting boundarv condition ig used at the left end

of the flume. instead of a model of the wave maker. There-
fore. the re-reflection of waves returning from the right
end of the channel is neglexted. The input waves can be

represented as a precribed time serie f(t,x=0). which have
been obtained from measurements in the flume. The unknown
values for the flux and water elevation. as the result of
incomin® and outf2oinX waves. can be calculated bv usin& the

following equation:
P - ¢ = -2¢c f(E)

o 1
with: c = 12h - p*/sh* wave velocitw

3. TRANSFORMATION OF PIERSON-MOSKOWITZ SPECTRA

3.1 Hydraulic_Test Prosgramme

Hydraulic measurements were taken bv Daemrich and G&tschen-
berg from the Franzius-Institute of the Universitv of
Hannover to verifv the numerical model. In a flume with =a
constant water debth of 0.5 m. some Pierson-Moskowitz spec-
tra were gZenerated bv the wave maker. The amplitudes have
been reduced bv a constant factor in order to avoid wave
breakin®, which does occur. if this deebp water spectrum is
used in shallow water. Several wave gaues were blaced
along the flume for measurin® the time series of the water
elevation. Table 71 disbplave the sienificant wave vparameter

of the test brofram.
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Peak-Period [ secl / Significant Wave-Height
Peak-Fredquency [ Hzl [ m]
1.5 / 0.6b6 0. 04 0. 06 0.08
3.0 / 0.333 0.04 0. 06 0.08
3.5 / 0,222 0. 04 0. 0b 0.08

Table 1: Test Profram
The water elevation. measured at the gfaufle nearest to the
wavemaker. is wused to feed the waves into the numerical

model at the left boundary

3.2 Range of Application

Boussinesq equations are long-wave-equations with additional
third order terms. They are able to describe wave phenomena
in shallow water and in intermediate depths but not in deebp
water. If one assumes a water depth of 0.5 m. then the deep
water waves are shorter than 1.0 m and have a
1.25 Hz.

expected. that the smaller the

corresponding

frequencyv of higher than Therefore it is to be

“"deep water" part of the

spectrum. the better the calculation of the wave spectra.

T =4.55s T = 3.0 sec T = 1.5 sec
P ee P P
E E —E "deep water"
E E E
max max max part
1 1.
la) 1b)
I [
| |
' |
——————t—— ety —
.00 1.00  2.00 .00 1.00  2.00 .00 1.00 2.00

frequency (Hz) frequency (Hz) frequency (Hz)

Figure 1: Normalized Pierson-Moskowitz Spectra
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Figure 1 displavs the normalized Pierson-Moskowitz spectra
of the hvdraulic test ©program, The deep water part of
spectrum 1c¢ is significant. thus the calculation cannot be
accurate in this case. And indeed. verification shows that
the Boussinesq wave model reproduces the time series of the
water elevation for the spectra 1Ta) and 1b) very well. but

worse for spectrum 1¢)

3.2 Calculation and Comparison

3.2.1 Pierson-Moskowitz Spectra in a Flume with even Bottom

and a mild Slope

3.2.7.17 Exvperimental Set-Up
For the hydraulic model. a 54.0 m long flume with even
bottom and a slope 1/30 at the right side was wused. Two

numerical models were created:

The first model was used for verification. The Boussinesq
wave model does not contain the possibilitv of simulating
breaking waves. which occur on the upper part of the slope.
Instead a nonreflecting boundary was applied at that point

of the slope. where the water depth was 0.2 m.

In the second model no slove is taken into account. There-
fore. there is a vossibilitv to extract the calculated slone

influence bv comparing£ these two numerical models.

The measured time series of the water elevation at gauge 1
is used as wave input for the numerical model. Figure 2

shows the complete experimental set-up.
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Figure 2: Experimental set-up / flume with slope

3.2.17.2 Results

Figure 3 displavs a comparision between measured and calcu-
lated time series at different saugfes for a Pierson-Mosko-
witz spectrum (peakperiod period = 3.sec. siZnificant wave
height = 0. 08m) . It can be seen that the numerical model
describes the water welevation with a high de&ree of simi-
laritv in the ranZe of horizontal bottom as well as on the

slope.
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Calculations with both numerical models (with and without a
slope) indicate. that the influence of reflection at the
mild slope is negligible for the chosen spectra.

===~ MEASURED
= CALCULATED
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Figure 31: Transformation of wave sbpectra

even bottom / slope. time domain
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A better intervpretation of the experimental and calculated
results is possible bv transforming£ the time series into the

frequency domain,
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Figure 4: Transformation of wave spectra

even bottom / slope. frequencv domain

In 1linear wave theorwv. the shape of the spectrum. g£enerated
at the wave maker. should not change along the flume if the
water depth is constant. However. comparing the amplitude
spectra at different locations {(see figure ). an energy
transfer between individuel frequency components and the
creation and increase of lower fredquencies. not included in
the original Pierson-Moskowitz spectrum. can be observed in

the hyvdraulic as well as in the numerical model
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At the slope the water depth decreases and the waves turn to
the typical cnoidal shape: The crests are higher and shor-
ter and the troughs are longer and less deep than would be

predicted for constant water depth
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Fifure 5: Slope influence calculated at fauge b.

Comparison

in time and fredquency domain
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The increase of the long wave components and the Sfeneration
of hiZher frequencies on the slope are results which can be
detected in the fredquency domain. Figure 5 displavs a com-
parison of the time series and amplitude spectra at Zaulke b,

calculated with and without a slope.

3.2,2 Pierson-Moskowitz Spectra Reflected at a HWall

HYDRAULIC AND NUMERICAL MODEL
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BOUNDARY
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Figure b: Experimental set-up

The test progf&ram was used to verifv the reflecting& boundary
condition at the wall and the capability of the numerical
model to calculate the nonlinear interaction of the initial
and reflected waves. Fig%ure b displayvs the experimental
set-up. figure 7 compares measured and calculated time
series of the water elevation at several Raufes for the same
spectrum used before. The distance between everv gaufe is
15. 0 m. Therefore. it 1s possible to mark in figure 7. the
front of the initial wave. as well as the first reflected
wave and the first re-reflected wave. Also the time of the
first reflection at the wall and the first re-reflection at
the wave maker has been marked. The numerical model is able

to describe the resulting wave climate very well. However a
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comparison between measurements and calculations is not

valid after the reflected wave has reached Zauge 1.

RE-REFLECTION

Ta mi
§ v.0s

0.00

3o0.0m

\ / \

GAUGE 3

\

TTa m
9 5o

\
GAUGE 4 X = 45.0m /

.38

£7a 1M
LI

\

f REFLECTION

——— AR AU SRh SUne S S S e ot T -y T o ses Tze
K 2 1.460 . .48 3.6 4.2¢ “.. 540 R -
n .62 1.23 L] TR rseey

«i0 1

-—~= MEASURED

~——  CALCULATED

Figure 7: Combarison between measured and calculated time
series of the water elevation in a flume with

total reflection at a wall
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The time series. measured in the hyvdraulic model at this
Zauge has been used as input data for the numerical model.
which has a non-reflectin& boundary at the wave maker. In
reality the measurements include the reflection from the
wave maker. This leads to significant differences after the

first instance of re-reflection., as can be seen in figure 7.

4. LONG WAVES IN A BICHROMATIC WAVE SYSTEM

4.1 Long Wave Generation

OTTESEN-HANSEN pointed out. that two short period waves with

the frequencies f1 and f: create a bounded 1long wave with

the frequency Af = f{ - f2. which propagates with the Zgroup
velocity. Bounded lon& waves are of second order with
rather limited heilfght. Resonance and shoaling effects can

increase their influence

In traditional first order wave Zeneration. the boundary
conditions at the wave board are not fulfilled and various
free long waves with the same frequency Af are RKenerated.
These waves appear also in the numerical model. Their
velocity and wave len&th can be calculated by the dispersion
relation ( KOSTENSE).

Short waves freduency f1 = 0. 50 Hz
—_—— amplitude ar = 0.055 m
frequency f2 = o0.40 Hz

amplitude az = 0.011T m

Long Waves Bounded: frequency f = o0.10 Hz
-_— amplitude ar = 0.0045 m

wave leng&th L, = 18. 0 m

Free : fredquencwv f = 0. 70 Hz

wave len&th Ly = 22.7T m

Table 2: Theoretical wave data
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The numerical model was used to investigate the &eneration
of bounded and free lon& waves in a flume with a constant

water depth of 0.50 m. Initially a superposition of two

harmonic waves was used. However. due to their inherent
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Figure 8: Long wave behaviour in a bichromatic wave svstem.

Fiume with horizontal bottom.
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instabilitv. complicated transformations occurred. which made

the interpretation of the results verv difficult. There-
fore. a superposition of two cnoidal waves. i.e. waves of
permanent form. was used. Table 2 shows a 1list of the
theoretical wave data. The difference in wave leng&ths of

bounded and free long wave leads to a standinZ wave 1in the
flume. which has been calculated in afreement with theore-

tical values,

Figure 8A displays wave sbpectra. calculated at different
locations along the numerical flume. It can be seen. that a
long period wave. which is not included in the input spec-
trum has been gfenerated. The input spectrum is unstable and
a ener&y transfer towards the lower frequencies takes place.
Ir. instead the long wave component is added to the input

spectrum. the spectrum becomes more stable (see Figure 8B)

4.2 Reflection on a Slope

Investigation of the behaviour of a vartial reflection on a
slope has been carried out with an input of two short harmo-
nic waves. The influence of the reflection is determined as
the difference between calculations with and without a
slovpe. Figure 9 shows the numerical model and the computed
incoming& and reflected spectra. The reflection coefficient
of the long wave is about 3 times as hig&h as that of the
short waves. This result is qualitativelv correct. but one
should be aware that the wave breaking on a real beach has a
significant influence on the amplitudes of the reflected

waves.

5. CONCLUSIONS

The numerical model has been vproven to be numericallyv stable
for nearly breaking waves. The numerical diffusion appears
to be insignificant. because cnoidal and solitarv waves pro-

pagate with permanent form even after several wave lengths,
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NUMERICAL MODEL
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Figure 9: Reflection of bicnoidal waves on a slobpe

The nonlinear transformation of wave spPectra has been

studied for an even bottom . for a slope and for a reflec-

tion at a wall. A higZh def&ree of afreement between compu-
tations and measurements has been found. as lon& as the
'deep water' part of the spectrum is small: 1. e. within

the ranfe of validity of the Boussinesg-wave-equations.

Long waves from a wave Rgroup (bicnoidal waves) are Zenerated
1in the model in afkreement with theoretical values. As
should be expected. thev are strongfer reflected from a

bottom slope than short waves
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