
CHAPTER 205 

IRREGULAR WAVE TRANSFORMATION IN A BOUSSINESO WAVE MODEL 

H. -H. Priiser * /  H. Schaper * /  W. Zielke * 

1.  INTRODUCTION 

Numerical wave models for shallow water waves are of parti- 

cular importance for the calculation of the wave climate in 

harbours and coastal areas. Especially nonlinear time 

domain models, which are based on the Boussinesq-Wave- 

Equations, may be helpful in the future for simulating the 

interaction of currents with refraction, diffraction, re- 

flection and for simulating shoaling..-of irregular waves in 

natural areas; a potential which has not yet been fully 

developed. 

During the last ten years numerical models, based on these 

equations, have been published; such as ABBOTT et. al. , 

HAUGUEL and SCHAPER / ZIELKE . Research on this topic is 

currently being carried on. 

Some efforts have been made to verify the capability of the 

models to describe the various physical phenomena. However, 

up to now, verification has been limited to regular waves. 

The aim of this paper therefore is, to consider questions 

concerning irregular, nonlinear waves. 
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A numerical model, based on the solution of the Boussinesq 

equations, was used to calculate the behaviour of wave sPec- 

tra and bichromatic waves in a one dimensional wave flume 

with constant water depth or with mild slope. The genera- 

tion of lone waves and the energy transfer between indivi- 

dual frequency components in the numerical model was of 

particular interest. Comparisons with analytical solutions 

and hydraulic measurements have been made. 

2. NUMERICAL MODEL 

All computations have been done usirn? the Boussinesq wave 

model described in detail bv SCHAPER / ZIELKE. 1984. Experi- 

mental data from a hydraulic wave flume were available. 

Therefore the studv has been restricted to the onedimen- 

sional case.  The basic equations read: 

6p , 6 ,p2, ^  ,6c     Dh  63  ,Dp,   D2h 63      ,p, 
It  +   6^<h > + 9h IT = "2 6^Tt( h) " — S^nty 

ik + AS. = o 
St   Sx U 

h = D + ? : total water depth        D : mean water level 

p : vertically integrated flux       5 : waterelevation 

£   :    acceleration due to gravity 

Solitary and cnoidal waves can be regarded as special 

solutions of the Boussinesq equations. They have been used 

in the initial stage of model development to investigate the 

accuracy of the numerical solution for waves up to limiting 

height. 

In short shallow water waves. the nonlinear amplitude- 

dispersive terms on the left hand side and the nonlinear 

frequency-dispersive terms on the right hand side are of the 
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same order. It is therefore necessary to include all these 

terms into the computation. In the numerical model. the 

Boussinesq equations are solved with a third order correc- 

ted, implicite finite difference method. using two time 

levels and central differences. 

A nonreflecting boundary condition is used at the left end 

of the flume, instead of a model of the wave maker. There- 

fore, the re-reflection of waves returning from the right 

end of the channel is neglected. The incut waves can be 

represented as a precribed time serie f(t,x=0). which have 

been obtained from measurements in the flume. The unknown 

values for the flux and water elevation, as the result of 

incoming and outgoing waves, can be calculated bv using the 

following equation: 

p - cC  = -2c f( t) 

r     1 

with:     c = ~',nh   -   D'/h-1 wave velocity 

3.. TRANSFORMATION OF PIE RSON-MOSKOWITZ SPECTRA 

3. .1 Hyd.ra.uli c Test Programme 

Hydraulic measurements were taken bv Daemrich and Gotschen- 

berg from the Franzius-Institute of the University of 

Hannover to verify the numerical model. In a flume with a 

constant water depth of 0.5 m, some Pierson-Moskowitz spec- 

tra were generated by the wave maker. The amplitudes have 

been reduced bv a constant factor in order to avoid wave 

breaking, which does occur, if this deep water spectrum is 

used in shallow water. Several wave gauKes were Placed 

along the flume for measuring the time series of the water 

elevation. Table 1 displays the significant wave parameter 

of the test Program. 
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Peak-Period   (sec)    / Significant   Have -Height 
Peak-Frequency  [ Hz] [ m] 

1.5        /        0. bbb 0. 04           0. Ob 0. 08 
3. 0/0. 333 0. 04           0. Ob 0. 08 
4.5        /        0. 222 0. 04           0. 0b 0. 08 

Table 1: Test Program 

The water elevation, measured at the gauge nearest to the 

wavemaker. is used to feed the waves into the numerical 

model at the left boundary. 

3.2 Range of Application 

Boussinesq equations are long-wave-equations with additional 

third order terms. They are able to describe wave phenomena 

in shallow water and in intermediate depths but not in deep 

water. If one assumes a water depth of 0. 5 m. then the deep 

water waves are shorter than 1.0m and have a corresponding 

frequency of higher than 1.25 Hz. Therefore it is to be 

expected, that the smaller the "deep water" part of the 

spectrum, the better the calculation of the wave spectra. 

T = 4.5 sec T = 3.o sec 
P 

T =1.5 sec 
P 

deep water" 
part 

.00       i.00       2.00 
frequency   (Hz) 

.00 1.00        2.00 
frequency   (Hz) 

.00        1.00       2.00 
frequency   (Hz) 

Figure   1:    Normalized   Pierson-Moskowitz   Spectra 
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Figure 1 displays the normalized Pierson-Moskowitz spectra 

of the hydraulic test program. The deep water part of 

spectrum 1c is significant, thus the calculation cannot be 

accurate in this case. And indeed, verification shows that 

the Boussinesq wave model reproduces the time series of the 

water elevation for the spectra 1a) and 1b) very well. but 

worse for spectrum 1c). 

3.2 Calculation and Comparison 

3.2.1 Pierson-Moskowitz Spectra in a Flume with even Bottom 

and a mild Slope 

3.2.1.1 Experimental Set-Up 

For the hydraulic model. a 54.0 m long flume with even 

bottom and a slope 1/30 at the right side was used. Two 

numerical models were created: 

The  first  model was used for verification.  The Boussinesq 

wave model does not contain the  possibility  of  simulating 

breaking  waves, which occur on the upper part of the slope. 

Instead a nonreflecting boundary was applied at  that  point 

of the slope, where the water depth was 0. 2 m. 

In the second model no slope is taken into account. There- 

fore, there is a possibility to extract the calculated slope 

influence by comparing these two numerical models. 

The measured time series of the water elevation at gauge 1 

is used as wave input for the numerical model. Figure 2 

shows the complete experimental set-up. 
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HYDRAULIC MODEL 
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6 GAUGE      WATER DEPTH = .2o m    (.5o m) 

Figure   2:    Experimental   set-up flume   with   slope 

3.2.1.2   Results 

Figure 3 displays a comParisi on between measured and calcu- 

lated time series at different gauges for a Pierson-Mosko- 

witz spectrum (peakperiod period = 3. sec. significant wave 

height = 0.08m). It can be seen that the numerical model 

describes the water elevation with a high degree of simi- 

larity in the range of horizontal bottom as well as on the 

slope. 
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Calculations with both numerical models (with and without a 

slope) indicate, that the influence of reflection at the 

mild slope is negligible for the chosen spectra. 

MEASURED 
CALCULATED 

GAUGE 1 - EVEN BOTTOM 

WVv 

GAUGE 3   X = 3o.o m      - EVEN BOTTOM - 

GAUGE 4   X = 48.o m     - EVEN BOTTOM - 

GAUGE 6   X = 6o.o m SLOPE 

TIME: ISECI 

•10   ' 

Figure i:    Transformation of wave spectra 

even bottom / slope, time domain 
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A better interpretation of the experimental and calculated 

results is possible bv transforming the time series into the 

frequency domain. 

GAUGE   1 

llljllllllpllll MM 
0.00 0.« 0.B3 

FREQUENCY    (Hz) 

GAUGE   2 15.o ra 

lib liLllillh.fn.! 
a. on o.« o.s3 

FREQUENCY   (Hz) 

W a 
D 

J 
Pi 

GAUGE   3 3o.o m 

lllMllju..!- 
0.00 0.« 0.63 

FREQUENCY    (Hz) 

X  =   48.o m 

llillllilllillli, 
0.00 0.W 0.83 

FREQUENCY    (Hz) 

Figure H:    Transformation of wave spectra 

even bottom / slope, frequency domain 

In linear wave theory, the shape of the spectrum, generated 

at the wave maker, should not change along the flume if the 

water depth is constant. However, comparing the amplitude 

spectra at different locations (see figure 4). an energy 

transfer between individuel frequency components and the 

creation and increase of lower frequencies, not included in 

the original Pierson-Moskowitz spectrum, can be observed in 

the hydraulic as well as in the numerical model. 
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At the slope the water depth decreases and the waves turn to 

the typical cnoidal shape: The crests are higher and shor- 

ter and the troughs are longer and less deep than would be 

predicted for constant water depth. 

- TIME SERIE CALCULATED WITH SLOPE   WATER DEPTH = .2o ro 

- TIME SERIE CALCULATED WITHOUT SLOPE   WATER DEPTH = .5o ra 

SPECTRUM CALCULATED 

WITH SLOPE 

mifii lliliilllllllllil||.!il Jlpim 
1.2S 

- SPECTRUM CALCULATED 

WITHOUT SLOPE 

m •'% r 
0.« 0.»3 

FREQUENCY    (Hz) 

0.09 O.t-2 0.U 

FREQUENCY   (Hz) 

Figure   5:    Slope   influence   calculated   at   gauge   b. 

Comparison     in   time   and   frequency  domain 
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The increase of the lont wave components and the generation 

of higher frequencies on the slope are results which can be 

detected in the frequency domain. Figure 5 displays a com- 

parison of the time series and amplitude spectra at gauge b. 

calculated with and without a slope. 

If- 2.2 Pierson-Moskowi tz Spectra Reflected at a Wall 

HYDRAULIC AND NUMERICAL MODEL 
REFLECTING 

BOUNDARY 

I 

-\ 15. m —f-      WATER DEPTH = . 5o m 

-4 3°. "I . —— i- 

\   ...   45. m if. 

—if 5o. m if- 

1, 2, 3, 4 GAUGES 

Figure b: Experimental set-up 

The test program was used to verify the reflecting boundary 

condition at the wall and the capability of the numerical 

model to calculate the nonlinear interaction of the initial 

and reflected waves. Figure b displays the experimental 

set-up, figure 7 compares measured and calculated time 

series of the water elevation at several gauges for the same 

spectrum used before. The distance between every gauge is 

15.0 m. Therefore, it is possible to mark in figure 7. the 

front of the initial wave, as well as the first reflected 

wave and the first re-reflected wave. Also the time of the 

first reflection at the wall and the first re-reflection at 

the wave maker has been marked. The numerical model is able 

to describe the resulting wave climate very well.  However a 
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comparison  between  measurements  and  calculations  is not 

valid after the reflected wave has reached gauge 1. 

RE-REFLECTION 

GAUGE   1        X  =        .o in ~7T 

I.M IM .« •••• ••• >»       T^'.SEC,''" '•' 
• 10   < 

5.11     '     I.M •.'»• »•>• 

      MEASURED 
   CALCULATED 

Figure 7: Comparison  between measured and calculated time 

series of the water elevation in a flume with 

total reflection at a wall 
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The time series. measured in the hydraulic model at this 

gauge has been used as input data for the numerical model, 

which has a non-reflecting boundary at the wave maker. In 

reality the measurements include the reflection from the 

wave maker. This leads to significant differences after the 

first instance of re-reflection, as can be seen in figure 7. 

4. LONG HAVES IN A BICHROMATIC WAVE SYSTEM 

4.1 Long Wave Generation 

OTTESEN-HANSEN pointed out. that two short period waves with 

the frequencies ft and fj create a bounded long wave with 

the frequency Af = ft - fa. which propagates with the group 

velocity. Bounded long waves are of second order with 

rather limited height. Resonance and shoaling effects can 

increase their influence. 

In traditional first order wave generation. the boundary 

conditions at the wave board are not fulfilled and various 

free long waves with the same frequency Af are generated. 

These waves appear also in the numerical model. Their 

velocity and wave length can be calculated by the dispersion 

relation < KOSTENSE) . 

Short waves frequency ft = o. 5o Hz 
ampli tude at = o. o55 m 

frequency fa = 0. 4o Hz 
ampli tude a2 = o. oil m 

Long Waves      Bounded:  frequency f = o. 1o Hz 
                 amplitude at = o. oo45 m 

wave length Lb = 18. o m 

Free   :  frequency f = o. 1o Hz 
wave length Lf =   22. 1 m 

Table 2: Theoretical wave data 
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The numerical model was used to investigate the generation 

of bounded and free long waves in a flume with a constant 

water depth of 0.50 m. Initially a superposition of two 

harmonic  waves  was  used.  However.  due to their inherent 

A: ONLY SHORT WAVES 

IN INPUT 

B: SHORT WAVES AND BOUNDED 

WAVE IN INPUT 

INPUT-SPECTRUM 

I ' ' I r 1 r 
0. 00      0.63      1.25 

FREQUENCY (Hz) 

INPUT-SPECTRUM 

0.00      0.E3      1.25 

FREQUENCY (Hz) 

CALCULATED SPECTRA 

U 
Q 

X =  1o.o m X =  1o.o m 

I     .III, •LrJJ—i—L_ar- 
.00 0.E3 1.25 

Q 

X = 5o.o m 

0.00 0.63 1.25 

FREQUENCY   (Hz) 

X =   5o.o m 

III...I. 
0.00 0.63 1.25 

FREQUENCY   (Hz) 

Figure 8:    Long wave behaviour in a bichromatic wave system. 

Flume with horizontal bottom. 
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instability, complicated transformations occurred, which made 

the interpretation of the results very difficult. There- 

fore, a superposition of two cnoidal waves, i.e. waves of 

permanent form, was used. Table 2 shows a list of the 

theoretical wave data. The difference in wave lengths of 

bounded and free long wave leads to a standing wave in the 

flume. which has been calculated in agreement with theore- 

tical values. 

Figure 8A displays wave spectra. calculated at different 

locations along the numerical flume. It can be seen, that a 

long period wave, which is not included in the input spec- 

trum has been generated. The input spectrum is unstable and 

a energy transfer towards the lower frequencies takes place. 

If. instead the long wave component is added to the input 

spectrum, the spectrum becomes more stable (see Figure 8B) . 

t.2 Reflection on a Slope 

Investigation of the behaviour of a partial reflection on a 

slope has been carried out with an input of two short harmo- 

nic waves. The influence of the reflection is determined as 

the difference between calculations with and without a 

slope. Figure <3 shows the numerical model and the computed 

incoming and reflected spectra. The reflection coefficient 

of the long wave is about 3 times as high as that of the 

short waves. This result is qualitatively correct, but one 

should be aware that the wave breaking on a real beach has a 

significant influence on the amplitudes of the reflected 

waves. 

5. CONCLUSIONS 

The numerical model has been proven to be numerically stable 

for nearly breaking waves. The numerical diffusion appears 

to be insignificant, because cnoidal and solitary waves pro- 

pagate with permanent form even after several wave lengths. 
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NUMERICAL MODEL 
GAUGE  X = 4o. m 

SLOPE 1/25 
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» j.illlllllln ill 
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Figure <i:    Reflection of bicnoidal waves on a slope 

The nonlinear transformation of wave spectra has been 

studied for an even bottom . for a slope and for a reflec- 

tion at a wall. A high degree of agreement between compu- 

tations and measurements has been found. as long as the 

'deep water' part of the spectrum is small: i.e. within 

the range of validity of the Boussinesq-wave-equations. 

Long waves from a wave group (bicnoidal waves) are generated 

in the model in agreement with theoretical values. As 

should be expected. thev are stronger reflected from a 

bottom slope than short waves. 
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