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1     INTRODUCTION 
In engineering practice semi-empirical formulae are used for the determination of 
hydrodynamical loads on vertical cylinders due to water waves. The most popular 
is the Morison formula 

dP icd2 du      _   pi   .   . . . ^ = cMP-- + cDUH (i) 

where dP is the resultant horizontal force, p - the density of the fluid, d - diameter 
of the cylinder, v. - the horizontal component of the orbital velocity in wave motion 
calculeted at the axis of the cylinder. The drag coefficient Cr> and inertia coefficient 
CM for uniform oscillating flow were determined experimentaly by Sarpkaya (1975). 
The value of these coefficients depend upon the Reynolds and Keulegan - Carpentier 
numbers. The experiments for the determination of the hydrodynamical forces due to 
water waves were performed by Chakrabarti (1983), Cotter (1984), Bearman (1985), 
Sparboom (1987). There are not many data available for this case of loading. A few 
procedures are established for the determination of the drag and inertia coefficients 
from the measurements. Some authors claim that the coefficients should be variable 
in the period of the wave to obtain a good aproximation of the real behavior. 
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Figure 1: Scheme of dynamical system in one plane. 

In the wave flume of the Institute of Hydroengineering in Gdansk experiments 
were performed with a vertical rigid cylinder of diameters d = 76.6 [mm] and d = 
46.7 [mm] supported by elastic springs at the bottom and top in the inline and 
transverse directions (four degrees of freedom). The investigated dynamical system 
is show in Figure 1. The water depth was 0.80 [m], and the wave heights H = 
12,20,25 [cm] were investigated. The displacements at the positions of the springs 
were measured. Details are given by Wilde and Sobierajski (in print). 

A Kalman filter of the type as presented by Wilde and Kozakiewicz (1984) and 
by Wilde and Romanczyk (1989) were used to decompose the measurements in com- 
ponents with frequencies equal to the multiple of the wave dominant frequency. 

2    THE OUTLINE OF THE PROCEDURE 
Let us point to some details of the proposed methods of estimation of the CM 

an<i 
Co coefficients in the Morison formula. It is necessary to construct a mathematical 
model for the decomposition of the elevation of the free surface. Let us define two 
independent stationary random functions Ai(t), D\{i) defined by the following ITO 
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stochastic differential equation 

A0(t) 
+ v Mt) 

2JT]P dB(u) (2) 

where rj is a parameter with dimension [s-1] , P is the asymptotic value of the 
variance and dB(u) is a Brownian motion process with the variance equal to one. 
Two random funtions X(t), Y(t) are defined by the matrix equation 

X(t) 

Y(t) 

cos Lot    sin Lot 
- sin tot   cos tot 

Mt) 
Dl(t) (3) 

where LO is the dominant angular frequency. The mean values of the processes X[t) 
and Y(t) is equal to zero and the covariance functions are for the stationary case are 

,(r) = cyy(T) = Pe-^[l + r,r} 

where r =| t2 — h |. 
Let us define a complex signal 

Z{t) = X{t) + iY{t) = W{t)e-'^-*W 

(4) 

(5) 

where 

w(t) = y/x*(t) + y»(t) = JAM + DftT) (6) 

is the random amplitude and i>(t) is the random phase shift. Let us assume that the 
process X(t) has a narrow - band spectral density, such that the amplitude W(t) 
and phase shift change very little in the wave period. 

Two finite sequences of stochastic processes Xn(t), Yn(t) for n = 1,2,... are 
defined by the formula 

Xn(t) + iYn{t) = Zn(t) = W•(t)e««M->/>(t)] (7) 

which have dominant frequencies equal to ULO. It follows from eguations (6) and (7) 
that the function Wn(t) are envelops for both functions Xn(t) and Yn{i). If the 
expression in the square brackets is equal to m, where r is an integer then Yn(t) and 
Xn(t) touches the envelope for all n. If in the mathematical model (2) the parameter 
?? is equal to zero then the solutions correspond to constant in time functions and 
the amplitudes and phase shifts are random variables and the real parts correspond 
to cos and imaginary parts to sin functions. In the stochastic case when i] is not 
equal to zero but is small copared to LO there is a similar behaviour for the sample 
functions. 

From eguations (5) and (7 it follows that Xn(t) is the real and Yn(t) the imaginary 
part of Z(t) to the power n and thus it is possible to express them as polynomials 
in X(t) and Y(t) of order n. For example 

X2(t)   =   X\t)-Y\t) 

Y2(t)   =   2X(t)Y(t). 

The inverse problem is to express Xr(t) and Yr{t) as a series in terms of Xp(t) 
and Ya(t) where p and s are smaller or equal to r. It may be easily seen that such a 
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representation is possible with coefficients which depend upon W(t) where q + p = r 
and q + s = r. For example 

X2(t)   =   0.5W2(t) + 0.5X2(t) 

X4(t)   =   0.375W4(t) + 0.5W2(t)X2(t) + 0A25X4(t). 

In general any polynomial function in Xr(t)Yq(t) may be expressed as a linear com- 
bination of terms of the type Xp(t) and Ys(t) with coefficients which depend upon 
W(t). 

The surface elevation for the second order Stokes' wave ((t) is described by the 
formula 

((t) = —{cos(kx -ut) + -±- cos[2(fca: - ut)]} (8) 

where 

7 = — coth(kh) ! + • 
2sinh2(kh)\ 

H is the wave height, h the water depth, ui the angular frequency and k is the wave 
number. When the wave height and phase shift change very little in the wave period 
for a fixed position in space x — 0, the relation (8) may be generalized for random 
waves by assuming 

( = X(t) + lx2(t) (9) 

where the wave number k is assumed constant and calculated from the dispersion 
relation for the peak frequency. When the process has very narrow- band spectral 
density the relations for the regular waves may be used as a first approximation to 
find the horizontal components u(t) of the velocity vectors and the accelerations. For 
example the accelerations are 

du       2cosh[k{h + z)] 3   2  cosh[2k{h + z)] 
Tt="      sinh(^)     Y{t) + r k     sinh^/0     m) (10) 

where z is the vertical coordinate measured from the still water level. 
According to the Morison formula it is necessary to calculate the values of the 

function [ u \ u. It is desireable to express this random function as a sum of random 
functions with dominant frequencies equal to nu> and coefficients wich are varying 
slowly in time. Thus we want to approximate a random function g(X, Y) by the 
following series 

g(X, Y) = a0(W) + £ ap(W)Xp + £ K(W)Yr (11) 
p=l r~ 1 

in the sens that the squared difference J between the left and right side in (11) is 
minimum. From (7) it follows 

Xp(t)   =   W(t)co8\p{wt + xl>)} 

Yp{t)   =   W*(0sin[p(arf + V)]. (12) 

When these functions are substituted it follows that the function J is a function of 
the random amplitude W(t) and random phase shift i/>(t) , and for a fixed time t 
is a random variable. It is easy to see that when Ai{t) and D\{i) are independent 
random variables with Gaussian distributions then W(t) has a Rayleigh distribution 



MORISON FORMULA COEFFICIENTS 1773 

and ip(t) has a uniform distribution in any interval of lenght 2ir and that they are 
statistically independent. We may substitute 

U(t) = -wt + ij>{t) (13) 

and for a fixed t the random variable U has a uniform distribution in the interval 
—7T, 7r.Thus as a criterion of approximation for a fixed t, in the random formulation 
we may take that the expected value with respect to the phase 

1 = f_J{W,u)^du (14) 

is minimized , where the integral is a Rieman integral and W(t) is a fixed value and 
u is dummy variable. 

Similar as in the case of Fourier series, when the necessary condition and the 
orthogonality properties of the trigonometric functions are used the following ex- 
pressions for the coefficients are obtained 

a0{W)   =    ±-J^g(W,u)du 

as(W)   =    -1- f" g{W, u) cos{su)du (15) 
Z7T J—K 

b,{W)   =   -1- [* g{W,u)sm(su)du 
Z7T J-7T 

1U. 

When these formulas are used for the polynomial functions the same expressions 
result as before by a direct calculation. For the case | X \ X it follows 

\X\X^^-WX + ~W-1X3-~W-3X5 + ...+ (16) 
07T lOTT J.U07T 

In Figure 2 a realization of a random function | X \ X calculated by a computer is 
shown and an aproximation by two terms. It may be seen that the difference are 
very small. 

With the same approximations as in the expression for the acceleration (10), the 
horizontal components of the orbital velocities are given by the formula 

cosh[k(h + z)\ xr, ,     3   , cosh\2k(h + z)] v , . 
smh(kh) 4 smh (kh) 

Thus the function | u \ u depends upon the values of X(t) and X2(t) and when the 
integrals according to the expressions (16) are calculated the interval of integration 
has to be split into parts (absolute value) which depend upon the values of W and 
the values of z, where the velocity is determined. The coefficients may be determined 
by numerical methods and the final result is that the expansion in terms is useful 
and only a few terms are sufficient to obtain a good approximation. 

To obtain the resultant force and moment the loads given by the Morison for- 
mula (1) have to be integrated along the pile from the bottom to the free surface 
which changes in time. This is an approximate procedure because the real veloc- 
ity field in the neighbourhood of the free surface is not very well described by the 
Stockes' second order approximation. It should be however mentioned that such a 
procedure is used in an engineering approach and the differences in resultant forces 
and moments are not great. Due to the integration to the time-dependent free- 
surface, terms with the double frequency are generated even when the second term 
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Figure 2: Example of | X \ X process and it's decomposition 

in the Stockes'approximation is very small and the position of the free surface is well 
described by linear theory of waves. 

To avoid complicated algebraic formulae the integrals corresponding to the re- 
sultant forces and moments were not expanded in series with the help of the rela- 
tions (16) but a numerical procedure was applied. From the measured surface eleva- 
tions by a Kalman filter the functions X(t) and Y(t) with the dominant frequency 
equal to the peak frequency of the wave were determined. By the relations (10) 
and (17) the accelerations and velocities as function of z for the times of measure- 
ment were calculated and then according to the Morison formula seperately for the 
inertia forces and drag forces. These functions of z were integrated from the bottom 
of the pile to the free surface to obtain the following relations 

R(k) 
M{k) 

RM(k)    RD(k) 
MM{k)   MD{k) 

CM 

Co 
(18) 

where RM(k) is the resultant force due to the term wiht CM = 1, and RD{k) due 
to the drag term with Co = 1, MM(k), MD(k) denotes moments due to the inertia 
and drag terms with CM = 1, CD = 1 and k denotes the time step i*. 

When the resultant forces and moments are know the displacements as functions 
of time may be calculated. In the plane of propagation of water waves the dynamical 
system has two degrees of freedom. The position of the rigid cylinder is determined 
by the measured horizontal displacements xg(t) and Xd(t) at the levels of upper and 
lower spring respectively. The damping is very small and the natural frequencies are 
high compared to the peak wave frequency. In the determination of displacements 
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it is possible to assume the equation for undamped vibrations 

M 
0 

x(t) Kn 

rCnZa KgZd kgz   -f KdZd 

R(t) 
M(t) 

(19) 

where x(i) is the horizontal displacements of the center of mass, ip(t) is the angle 
of rotation around the center of mass, kg, kj, are the spring constants of the upper 
and lower springs, zg, z& are the distances from the center of mass to the upper and 
lower springs, R(t), M(t) are the resultant force and moment of the hydrodynamic 
forces with respect to the center of mass. The position of center of mass and the 
mass matrix were calculated with added mass of water and the spring constants 
were obtained from static loads. The dynamic equation was verified by mesuring 
free vibrations in still water. 

The measured displacements xg(t), Xi(t) are related to the displacements x(t), 

<p(t) by the equation 

(20) 

When the equation of undamped vibrations (19) is used the measured vibrations 
can not be determined by the solution of this equation because the initial conditions 
will never be forgotten. The steady - state solution for harmonic vibrations will be 
used. The hydrodynamic loads (18) are decomposed into components with dominant 
frequencies corresponding to the multiples of the wave peak frequency and for each 
component the steady - state harmonic response is calculated. Thus, after simple 
manipulations the observations model for the time t^ assume the following form 

xg(t) 
_ xd(t) _ 

= 1      za 

1     -Zd <p(t) 

xg(k) 

Xd{k) 

H•(k)   Hf(k) CM 

CD 
+ <?o 

vg{k) 

Vd(k) 
(21) 

where Hi^I(k) and H^f(k) are the calculated displacements due to the inertia term 
in the Morison formula for CM = 1, and H^k), Hf{k) due to the drag term 
for CD — 1, vg(k), Vi(k) are independent sequences of gaussian white noise with 
distribution -/V(0,1) and CT0 is the standard deviation of the observation noise. 

In the mathematical models for the coefficients CM 
and Co it is assumed that 

they are statastically independent have constant mean values and fluctuations which 
are described by the ITO stochastic differential equation (2). 

The standard Kalman filter procedure is used to estimate the values Cjvf(fc), 
Co{k) on the basis of the measured values xg{k), x^k). The procedure was written 
in the form of an IBM PC computer program. 

3    THE EXPERIMENTAL RESULTS 
The water depth was 0.80 [m]. Different waves were considered. In Figure 3 the 

the results for a wave with a small wave height are shown. In this case the wave 
period was T = 1.4 [s] the amplitude of the wave was —• = 0.0596 [m], the horizontal 
component of the velocity at the still water level calculated on basis of Stockes' 
theory was umax = 0.2915 [ms"1], the corresponding KC number 5.327 and the 
Reynolds number 1.96 x 104. According to the data shown in Figure 3 the second 
term in the Stockes'approximation is negligible.   The measured displacements are 
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Figure 3: The measured and estimated wave and displacements and the estimated 
CM 

and Co coefficients for test dbl.dat. 
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very close to trigonometric functions. The estimated coefficients CM, CD are very 
close to constant functions. The average values are CM = 1-99 CD = 0.23. It may 
be seen that the fluctuations are very small and not regular. Thus the assumption 
of constant values for the coefficients is justified. 

In Figure 4 the data for a steaper wave are shown. In this case the wave period 
was T = 1.9 [s], the amplitude y = 0.113 [m], the horizontal velocity umax = 
0.527 [ms"1], the KC number 13.08 the Reynolds number 3.54 x 104. The wave 
is a second order Stockes' wave. The measured displacements are not symmetric 
and the influence of the double frequency of the peak wave is large. It may be seen 
that also in this case the estimted coefficients CM, CD are very close to constant 
functions. The average values are CM = 1-60, Co = 0.70. It should be stressed 
however that in this case there are differences between the measured values and the 
values calculated on the basis of the estimated coefficints. It may be seen from the 
graph that there are higher harmonics which are neglected in the analysis. The 
Morison formula introduces approximations, the determination of the velocity and 
acceleration fields from the Stokes' second order approximation does not correspond 
exactaly to the real behaviour. The description of the dynamical system is simplified 
because damping is neglected and steady - state harmonic solutions are assumed. 
It is surprising that with such rude approximation the constant coefficients CM, CD 

may be so adjusted that the calculated solution gives the the basic features of the 
real behaviour. 

The results of all experiments are presented in Figure 5. It should be mentioned 
that in all experiments the Reynold numbers are in the range of 104 and thus only the 
relationship wiht respect ot the Keulegan - Carpenter number KC may be shown. 
If one compares the results with previos investigations they are within the range of 
the published values. It should be noted that the coefficients CD are smaller than 
the values uselly used for Re < 105. As a crude recomendation the results shows 
that for KC < 5 CM = 2 and it drops to CM =1.5 for KC ~ 20, the values for 
CD are CD = 0.25 for KC = 5 and they grow up to CD = 0.8 for KC = 15 (there 
are points CD = 1-0). One can not expect to obtain exact values for the considered 
dynamical system because measurements have a small range in Reynolds numbers. 

4    CONCLUSIONS 

1. The investigations shown that the Kalman filter procedure is a suitable 
tool for the analysis of the problem. 

2. In the mathematical models it is enough to assume once differentiable ran- 
dom functions described by the ITO stochastic differential equation (2). 

3. The nonlinear term due to the drag force in Morison formula may be 
included in the observation model which becomes nonstationary. 

4. The simpifying assumptions introduced in the analysis of the dynamical 
system are justified for practical applications. 

5. The results of experiments shown that constant values for the CM and 
CD coefficients may be taken. 

6. The procedure may be refined by considering the influence of damping but 
it looks like it is not possible to expect much better results and the scat- 
tering of results must be considerable in view of the complicated physics 
of the problem. 
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Figure 4: The measured and estimated wave and displacements and the estimated 
CM and CD coefficients for test db5.dat. 
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Figure 5: The estimations of the CM and Co coefficients 
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