
CHAPTER 21 

TRUNCATION ORDER OF FOURIER WAVE THEORY 

Rodney J. Sobey1, M.ASCE 

Specific consideration is given to the dependence of Fourier wave solutions on 
both truncation order and the number of free surface nodes. Solution dependence 
is quantified by a comprehensive set of numerical experiments over a typical 
range of wave height, water depth, truncation order and overspecification values. 
Integral error measures include the rms free surface boundary condition errors and 
a slope error that identifies non-physical positive slope segments in the wave 
profile between crest and trough. Summary error diagrams are presented as a 
guide to the adoption of suitable truncation orders and overspecification for 
Fourier solutions. The truncation order is the crucial parameter but there is 
measurable advantage is some small overspecification. 

INTRODUCTION 
Fourier wave theory has proved to be a robust steady wave theory for almost the 

complete range of wave heights, water depths and uniform currents experienced in 
practice. It is a hybrid analytical/numerical theory. The analytical aspects are relatively 
straightforward though not entirely without difficulties. The numerical part of the 
solution however is distinctly nontrivial. It involves the simultaneous solution of a large 
number of implicit nonlinear algebraic equations in a large number of unknowns. This is 
recognized as an extremely difficult problem in numerical analysis for which a 
successful solution algorithm depends critically on the analytical formulation of the 
problem and on the physical nature of the solution. For waves of small to moderate 
height in relatively deep water, successful solutions do not appear to be difficult to 
obtain. For higher waves in deep water and especially waves of moderate to large height 
in shallow water, changes in the physical nature of the solution significantly complicate 
the achievement of a successful solution. So much so in fact that it becomes appropriate 
to consider just what is a successful solution. The complexity of the numerical solution 
procedure has tended to distract attention from this rather more fundamental question, 
namely, whether an achievable numerical solution can be equated with a reasonable 
physical solution of a particular steady wave problem. 

STEADY WAVE THEORY 
Progressive waves of permanent form are steady in a frame of reference moving at 

the phase speed C. Accordingly, it is convenient to adopt a steady and moving x,z 
reference frame that is located at the mean water level (MWL) and moves at speed C 
with the wave crest, rather than an unsteady and fixed X,Z reference frame. The field 
solution is described by the stream function \|/(*,z). Assuming that the flow is incom- 
pressible and irrotational, the field equation representing mass and momentum conserva- 
tion is the Laplace equation 
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2+^ = 0 (1) 
aV av 
dx2    dz 

where the velocity components (u,w) are (dyldz,-dyldx). 

This field equation is subject to the following boundary conditions: 
(1) Bottom boundary condition, representing no flow through the horizontal bed, is 

\\i(x,-h) = 0   &tz=-h (2) 
(2) Kinematic free-surface boundary condition (KFSBC), representing no flow 

through the free surface, is 
\|/(x,r|)=-<2   atz=r|00 (3) 

where r\(x) is the free surface and -Q is the constant volume flow rate per unit width 
under the steady wave. Q is positive and this flow is in the negative x direction. 

(3) Dynamic free surface boundary condition (DFSBC), representing constant 
atmospheric pressure on the free surface, is 

where g is the gravitational acceleration and R the Bernoulli constant. 
(4) Wave is periodic. 

\|f(x+Z-,z)=\|/(x,z) (5) 
where L (= 2%lk) is the wave length and k is the wave number 

Given parameters defining a steady wave solution are generally the wave height H, 
the water depth h, the wave period T (= 2%la) and either the coflowing Eulerian current 
Q or the wave-averaged mass transport velocity or Stokes drift Cs. The wave height is 
defined as 

H=T[(x=0)-y\(x=L/2) (6) 
and mass conservation requires an invariant MWL such that 

-ha 
r|(x)dx = 0 (7) f 

Jo 

The speed C of the moving and steady reference frame is related to the fixed and 
unsteady reference frame by the dispersion relationship. Where CB is known, the 
dispersion relationship is 

C=j; = U + CE (8) 

where -u is the mean fluid speed at any z wholly within the fluid. The Stokes drift is 
then defined as 

L    Q 
C = — = — • 

T    h 
- + CS (9) 

Where Cs is known, Equation 9 is the dispersion relationship and Equation 8 is the 
definition equation for C^. 

FOURIER WAVE THEORY 

The solution for the stream function is represented by a truncated Fourier series 

\ir(x,z)=-uz+^- 15:  , .,,   'cos/fa (10) 
co 7 = i       cosh jkh 

where the B; are the dimensionless Fourier coefficients, of which there are N. This 
representation of the stream function automatically satisfies the field equation, the 
kinematic bottom boundary condition and the periodic lateral boundary conditions. The 
Fourier coefficients are chosen numerically to satisfy the free surface boundary 
conditions, the finite truncation order N being the only necessary assumption in the 
analytical formulation of Fourier wave theory. 
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The unknown variables in a Fourier wave solution are k, u, Cg or Cs, Q, R, the r|„ 
for m=0(l)M and Bj for j=l(l)N, of which there are M+N+6 in total. The t\m=T\(xm) are 
water surface nodes, where the xm = (m - \)nlkM are uniformly distributed in x from crest 
to trough. 

The problem formulation provides 2M+6 implicit algebraic equations in these 
M+N+6 unknowns, each equation being cast in the form 

MkM,Cs or CS,Q J?.i^JBj) = 0 (11) 

The equations define the wave height 
fi=%-T\M-H (12) 

the mean water level 
1 

the Eulerian current 

the Stokes drift 

f^2M[^ + 2^+^ (13) 

.    2x/k   -   „ .... 
f,=-j—u-CE (14) 

f^~^-Cs (15) 

the kinematic free surface boundary condition (KFSBC) at each of the M+l free surface 
nodes 

/s+^YCVU + G (16) 
and the dynamic free surface boundary condition (DFSBC) also at each of the free 
surface nodes 

, 1 rdy(xm,r}„) 2   1 dy(xm,r\J 2 
/6+2" = 2[_&~] +2["^^] +8^-R (17) 

Note in particular the use of the trapezoidal rule in Equation 13 for the MWL. This is an 
exact result for the continuous integral in Equation 7 where r\(x) is represented by a 
truncated Fourier series, as is implied by Equation 10. 

The problem is uniquely defined for M = N and overspecified for M > N. The 
solution of a set of 2N+6 simultaneous implicit algebraic equations in 2N+6 unknowns is 
a familiar problem in numerical analysis for which successful algorithms are generally 
variations on the Newton-Raphson method. A set of 2N+6 simultaneous implicit 
algebraic equations in M+N+6 unknowns, where M > N, is an equally familiar problem 
in numerical analysis in the context of nonlinear optimization. A solution is established 
by seeking a minimum value for an objective function of the M+N+6 unknowns. A 
familiar algorithm is the least squares method where the objective function is the sum of 
squares of the left hand sides of the 2M+6 equations. 

<?(*,«A or Cs,QM,T]mJ3j) =/? +f2 + ... +/^+6 (18) 

Such an algorithm is equally successful for M = N where the objective function would be 
expected to be zero. In practice, this involves little sacrifice in computational efficiency 
and none in solution precision and is accordingly a convenient choice of algorithm for 
the present purposes. 

The choice of numerical solution algorithm should not influence the solution and 
the present computations have exclusively adopted the IMSL subroutine ZXSSQ, which 
is a finite-difference Levenberg-Marquardt algorithm with strict descent in double 
precision. This algorithm is mature, routinely successful and commonly available. Given 
that a solution exists, there are two potential difficulties with any optimization algorithm. 
The first is the difference in physical dimensions and relative magnitudes of the 
dependent variables. This has been minimized by redefining the variables and the 
implicit algebraic equations in dimensionless form, here in terms of co and g. Subse- 
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quently, all constants and variables are non-dimensional, simply achieved by setting co = 
g = p = 1. A second difficulty is the potential existence of multiple solutions, especially 
the odd harmonics which are legitimate mathematical solutions of the gravity wave 
problem as formulated. This problem can be avoided, for example, by the choice of an 
initial estimate of the complete solution from Airy wave theory at a fraction of the given 
wave height. The wave height is then progressively increased towards the given wave 
height, with an initial estimate at each subsequent step being provided by a Taylor series 
expansion in H about the converged solution at the previous height step. A fraction 
sequence of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0 has been employed, with two steps 
normally sufficient in very deep water, four in transitional water and all seven in 
extremely shallow water. 

Whether a solution exists at all is a further potential difficulty and there are a two 
aspects here that require attention. The first is the truncation order N of the Fourier 
series. Steep crest and flat trough profiles typical of shallow water waves require many 
more Fourier terms than the more closely sinusoidal wave profiles in deep water. The 
theoretical slope discontinuity at the crest of limit waves would require an infinite 
truncation order and can not be accommodated by Fourier wave theory; in practice 
however, adequate solutions can be achieved very close to this limit. The second aspect 
is whether or not a solution does indeed exist and here the problem formulation is 
remarkably prophetic and robust. Convergence is just not achieved for the present 
formulation, despite the mathematical possibility of a minimum of the objective 
function, at combinations of dependent variables that are not physically possible. This is 
an especially encouraging aspect of the problem formulation and the numerical solution, 
considering the extreme multi-dimensionality of the problem and the considerable 
potential for spurious solutions. 

Previous formulations of Fourier wave theory (Dean 1965 & 1974, Dalrymple 
1974, Chaplin 1980, Rienecker & Fenton 1981) have been reviewed in detail elsewhere 
(Sobey 1988) and compared with the present generalized formulation. Differences are 
more apparent than real. The Dean, Dalrymple and Chaplin algorithms lack some 
flexibility in excluding Stokes second definition of phase speed. The present algorithm 
is a modification (normalized by known wave frequency rather than unknown wave 
number) and generalization (M can be greater than N) of the Fenton (1983) version of 
the Rienecker and Fenton formulation. All algorithms were shown to provide essentially 
identical results with Stokes first definition of phase speed for wave height up to at least 
90% of the breaking wave height. The slope discontinuity for limit waves requires an 
infinite Fourier series which is beyond the capabilities of a truncated Fourier series. 
Substantially increasing the truncation order (Chaplin uses N=51 at 90% of breaking 
wave height) improves fidelity for near-limit waves but finite machine precision rapidly 
limits the utility of this approach. Numerical solutions for nominally limit waves at 
finite truncation orders by Dean (1974) have been shown to be spurious solutions by 
Chaplin (1980), as they do not capture the dual-valued nature of integral properties of 
near-limit waves. 

Given the essentially complete agreement among Fourier wave theory formulations 
for small to moderately extreme wave heights, the present generalized formulation can 
be utilized in an analysis of solution characteristics in the reasonable expectation that the 
results will be applicable also to alternative formulations. Limit waves can not be 
accommodated by any Fourier formulation and will not be included in the analysis, 
which will focus on small (Dean case A at 25% of empirical breaking wave height) and 
moderately extreme (Dean case C at 75% of empirical breaking wave height) waves. 

ERROR MEASURES 
Fourier wave theory has but two assumptions, the truncation order N and the 

number of water surface steps M+l. Given that M must be greater than or equal to N for 
closure, it is convenient to define the overspecification MN = M - N. Both N and MN 
influence the fidelity of the solution and, being the only assumptions of the theory, there 
is considerable value in documenting the numerical solution dependence on both 
parameters. The influence of truncation order is implicit in most published solutions, 
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with adopted N values increasing from small to high waves and especially from deep to 
shallow water. The influence of MN is rather less obvious. Dean and Dalrymple do not 
record M, beyond a statement to the effect that M is large. Chaplin apparently uses 
M=200 but Rienecker and Fenton use M=N ,i.e. MN=0. In principle and frequently in 
practice, numerical solutions are achievable for all N > 1 and all MN > 0. Spurious 
solutions may result from inappropriate choices of both N and MN. The truncation order 
is broadly analogous to order of an analytical waves theory such as Stokes or cnoidal; it 
should not be too small but what is large enough? Similarly, what is an appropriate 
value for MN? It is implicit in the Dean, Dalrymple and Chaplin formulations that a 
"large" value of MN is essential for solution fidelity. How large is "large"? Some 
guidance in answering these questions can be provided from the analysis of numerical 
solutions over a range of N and MN values. 
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Figure 1  DFSBC Error Traces for Case 3C 
Error measures must be defined to assist in this analysis. Two appropriate 

objective criteria follow naturally from the problem formulation, where only the free 
surface boundary conditions are not satisfied exactly. The residual error in the KFSBC 
is 

K(x)=y(x,n) + Q (19) 
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Similarly, the residual error in the DFSBC is 

These error traces oscillate about zero in a manner typical of truncated Fourier series. 
The Fourier solution satisfies these boundary conditions at discrete, uniformly spaced 
surface nodes, not along the entire free surface. This is illustrated in Figure 1 for Dean 
Case 3C(co2h/g=27i/100; co2H7g=0.03657, CE=0) for D(x) over a range of N and MN, each 
profile being based on 100 points between crest and trough. The truncation order 
influences these traces directly, there being exacdy N oscillatory cycles per wavelength. 
For MN = 0, the zero crossings of the error traces identify the locations of the free 
surface nodes. Overspecification MN influences the phasing and amplitude of these 
traces, generally decreasing the amplitude of the oscillation, except where the truncation 
order is ridiculously small (N = 1). The principal advantage of overspecification would 
appear to the change in the phasing of the error traces; the free surface nodes are moved 
from the natural zero-crossings of the N-term finite Fourier series and the amplitude of 
the trace oscillations is damped significantly in consequence. The markers on Figure 1 
are the published Dean (1974) solution (where N=17, MN=36n-17, n being an 
unrecorded integer). These errors are given to only one significant figure and are 
indicated by error bands, but are nonetheless entirely consistent with the present results. 
The phase reversal is apparently a consequence of the different numerical optimization 
algorithms and is not believed to be significant. In all cases except the trivial N = 1, the 
trace amplitude is a maximum at the crest and decays rapidly in magnitude towards the 
trough. 
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Figure 2 KFSBC Error Traces for Case 3C 
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The KFSBC error trace K(x) behaves similarly and is shown in Figure 2 for the 
same Dean case 3C solutions as in Figure 1. Dean (1965, 1974) defines the KFSBC 
errors as dn/dx . u/w, which is not directly comparable with Equation 19. It is 
emphasized in the Dean (1965, 1974) formulation of Fourier wave theory that the 
KFSBC is exactly satisfied but this is a misleading statement (Sobey 1988). Dean has 
adopted a multi-step solution algorithm that decouples the KFSBC from the balance of 
the problem formulation and assumes that k, R, Q and the Bt coefficients are given 
parameters, equated to the most recent estimates from earlier steps in the iterative 
algorithm. This is a significantly weaker statement that cannot be categorized as exact. 
KFSBC errors as defined by Equation 19 will remain. 

Single number measures of these boundary condition error traces are conveniently 
provided by the root-mean-square values (Dean 1974), as 

1    J 

E
KFSBC = 7T7 £ K (•*;) (21) 

and 

^DFSBC ~  r  ,   i   2* D  (Xj) (22) 

where the x are evenly spaced between crest and trough and J should significantly 
exceed M; J=100 was adopted throughout. Note however that these error measures will 
be artificially small if J is chosen to correspond with the surface nodes, e.g. J = M = N. 
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Figure 3 Slope Traces for Case 3C 
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The influence of the truncation order is implicit in the free surface boundary 
condition errors which provide a measure of a satisfactory numerical solution but not an 
especially direct measure of just what is a satisfactory physical solution. The direct 
influence of truncation order is rather more apparent from specific consideration of the 
truncated Fourier series approximation. Fourier series approximations to near sinusoidal 
profiles are quite trivial but the sharpening of the crest profile and flattening of the 
trough profile, that is experienced for higher waves in deep water and almost all waves 
in shallower water, requires a rapidly increasing truncation order. Insufficient Fourier 
terms will result in the Gibbs phenomenon and non-physical profile oscillations. In 
principle, a physical wave profile should be monotonically decreasing from crest to 
trough; the profile slope S(x) = dr|/dx should never to positive. Figure 3 shows water 
surface slope traces for the same Dean case 3C solutions as in Figures 1 and 2, except 
that the Dean tabulated solution does not provide this information. The slope traces 
assist in identifying profile oscillations in the long flat trough profiles. Where the 
truncation order is insufficient, the slope traces oscillate above and below the zero level. 
These slope traces are especially sensitive to truncation order and overspecification and 
an additional error measure is provided by thepositive area under the slope traces 

Jo dx 
dx (23) 

the + subscript indicating the inclusion of only those segments of the profile where dn/dx 
> 0. Physically satisfactory solutions should have a zero slope error. 

Collectively, the KFSBC, DFSBC and water surface slope errors provide a 
reasonably comprehensive measure of the analytical veracity of a Fourier wave solution. 
In addition, the slope errors provide an excellent indication of the physical suitability of 
a computed solution. 

NUMERICAL EXPERIMENTS 

Any Fourier wave solution is in principle dependent on three physical parameters 
wave height co2H/g, water depth o^h/g, and current coQ/g or coCs/g and on two numerical 
parameters truncation order N and overspecification MN. The three integral error 
measures defined above are then dependent on these five parameters. The details would 
be available from a comprehensive range of numerical. Each of these solutions is 
computationally intensive and exhaustively covering this five parameter space would be 
a massive computational task. A representative yet still reasonably comprehensive set of 
solutions were undertaken, based essentially on Dean case C at 75% of an empirical 
depth-dependent breaking wave height and wQ/g = 0. Water depth co2h/g values included 
Dean cases 3(co%/g = 2-K/WO), 4(2n/50), 5(2jt/20), 6(2TC/10), 7(2it/5), 8(it) and 10(4*:). 
Case A solutions at 25% of an empirical depth-dependent breaking wave height were 
also computed for depth cases 3, 6 and 10. For each of these ten wave height - water 
depth combinations, solutions were computed for truncation orders N = 1(5)21 and 
overspecification MN = 0(10)30; MN extended from 0(10)50 for cases 3C, 4C and 7C. 
A total of 230 separate Fourier wave solutions were completed, which collectively 
provide an overall perspective on the N and MN dependence throughout the practical 
range of wave height and water depth values. 

For each Dean case there are 20 or 30 separate solutions and results are 
conveniently presented as three dimensional bar charts for each dimensionless integral 
error measure and each Dean case. Even so there are 30 such plots and only selected 
examples can be included. The previous discussion has highlighted Dean case 3C and 
Figures 4, 5 and 6 show the corresponding integral error plots for the DFSBC, the 
KFSBC and the slope. As an aide to interpretation, these dimensionless plots are all to 
the same scale. They are truncated at 10s, a convenient number that does not absolutely 
identify a successful solution but is strongly suggestive of one. 
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Figure 4 for the DFSBC shows a dependence on both truncation order and 
overspecification as anticipated by Figure 1. For MN = 0, there is a steady decrease in 
the rms error with increasing truncation order. Increasing overspecification has an 
immediate influence in significantly decreasing the rms error; further increases in MN 
have limited influence. The nature of this presentation however is rather deceptive of the 
computational effort involved. Computational effort is directly related to (2M + 6)2, 
where M = N + MN. Designating computational effort as E2 , truncation order and 
overspecification are related as 

N+MN = E-6 (24) 
which can be represented on Figure 4 as straight line lines intersecting both the N and 
MN axes at the same numerical values. The dashed lines on the base plane of Figure 4 
indicate lines of equal computational effort, which put the combined influence of both N 
and MN in better perspective. As perhaps expected, the rms error is rather more directly 
related to computational effort (i.e. N + MN) than to either N or MN separately. 
Increasing MN alone may lead to a spurious result as the rms error very rapidly reaches a 
plateau level. Increasing N alone however leads to a consistent decrease in the rms error. 
It is apparent that truncation order is the crucial parameter. Overspecification can 
provide some measurable advantages but arguably no more (and potentially much less) 
than an equivalent increase in the truncation order to achieve the same comnutational 
effort. 

1 6        11        16       21 
N 

Figure 4 Rms DFSBC Error for Case 3C 

Figure 5 Rms KFSBC Error for Case 3C 
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Figure 6 Slope Error for Case 3C 
Figure 5 for the KFSBC shows a very similar trend as does Figure 6 for the water 

surface slope. The base levels at N = 1 are clearly spurious solutions; they predict a 
near-sinusiodal wave as is apparent from the equivalent slope traces in Figure 3. The 
overall picture presented by each of the three integral error plot is very similar, but there 
is one essential difference however. The rms errors in the free surface boundary 
conditions must approach zero asymptotically, whereas the slope error may suddenly 
jump to zero at finite values of the rms boundary errors. At the 106 level, oscillations in 
the trough profile at barely perceptibly and certainly define a pragmatic solution. Higher 
cutoff levels may in fact be acceptable. It would appear nonetheless that the slope 
summary plot provides a useful measure of an acceptable solution, both mathematically 
and physically. 

Space limitations preclude presentation of all the summary plots. Sufficient detail 
is provided by one of the rms error plot (say DFSBC) together with the slope plot. 
Figure 7 shows these error plots for Dean case 3A(w2h/g=27t/100; w2H/g=0.01224, Q=0) 
at 25% of the empirical breaking wave height. The significantly lower wave height is 
much less demanding of the Fourier wave theory and the 106 base levels are rapidly 
achieved for both the rms DFSBC error and the slope error. 

Figure 8 through 14 shows the summary plots for Dean cases 4C, 5C, 6A, 6C, 7C, 
8C and IOC respectively. These plots clearly demonstrate the relative ease with which 
acceptable solutions are achieved in deeper water. Case 4C (Figure 8) follows a very 
similar trend to Case 3C but profile steepness is not quite as extreme in the slightly 
deeper water and the 106 base level is reached with somewhat less computational effort. 
Case 5C (Figure 9), 6C (Figure 11) and 7C (Figure 12) continue this trend, slope errors 
becoming rapidly less problematic. In fact, slope errors appear not to be a serious 
problem in deeper water. A comparison of Case 6A (Figure 10) and Case 6C (Figure 11) 
once again demomstrates the relative ease with which Fourier solutions are achieved at 
lower wave heights. 

The Case 8C (Figure 13) summary plot continues these trends in very deep water, 
except that the DFSBC (and also the KFSBC which is not included) errors reveal an 
additional problem at N = 21, MN = 0. The Case IOC solution (Figure 14) follows the 
same trend but not the Case 10A solution (not included). Perusal of the solution details 
reveals that this apparent problem is a consequence of finite compiler and machine 
precision. The Fourier coefficients become very small very rapidly in deep water and 
the higher coefficients are typically fifteen orders of magnitude smaller than the leading 
B, coefficient. This confronts the capabilities of double precision arithmetic (REAL*8 
variables in Fortran), although this is both compiler and machine dependent. In such a 
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Figure 7 Error Summary for Case 3A 
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Figure 8 Error Summary for Case 4C 
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Figure 10 Error Summary for Case 6A 
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case it is possible to adopt too high a truncation order, very much the reverse of the more 
serious problems in shallower water. A truncation order of 21 is unnecessary in deep 
water. 

In the application of analytical wave theories such as Stokes and cnoidal, the 
choice of an appropriate order is a matter of engineering judgement, and depends upon 
the nature of the physical problem, the required precision of the computation and 
sometimes on overriding regulatory requirements. The choice of truncation order and 
overspecification for Fourier wave theory is similarly a matter of engineering judgement 
and it is not appropriate to nominate specific values. The consequences of a particular 
choice however can be evaluated from the range of summary plots presented that have 
been presented. 

CONCLUSIONS 

Each Fourier wave solution is nominally dependent of three physical parameters, 
wave height co^H/g, water depth co2h/g, and current coQ/g or coCs/g and on two numerical 
parameters truncation order N and overspecification MN. Specific attention has been 
given to the solution dependence on N and MN and to the distinction between a 
successful numerical solution and a successful physical solution. 

Some 230 separate Fourier wave solutions have been completed over a wide 
parameter range representative of field conditions. Trends are summarized in terms of 
three integral error measures, the rms DFSBC and rms KFSBC errors, which are 
measures of a successful numerical solution, and a slope error, which is a measure of a 
successful physical solution. A dimensionless cutoff level of 106 has been adopted to 
identify a successful solution. Precision is shown to be closely related to computational 
effort (N + MN) but the truncation order N is the dominant parameter. There is some 
minor advantage in a little over specification but significant overspecification does not 
enhance precision. 

A range of summary error plots should assist in the rational assignment of 
truncation order and possible overspecification for Fourier wave solutions. 
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