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ABSTRACT 
The turbulent boundary-layer flow over flat rough beds due to a wave or a 

combined wave-current interaction is studied by using a simplified numerical 
second-order turbulence model. The model results are compared with many sets 
of experimental data. Excellent predictions for ensemble-averaged velocities and 
favourable predictions for turbulence quantities are obtained. Variations of 
kinematic and dynamic characteristics of boundary-layer flow with wave, current 
and bed roughness parameters are determined. The model is also modified to 
simulate the oscillatory turbulent flow over rippled beds. The mean velocity 
field and the distribution of time-averaged turbulence quantities are calculated. 
The validity of the model is verified through comparison with experimental 
results. The performance and the limitation of the model are discussed. 

I.   INTRODUCTION 
A knowledge of the boundary layer flow in the vicinity of the sea bed is 

important for problems of coastal engineering, in particular for investigations of 
coastal erosion, sediment transport and the transport of pollutants. 

Bodies of water that are subjected to currents and waves, according to their 
characteristics, produce a flat, generally rough bed, or a rippled bed. In order to 
quantify sediment transport, the amplitude and direction of the velocities and shear 
stresses in the boundary layer close to these different shapes of bed must be known. 

Enquiries into the turbulent boundary layer generated by a sinusoidal wave are 
not recent. The experiments of Jonsson (1963), Horikawa and Watanabe (1968), 
Kamphuis (1975), Jonsson and Carlsen (1976) are noteworthy. Recently, 
experiments have been performed using laser velocimetry, e.g. the experiments of 
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Sumer et al. (1986), Sleath (1987) and Jensen et al. (1989). Theoretically, numerous 
investigations exist: from the analytical models of Kajiura (1968), Brevik (1981), 
Myrhaug (1982), Trowbridge and Madsen (1984) to the numerical models of Bakker 
(1974), Johns (1975), Sheng (1984), Fredsoe (1984), Asano and Iwagaki (1986), 
Blondeaux (1986), Justesen (1988), Sheng and Villaret (1989). Also to be 
mentioned is the semi-empirical model of Jonsson (1980), which proposed a 
universal distribution law for the velocity in the boundary layer. 

As far as the boundary layer due to the interaction between a current and a wave 
is concerned, few experiments are available, among which only those of Van Doom 
(1979), Simon et al. (1988) pertain to the turbulent and hydraulically rough case that 
is of interest to us. After the analytical model of mixing length due to Bijker (1967), 
other analytical models are based on the time-invariant turbulent viscosity, as in the 
case of a wave : Lundgren (1973), Smith (1977), Grant and Madsen (1979), Tanaka 
and Shuto (1984), Myrhaug (1984), Asano and Iwagaki (1984). For numerical 
models, that of the mixing length due to Bakker and Van Doom (1978), Van 
Kerstern and Bakker (1984) as well as that of Fredsoe (1984), which assumes a 
logarithmic velocity distribution. Models with more or less complicated turbulent 
closure are also applied to this problem: Sheng (1984), and Davies et al. (1988). 

To investigate the effect of wave and current on the boundary layer, we have 
selected the second order turbulence model that was originally suggested by 
Lewellen (1977) and simplified by Sheng (1984), Sheng and Villaret (1989) for the 
one dimensional flows. A simplified three dimensional version of the model is 
actually developed for the case of a wave without and with current. The numerical 
results are compared with experimental results in order to verify the validity of the 
model. In the last section, the model is written in orthogonal curvilinear coordinates 
in order to investigate oscillatory turbulent flow over a rippled bed. The results 
obtained are also compared with the experimental results for the case of symmetric 
and asymmetric ripples. 

II.   BOUNDARY LAYER ABOVE A FLAT BED 
II-1. Equations of the model 
The problem is treated in cartesian coordinates (x,y,z) with the z axis directed 

upwards (Fig. 1). The flat horizontal bottom is fixed at z = zo = kN/30, where k^ 
represents the equivalent Nikuradse roughness. 

The system of equations is established with the following assumptions: (a) the 
thickness of the boundary layer is much smaller than the wavelength of the wave; 

(b) the amplitude of the wave velocity Uh is much smaller than the wave celerity C. 
In these conditions, the momentum equations for the two horizontal components 

of velocity (u,v) along x and y can be written: 

3u i 3P      d , -T-T. ...      3v i 3P      d , -r-r, (1) _    =.i._+_(.UW)   ;       (2)      _    =.l_+_(.Vw) 
3t P dx     dz 3t P dy     dz 
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where the Reynolds stresses - uV and - v'w' can be modelled in the form: 
3u 

(3) - uw   =   vt- 
3z 

—           3v 
-vw   =   vt  

dz 
where vt represents the turbulent viscosity. 

The pressure gradients are expressed as follows : 

(4) .1 3P auhx 3PC ap     au 22. .1 3PC 

P 3x 3t      P 3x P 3y 3t      P 3y 
where (Uhx. Uhy) are the two horizontal components of the wave velocity and Pc 

represents the pressure due to the current. 
Turbulent closure is performed by means of two equations for the turbulent 

kinetic energy K and for the length scale L of the turbulence (Lewellen, 1977): 

(5) 

(6) 

3K 
3t 

3L 

3t 

= vt [ff-ff] L2                3z       3z 

«k SW. L + 0.075 VTK  + 1.2 —(vt — 
3z       3z 

0.375 VI 3(VICL) 
VK     " 3z 

The assumption of local equilibrium of the turbulence made by Sheng (1984) 
allows vt to be put in the form: 

VKL 
(7) v,  =   VI- 

*c0 

In 

wave direction 

current direction 

Fig. 1        Outline of physical system and reference system of axes (flat bed) 
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At the bottom (z = 20) the boundary conditions in all cases are the following : 

(8) u = v = 0       ;     dKJdz = 0     ;     L = azo    with a =0.67, 
where the von Karman constant is taken as k = 0.4. 

The conditions at the upper limit of the boundary layer depend on the particular 
case studied, and will be described later. 

The set of equations (1) to (8) is discretised using the implicit finite control 
volume method (Patankar, 1980) on a grid whose step size increases exponentially 
from bottom to top, thus giving good resolution near the bed where gradients are 
important. The time step is constant over the whole period of the wave. Each 
discretised equation corresponds to a tridiagonal matrix which can be solved by 
means of Thomas's algorithm (Roache, 1976). 

II-2. Case of the wave 
In the case of a unidirectional wave, the above set of equations is solved by 

taking v = 0. The pressure gradient is given by: 

(9) .1^  =  •± 
Pax      dt 

where Uh = Uh sin cot is the wave velocity at the upper limit of the boundary layer 

defined by Zh = 5K, 5R corresponds to the thickness beyond which K is zero. The 
following approximation was obtained: 

0.81 
ah. 
kN 

For z = zj, the boundary conditions are : 
(11) K = L = 0 and U = Uh 

(10) ^ = 0.246 
kN 

with  &h = — 
CO 

* Comparison with experimental results : The model results were compared 
with the experiment of Sumer et al. (1986). The lower boundary is at z0 = kN/30 = 
0.0133 cm, and the upper boundary is taken to be at Zh = 20 cm. The magnitude of 

the wave velocity is Uh = 210 cm/s and the period T = 2TC/CO = 8.1 s. Good 
agreement can be seen in Figure 2 for the velocities, except at z = 0.1 cm. The values 

of the friction velocity u* = sign (-u'w') V| -u'w'| are slightly lower than found 

experimentally (Fig. 3). In Figure 4 the profiles of the fluctuating velocities Vu'2 

and V w'2 are compared. It can be seen that there is agreement for Vu'2 for phases 

between 30° and 120°, and for V w'2 for the other phases. 

* Wave friction coefficient:      In investigations of the wave boundary layer, 

the friction coefficient fh introduced by Jonsson (1963) is often used : %- =  y fh Uh 

where x is the amplitude of the shear stress at the bed. The formula for fh that arises 
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from the present model as follows: 

(12) fh = 0.00278 exp 
-0.22 

l«5 IS 
For comparison, Figure 5 shows the curves obtained from the formulae of 

Kajiura (1968), Kamphuis (1975), Jonsson and Carsen (1976). The curve given by 
(12) is close to the results of Kamphuis. 

Fig. 2     Comparison between the calculated velocity profiles ( ) and 
those measured by Sumer et al (1986) (symbols) for the different phases. 

Fig. 3     Comparison between the shear velocity calculated by the present 
model (—) and that obtained experimentally by Sumer et al (1986) (•) 
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Fig. 4 Comparison between the fluctuating velocity profiles calculated by 
the present model and and those obtained experimentally by Sumer et al 
(1986) for the different phases. 

Present model  

Kajiura  

Jonsson   
Kamphuis  

ai>/kN 

Fig. 5     Variation of the friction coefficientfy as a function of a/, Iks 
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II-3. Case of wave and current interaction 
The investigation of the wave-current interaction is performed using equations 

(l)+(8). The wave propagates in a direction at an angle fa to the current, which is 
parallel to the direction x (Fig. 1). The upper boundary conditions apply at z = Zco 
located in the inertial layer of the current and which is taken to be at (0.10+0.15) zc, 
where Zc is the total height The two components of the velocity at zco are assumed 
to be known: 

(13) U =  Uc + Uhx= Uc + Uhcos<|>h      ;      V = Uhy = Uh sin fa 
where Uc is the current velocity. 

In addition, the following boundary conditions are applied: 

(14) u = U; v = V; dKJdz = 0; L = az; dPJdx. = 3Pc/3y = 0 

* Comparison with experimental results : The results of the model are 
compared with the experiments of Van Doom (1981) for the case of colinear wave- 
current interaction (fa = 0°). We selected the test V20RA, for which the upper limit 
zcn is equal to 4.5 cm. In Figure 6 is shown the mean velocity profile. Good 
agreement is found with the experiment. The upper limit can be also treated at the 
surface libre z,. = 30 cm (Huynh Thanh and Temperville, 1989). 

u (cm/s) 

Fig. 6    Comparison between the mean velocity profiles calculated with the 

present model ( ) and those measured by Van Doom (1981). Test 
V20RA. 

* Friction coefficients : The friction coefficients fch and fc are defined as 
follows: 

(15) 
p        2 p        2 

where xch/p and xjp are the maximum and mean shear stresses respectively. 
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Figures 7 and 8 show the variation of fCh and fc as a function of Sh/kN for 
different values of ZCQ/ICN, Uj/Uh. and <t>h- From these curves, it can be noted that for 

fixed Zco/kN and fa, fch and fc increase for increasing LyUt,. The change in fc with 
<|>h is substantial only for LVUh < 1. When the current is stronger than the wave 
(lyOi, 2 1.5+2), the influence of <j>h on fc is not marked, which means that in this 
case the mean characteristics of the current practically do not change under the action 
of the wave. 

Fig. 7     Variation of the friction coefficient fck   as a function ofah/kN, 
W*JV, UJUk and (j>h.    Zco/kN = ioo      ifc, = 0° 

(l)U«A4»0^     (2)IMJL-1     (3)U«M=1,5     (4) UAJk = 2 

Fig. 8     Variation of the friction coefficient fc   as a function ofahlk^, 
ZcolkN > UJUf, and fa. Parameters and notations as in Fig.7. 
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III. BOUNDARY LAYER ON A RIPPLED BED 
III-1.Formulation of the model 
The physical problem is outlined in Figure 9 : under the action of a wave of 

wavelength Lh, maximum velocity Uj, and period T, two-dimensional vortex ripples 
are assumed to be present on the bed. Laboratory and in situ measurements have 
shown that Lh » L^. This allows us to restrict the zone of the calculation : rather 
than investigating the problem over the whole of the wavelength Lj,, we shall only 
consider the wavelength Lt as shown in Figure 9. Moreover, to simplify the 
description of the boundary conditions at the surface of the ripple and also to 
eliminate the unknown pressure gradient due to the bed form, it is convenient in this 
case to transform the cartesian coordinates (x,z) into orthogonal curvilinear 

coordinates (X,Z), and to use the variables \i/ (stream function) and £, (vorticity) 
instead of the velocities u and w. 

Potential flow 

Free surface 

Domain of calculation 

Fig. 9     Scheme of the physical system (rippled bed). 

In general, the coordinate transformation is given by : 
N 

(16) X = x +  £ an. exp (- n kr Z). sin (n kr X - 6n) 
n=l 

N 
Z =  z  -  2^ a„. exp (- n kr Z). cos (n kr X - 6n) 

n=l 
where an and 8n are the amplitude and phase difference of the nth harmonic 
describing the ripple, and kr = 27t/Lr is the wave number associated with L,. 

The stream function \|/ and the vorticity £, are defined by : 

(17) u = 
d\|r 

$•= 
3u     3w 3\i/ 

—     ,    w = - — 
dz dx dz      dx 

In coordinates (X,Z), the set of equations to be solved is : 
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(18) JV2
V  = 4 

(19) 
at   a (x, z) 

(20) 1 » - ^MQ „ 1>2 J_L*) + ia±L* 
J at    a(x,z)        ax\ ax/       az\  az 

+ VtJ faV)2. (M iVtK -IAK 
J J L2 \ax2/     \az2j 

The length scale L is assumed to vary as follows : 

(21) L  =  aZ^Jl -i 
and the turbulent viscosity vt is determined by (7). 

In the previous set of equations, £ and K are terms pertaining to the partial 
2 

derivatives of \|/ and vt; J is the jacobian of the coordinate transformation ; V is the 
laplacian operator. The following boundary conditions are applied: 

- At the lower limit of the boundary layer (Z = Zo = 1CN/30) 

tyjs 3V _ ^ _ „. _ 3K _ .      ,    _     2JXII! 
az   ax    Y    az •    ^    (Zi-zo)2 

where \|/i is the stream function at height Zi on the second node of the grid (Roache, 
1976). 

- At the upper limit of the boundary layer (Z = Zj,) 

(23) V = Zh Uh (t)   ;    K = i; = 0 
- At the lateral boundaries (X = 0 and X = Lr), we assume spatially periodic 

conditions for \r, \ and K. 
The above set of equations is discretized using implicit finite difference schemes 

(centred in space and forward in time). The alternating direction implicit (A. D. I.) 

method is used to solve the equations for \ and K. The Poisson equation for y is 
solved by the bloc-cyclic reduction method (Roache, 1976) which allows a huge 
saving in calculation time compared with the Gauss-Seidel iteration method. The 
spatial grid contains MxN nodes with step AX = const, and AZ varying exponentially 
from the bottom upwards. The time step is At =T/360 s. In all the test cases, 
convergence is obtained after 20 calculation periods. 

111-2.Comparison with the experimental results of Du Toit and 
Sleath  (1981) 

The dimensional parameters in the test for comparison are the following: 
- Symmetric ripple with Lr = 17.2 cm, hr = 2.9 cm, d = 0.04 cm 

- Cosinusoidal wave : U^ = Uh cos cot, where Uh = 14.3 cm/s, T = 2JC/CO = 
5.37s 
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For the numerical calculation, a 17x25 node grid was chosen with AX = 1.0625 
cm and AZ varying from 0.056 cm to 0.5 cm. The equivalent Nikuradse roughness 
is ICN = 2.5 d = 0.1 cm. The upper limit is chosen to be equal to Zj, = 5 cm. 

Fig. 10   Comparison between the results of present model ( ) and those 
of the measurements ofDu Toit and Sleath (1981) for the time variation of 

the horizontal velocity u and of the horizontal fluctuating velocity V u'2. 
Measurements at height z = 1.65 cm above the crest 

Pn 
Fig. 11   Vertical variation of the amplitude of the velocity u calculated (-•') 

and measured («—») by Du Toit and Sleath (1981) above the crest. 

At height z = 1.65 cm above the crest (Fig. 10), good agreement can be seen 
between the amplitude of the calculated and measured horizontal velocities u, as well 

as for the fluctuating horizontal velocity Vu'2. There is, however, a discrepancy of 

25° between the measured local peak (tot = 140°) and that calculated (cot = 165°). 
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The vertical variation of the amplitude of the velocity u, designated by u, 
obtained from the model coincides with that measured above the crest (Fig. 11). 

Note that the z axis is normalized by the parameter P = y co/2v = 7.2 cm"1 and z\ is 
measured from the ripple crest. 

III-3.Comparison  with the experimental results of Sato et al. 
(1987) 

The test parameters are the following: 
- The ripple is asymmetric with Lr = 12 cm, hr = 2 cm, d = 0.02 cm. 

- The potential flow is a third-order Stokes wave (T = 2JC/CO = 4 s): 
Uh = - 29,5 (cos cot + 0,258 cos 2cot + 0,048 cos 3cot) (cm/s) 

For the modelling, after determining the amplitudes a„ and the phase shifts 0n of 
the simulated ripple, we choosed a grid of 13x25 nodes with AX = 1 cm, and AZ 
varying from 0.06 cm to 0.6 cm. The time step is At = 0.011 s. The upper limit is 
choosen at Zh = 6.5 cm. 

Figure 12 shows the comparison between the results of the model and those of 

the measurement for the velocity field and the turbulent kinetic energy K for phase cot 
= 54°. It can be seen that the vortex obtained with the model on the right hand leeside 
of the ripple is weaker than that measured, and the calculated intensity K is smaller in 
the model than found experimentally. 

IV. DISCUSSION AND CONCLUSION 

We have examined the problem of the oscillatory turbulent boundary layer on a 
rough sea bed using different versions of a turbulent closure model with two 
equations, one for the turbulent kinetic energy K and the other for the length scale L. 

* Performance of the model: For a flat bed, a simplified three dimensional 
model was used to investigate the hydrodynamic characteristics of the flow in the 
boundary layer as a function of the different wave, current, angle of interaction and 
bed parameters. For the oblique wave-current interaction, the model requires further 
experimental verifications. 

For a rippled bed, we have used a two-dimensional model that can reproduce the 
velocity and the vorticity fields as well as other turbulent quantities. Comparison 
with the experimental results shows that this model is able to predict quite well the 
complex flow properties over a rippled bed. Before applying the model to general 
cases, it would be necessary to confirm the numerical results by conducting further 
tests, particularly for the Reynolds stresses and the turbulent quantities. 

* Limitation of the model: As for all models of turbulent closure (Rodi, 1980), 
the present model was originally designed for permanent flows in the fully developed 
turbulent regime at high Reynolds numbers. When the flow is oscillatory, the 
condition of local equilibrium of the turbulence, which is valid for a permanent flow, 
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x (cm) 

x (cm) 

Fig. 12   Comparison between the results of the present model and the 
measurements of Sato et al. (1987) at phase cat =54°. 

(a) velocity field; (b) turbulent kinetic energy field 

is no longer completely satisfied, particularly at the times when the velocity of the 
potential flow is small. Consequently there is a time variation of the friction in the 
oscillatory boundary layer, which induces the change of flow regime in the course of 
a period. No such change was included in the model. Thus, to obtain more precise 
results, it is necessary to improve the model not only for high Reynolds numbers but 
also for moderate Reynolds numbers. 

In parallel with investigations into improvements, we shall apply the model to 
the prediction of certain important parameters of the natural boundary layer, together 
with analysis of sea measurements in the framework of the GDR Manche project. 
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