CHAPTER 12

ON THE TESTING OF MODELS IN MULTIDIRECTIONAL SEAS

E.R. Funke' and E.P.D. Mansard?

Abstract

Although traditional model testing of marine structures in long-crested, uni-
directional (2D) waves can lead to conservative results in certain applications,
modern multidirectional (3D) wave generators can produce more realistic sea
conditions, leading to the design of more accurate, cost-effective and safer
structures. This paper justifies the requirements for testing in 3D seas.

Introduction

Although wave simulation has been in use for many decades, the first evolutionary
step in wave generation technology started approximately 25 years ago with the
simulation of long-crested, uni-directional (2D) random waves. These random
waves, varying in height and period, were believed to correspond more realistically
to sea states encountered in nature.

The next phase in the evolution of wave simulation techniques addressed the
control of non-linear waves, These second order waves, which dominate the
frequency bands, both below as well as above the first order waves can, under
certain circumstances, be of considerable importance to the response of structures.

The present and possibly final phase in the development of wave generation
technology is the introduction of directionality to simulation of sea states by means
of wave generators whose wave boards are segmented and are able to move with
a "serpentine-like” motion. These three-dimensional (3D) seas are made up of
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waves from several directions, and interact to create so-called short-crested seas.
Although this concept has been well known for many decades, the ability to
individually control, by computer, a large number of contiguous segments has
become practical only over the last 15 years. This capability is now expanding
very rapidly. It is estimated that there are now 32 institutes throughout the world
equipped with this type of wave generator. Nevertheless, most testing of marine
structures is still done by two-dimensional irregular regular or wave tests, because
many certification authorities still rely on the results obtained from regular wave
tests. It is also widely believed that two-dimensional wave simulations of the
natural sea state lead to conservative designs, (i.e. results in forces on or motions
of structures somewhat greater than in nature).

Therefore, the question arises if it is necessary to provide an expensive
multidirectional wave generation capability either when planning new or upgrading
existing laboratory facilities. This paper addresses this question.

Literature Qverview

There are now many research publications that compare model tests on marine
structures using 2D (unidirectional) or 3D (multidirectional) wave simulation
techniques. The results, however, are still somewhat unconvincing, although
trends can be identified. Three of the many reasons, which may contribute to a
lack of widespread support among design engineers are given below:

e Nearly all laboratories equipped with segmented wave generators for 3D
capability, are either totally, or partly, committed to commercial testing work.
Consequently, the results of some of the comparative tests are still proprietary
to the clients and therefore have not yet been published in the open literature.

¢ Because multidirectional wave generation technology is relatively recent, there
is still disagreement among experts on how best to achieve correct simulations
[cf. Sand and Mynett (1987), Miles and Funke 1989 and Miles 1990]. It is
difficult and costly to make good quality measurements of the kinematics of
three-dimensional waves. In the absence of good measurements, comparisons
between multidirectional waves produced in different research institutes are
uncertain.

* Many multidirectional sea state simulations have used a spreading index of
s = 1 with a cos’(6) formulation. This represents only a very limited
perspective of the large variety of conditions that may actually prevail.

The Fourier summation technique of wave synthesis is considered to be one of the
more satisfactory methods. There are many versions of this method, which would
generally lead to similar results if very long wave simulation records were used.
However, for scaled physical model studies, the simulations are generally limited
to shorter test periods. As a result, several of these currently used synthesis
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methods can lead to significant variations in variance and spectral energy
distribution, both spatially and temporally. Only the so-called "single summation
method", if used over a complete recycling period, will avoid this problem. On the
other hand, the single summation method (Miles 1989) also has several variants,
some of which may affect the outcome of the test results.

Table 1 summarizes some of the currently available literature on comparative tests
between two-dimensional and three-dimensional wave simulations.

Discussion
The following are a few highlights of the research tabulated in Table 1.

Figure 1a describes the model set-up for the work carried out by Mynett, Bosma
and van Vliet (1984). In this study wave loading on a simple, relatively long wave
barrier was investigated. The barrier represented a partially submerged gate with
44% immersion and supported by two piers. The barrier was tested to investigate
the effect of relative structure-length on wave loading, using both long-crested and
short-crested waves.

Figure 1b gives the measured normalized horizontal forces as a function of kI (the
wave number multiplied by the barrier length), and compares these to numerical
model predictions according to Battjes (1982). When s = o, the spreading
function is a spike function, and consequently the sea state is virtually long-
crested. On the other hand, for s = 1, the sea state is short-crested with a broad
spreading function [cos’(8)]. As could be expected, a longer barrier is more
sensitive to the effects of wave multidirectionality.

As a second example, Figure 2a illustrates a vessel restrained by a single point
SALMRA mooring system (Single Anchor Leg Mooring Rigid Arm). The
importance of testing such systems in multidirectional seas was first demonstrated
by Huntington (1981). His research, which was carried out with an ingenious
arrangement of 10 sliding wedge wave generators, placed along a semicircular
arch, pointed the way for much of the subsequent development for the testing with
realistic sea states.

Figure 2b gives the results that were obtained by Heklie, Stansberg and
Werenskiold (1983). These graphs illustrate well how the vessel’s motions as well
as the forces on the various connecting links differ between short and long-crested
wave conditions. All results are presented as a ratio of the standard deviation
responses in multidirectional seas to those obtained in long-crested seas. Clearly,
roll, yaw and sway are much greater in multidirectional seas. Consequently, the
transverse force on the tower and the longitudinal force on the tanker are also
much larger.
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As a third example the second order long wave phenomenon is considered. As
is well known, certain structures, particularly large vessels moored in shallow
water, have virtually no response to first order waves, but can experience large
motions and mooring forces as a consequence of second order long waves. It is
therefore fitting to compare the presence of such second order long waves in
either the long-crested wave or the short-crested wave situation. This problem
was addressed by Sand (1982).

In two-dimensional (long-crested) waves, all waves with different wave periods
propagate in the same direction. The second order long waves are derived from
the difference terms derived from pairs of wave frequency components. That is
to say, for a component of frequency £ and another of frequency %, a second
order long wave term of frequency (f-#) is spawned with an amplitude
dependent on the water depth and the product of their respective amplitudes,
a4 a,

In the multidirectional situation, individual frequency components do not travel
in the same direction. Although the second order difference frequencies are, as
before, (- £), their wave lengths are now derived from the vectorial difference

given in Figure 3a. The difference wave number vector will be & - &, and will
depend on the directional difference, A6, between the two components. The
larger the wave number of this difference frequency long wave component, the
shorter will be its wave length. Another effect will be that the spreading function
of these second order terms will broaden out substantially, as is shown in Figure
3b. It can also be shown that the long wave amplitudes in multidirectional waves
are reduced by a factor of 5 to 10, depending on the water depth.

Sand (1982) described this phenomenon, as summarized in Figures 3b and 3c.
Figure 3¢ provides information about the reduction in the wave length of the
second order long wave components for bichromatic multidirectional waves. This
is presented as a ratio of the resultant wave length difference for the
multidirectional case to that for the unidirectional case, ALfAL,  The
information is given for a normalized frequency, for two frequency ratios(f - £)/ £
and for two angular differences of A8. This result is particularly interesting in
connection with natural periods of harbour resonances (i.e. the resonance wave
lengths of harbours).

Because the long wave generation process through non-linear wave/wave
interaction has been significantly reduced as a result of multidirectionality, it
stands to reason that the penetration of this long wave energy into harbours is also
reduced significantly. Figure 3d, which was taken from van der Meer (1989)
provides an example for two different wave directions relative to the harbour
entrance. It also gives the corresponding reductions for a moored vessel’s surge
motion.
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Conclusions

Based on the experience gained with the segmented wave generator system at the
Hydraulics Laboratory of the National Research Council of Canada, and on the
information available through the published literature or verbal communications,
the following statements with regard to the merits of testing in multidirectional
waves can be made:

e Whenever significant non-linearities are present in the response of structures
to waves, the principle of superposition is not valid. Consequently, it is
essential to evaluate such structures through the use of realistic simulations of
the natural sea state. Two-dimensional wave simulations are not realistic for
this purpose.

¢ Group-bound long wave activity is significantly lower in three-dimensional than
in two-dimensional seas. For the investigation of large floating structures, such
as tankers, landing strips, floating plants, which will be subject to wave group-
induced drift loads, this will be a significant factor. Three-dimensional waves
will lead to smaller drift displacements and mooring loads.

¢ The excitation of harbour seiches will be smaller with three-dimensional than
with two-dimensional waves.

¢ Structures, which have small torsional resistance, will be subject to larger yaw
motions when subjected to three-dimensional seas. Typical examples of such
structures are compliant towers or tension leg platforms (TLPs) as well as semi-
submersibles.

* Motions of vessels with single point moorings are greater in three-dimensional
than in two-dimensional seas, resulting also in larger mooring loads. In
particular, "fishtailing" motions will be accentuated.

® Dynamic positioning systems for floating structures will be more difficult to
operate in multidirectional than in unidirectional waves.

¢ Wave loading on fixed, long structures can be assumed to be generally smaller
in multidirectional seas.

In summary, the absence of correct three dimensional wave simulations can grossly
underestimate design requirements. Although two-dimensional wave simulations
can sometimes produce reasonably conservative (i.e. large) results, in many cases
it would result in excessive over-design.  Therefore, model testing in
multidirectional seas is strongly recommended to improve designs of marine
structures for cost-effectiveness and safety.
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Figure 2a: CONCEPTUAL DESIGN OF SALMRA MOORING SYSTEM
Heklie et al (1983)
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Figure 3a: WAVE NUMBERS OF SHORT AND LONG WAVES
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