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ABSTRACT: A probabilistic calculation model is developed, for the 
simplicity of inclusion of wave breaking and energy dissipation, to predict 
the transformation of directionally-spreading random waves by using 
parabolic refraction-diffraction equations. The numerical predictions are 
compared with the experimental observations of random wave transforma- 
tion over an elliptic shoal by Vincent and Briggs (1989); the predictions 
agree well with the observations under the non-breaking condition, 
however, the agreement is poor under the wave breaking condition. 

INTRODUCTION 
Estimation of refraction and diffraction, shoaling and wave breaking 

deformation over complicated bathymetry is an important problem in 
coastal engineering. Although random sea state is usually approximated 
by a monochromatic wave equivalent to the significant wave, there are 
some differences between the actual sea state and the results of monochro- 
matic representation. 

There are mainly two methods to deal with transformations of random 
waves: that is, spectral and individual wave analysis methods. Here we 
employ the individual wave analysis method for the simplicity of inclusion 
of wave breaking and energy dissipation. Incident wave heights and 
incident angles of individual waves are given from probabilistic density 
functions of wave heights and angles, and periods are given depending on 
their wave heights. Model wave equations used here are two different 
parabolic refraction-diffraction equations depending on incident angles. 
The numerical predictions are compared with the experimental 
observations of wave transformations of directionally-spreading random 
waves over an elliptic shoal carried out by Vincent and Briggs (1989). 
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NUMERICAL MODEL FOR DIRECTIONAL RANDOM WAVES 

Input Wave Heights 
One-parameter Weibull distribution was adopted as an input wave 

height distribution (Mase and Kobayashi, 1991). 
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where x is the wave height normalized by the significant wave height, Ho, 
r is the Gamma function, and m is the shape factor related to the wave 
groupiness factor, GF, as described by 

m = 3.44- 1.99 GF, (4) 

according to Mase (1989) and Mase et al. (1990). Therefore, the effect of 
wave grouping is indirectly taken into account in the wave transformation 
model through Eq.(4). 

From the Weibull distribution, representative individual wave heights 
were defined by dividing x, ranging from 0 to 2, into N (=20) segments, xt 
(i = 1,..., AO, and the corresponding occurrence probabilities, pt (i - 1,...^V) 
were calculated. A dimensional wave height is given by Xi*Ho- 

Input Wave Periods 
Considering that higher waves have longer periods and referring 

observed joint distributions of wave heights and periods (Goda, 1978), we 
set wave periods as 

Ti = 0.6 To ; 
Tt = To ; 
Ti= 1.2 T0; 

0 < #, <; 0.5H0 , 
0.5H0<Hj<; 1.5H0, 
l.5Ho<Hi , 

(5) 

in a simple manner, where To is the significant wave period. 
An alternative way to give input wave heights and periods is to use a 

joint probability density function of wave heights and periods; however, 
this method results in more number of waves in the calculation of wave 
transformation than the present method, since several wave periods are 
defined for a given wave height. 
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Input Incident Wave Angles 
Here directional spreading of individual waves was considered as in the 

case of spectral method (Panchang et al., 1990). Directional distributions 
of individual waves were assumed to be described by the following 
function: 

G{6) = G0 cos2S{{6 - 6b) /2) (6) 

where 6b is the principal (mean) direction against the x axis, S is the 
parameter representing the degree of directional concentration , Go is the 
constant to make the integration of Eq.(6) unity. Eq.(6) was originally 
proposed for spectral components (Mitsuyasu et al., 1975); which was 
treated as a probability density function of incident angles here. 

Assuming that the directional distribution of individual waves is narrow 
compared to that of spectral components, and since parabolic refraction- 
diffraction equations are employed as model wave equations, we limit the 
maximum absolute value of 6 to 60°. The representative incident wave 
angles, 6) (/' =1,..., M), were given by every 10° in the range between - 60° 
and 60°, and the corresponding occurrence probabilities, qj (j =1,..., M), 
were determined from Eq.(6). 

The directional spreading function used by Vincent and Briggs (1989) 
was 

G(^X+l|exP{ (jd)2 
COS_/'(6T 6Q) (7) 

— Eq. (7)   (o=10°) 
(o=30°) 

Eq. (6)   (S=10) 
(S=65) 

-40 0 
6 (deg) 

Fig. 1  Comparison of directional spreading functions. 
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If S in Eq.(6) is assigned to 400, 65, or 10, the directional distribution by 
Eq.(6) corresponds to that by Eq.(7) with a= 0°, 10° or 30°, used as the 
experimental conditions of uni-directional, narrow-, or broad-banded 
directional spreading by Vincent and Briggs (1989). Figure 1 shows the 
comparison of the two directional distributions by Eqs.(6) and (7). It is 
seen from the figure that both almost agree. 

Model Wave Equation 
Transformations of all N*M individual waves of wave heights //,, wave 

periods 7*, and incident angles 9j, with the occurrence probabilities pi*qj, 
were calculated by parabolic refraction-diffraction equations. The calcu- 
lated results were superposed according to their occurrence probabilities. 
For waves with large incident angle \dj[ a= 5°, the minimax approximation 
model of Kirby (1986) was used: 
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where A is the complex amplitude, k is the wave number averaged over 
the y direction, k is the local wave number, Cg is the group velocity, CD is 
the angular frequency, W is the damping coefficient described later, and 
a0, ah by are the coefficients taken to be 0.9947, -0.8900, -0.4516. It is 
noted that the derivative of W was included in Eq.(8) compared to the 
original minimax model of Kirby (1986). 

For waves with small incident angle |fy|<5°, the following parabolic 
equation with an energy dissipation term was used: 

Ax - i (K- ko)A + (KCCjlx A - 
2KCCe 2KCC, 

• (CCgAy)y = 0 

K2 = k2+ i kW 

(9) 

(10) 

where &o is the wave number at the incident boundary averaged over the 
y direction. Eq.(9) is obtained from the mild slope equation with a 
damping term (Booij, 1981) by using the splitting matrix method (Radder, 
1979; Dalrymple et al., 1984). 

Incipient of wave breaking was estimated by a simple equation, 

Hb/hb = 0.85 (0.7 + 5 tan)8 ) (11) 
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where Hb and hb are the wave height and depth at the breaking point, 
tan/6 is the bottom slope. 

The damping coefficient in Eqs.(8) and (10) was formulated by a bore 
model (Battjes, 1986) as follows: 

Y3 T \hl 

y = 0.7 + 5 tan/3 

11-10 Mi* 
5, 

B = 0.6 sh/hb ^ 1-0 
hlhb =s0.6 

(12) 

(13) 

(14) 

Eq.(14) was used to represent the measured wave height change of 
monochromatic waves more accurate (Mase and Iwagaki, 1982). In the 
calculation, a treatment of the lateral boundary condition followed 
Yamamoto(1987). 

COMPARISON BETWEEN NUMERICAL PREDICTIONS 
AND EXPERIMENTAL OBSERVATIONS 

Experiments of random wave transformations over a shoal were 
carried out by Vincent and Briggs (1989). Figure 2 illustrates the 
experimental layout of an elliptical shoal and measurement locations, but 
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Fig. 2 Experimental layout. 



MODEL OF RANDOM WAVES 545 

the coordinates are rewritten so that the center of the shoal is located at 
(x, y) = (6m, 9m), for the convenience in the numerical calculations. The 
TMA spectrum was used as a target spectrum. Spectral peakedness was 
changed by two; that is, broad-banded and narrow-banded frequency 
spectra. In the present model, an energy spectrum was not given as input 
data, but given by a wave height distribution. As general, a narrow- 
banded spectral wave trains lead to the Rayleigh distribution of wave 
heights. 

— Calculated Result 
(S=65) 

o   Mean Value of Case 
ID N1 & N2 

(a) 

3.00 B.DO P.00 li.00 

X   CM] 
13.00 IS.00 

(b) 
Fig. 3  Spatial wave height distribution for narrow-banded 

directional spreading waves of Case Nl and N2. 
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Figure 3 shows the comparison of measured and calculated wave 
heights along the measuring line #4 (figure (a)), and in a horizontal region 
(figure (b)), for the case of narrow-banded directional spreading waves 
with two different spectral peakedness of Case Nl and Case N2 in the 
paper of Vincent and Briggs (1989). Since the experimental results of Nl 
and N2 were almost the same, the experimental results were averaged and 
shown in Fig.3. In the calculation, the Rayleigh distribution (m = 2 in 
Eq.(l)) was given as the input wave height distribution. Comparing wave 
heights along the measuring line #4, we see a fairly good agreement 
between both results, but the calculated wave heights around y - 9m are a 
little larger than the measured ones. One of the reasons of the discrepancy 
may be attributed to unsatisfactory smoothing due to inadequate number 
of division in both wave periods and incident angles in the calculation. 

Figure 4 shows the comparison of wave heights along the measuring 
line #4 for the case of uni-directional random waves under the condition of 
non-breaking. In this figure, not only the significant wave height but also 
the one-hundredth maximum, the one-tenth maximum and the mean wave 
heights are plotted. Easiness to calculate such wave heights is one of the 
advantages of the present calculation method compared to spectral 
calculation methods. Experimental results of U3 and U4 were averaged in 
the figure. We can see a good agreement in this condition. 
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Fig. 4 Comparison of measured and calculated wave heights along 
the measuring line #4 for uni-directional random waves. 

Figure 5 is the result of narrow-banded directional spreading waves of 
CaseN3 and CaseN4. Numerical predictions agree well with the 
observations. 

Figure 6 shows the comparison for the case of broad-banded 
directional spreading random waves. The spatial wave height distribution 
along the measuring line #4 is very flat due to wide directional spreading. 
Averaged measured wave heights and calculated ones agree well. The 
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Fig. 5 Comparison of measured and calculated wave heights 
along the measuring line #4 for narrow-banded 

directional spreading random waves. 
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Fig. 6 Comparison of measured and calculated wave heights 
along the measuring line #4 for broad-banded 

directional spreading random waves. 

difference between the calculated one-hundredth and the mean wave 
heights around y = 9 m is larger than that in both sides; that is, the wave 
height distribution around y = 9 m becomes wider than that in both sides. 

Figure 7 shows the effect of the shape factor of the Weibull distribution 
on the calculated wave heights along the measuring line #4. There is little 
difference in the significant wave heights, but we can see the difference for 
higher waves such as the one-hundredth maximum wave height. As the 
shape factor m becomes small, that is, the incident wave height distribution 
becomes wider, the one-hundredth maximum wave height becomes large 
especially around y = 9 m. 
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Fig. 7 Effect of incident wave height distribution on 
calculated wave heights along measuring line #4. 
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Fig. 8 Comparison of measured and calculated wave 
heights under the wave breaking condition. 

Figure 8 shows a result of the cases that wave breaking occurred over 
the shoal. The measured spatial wave height distributions along the 
measuring line #4 are different from the calculated ones. The observations 
become minimum around y = 9 m, but the predictions are maximum. 
Even if the incipient condition of wave breaking was modified to make 
waves break at deeper water, by multiplying 0.5 to the original incipient 
condition, the shape of calculated spatial wave height distribution is 
unchanged, only resulting in smaller values (shown by broken line). 
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The following point should be noted. Experiments of uni-directional 
random wave transformations over a shoal were carried out by Lie and 
T0rum (1991). Even in the case that severe wave breaking occurred on 
the shoal, a concave wave height distribution along a transverse section, 
that is, being minimum of wave heights at the center of a transverse 
section cannot be seen, judging from contour maps of wave heights. The 
difference between the measured and the calculated wave heights under 
the wave breaking condition, and the difference between the measured 
results by different researchers may be attributed to the complexity of the 
breaking point and energy dissipation process over an arbitrary varying 
bathymetry. 

CONCLUSIONS 
This study developed a probabilistic model to calculate transformations 

of directionally-spreading random waves, by using an incident wave height 
distribution, an incident angle distribution, and parabolic refraction- 
diffraction equations, for the simplicity of inclusion of wave breaking and 
energy dissipation. Other advantages of the present model were as 
follows: 1) the present model could estimate any representative wave 
heights including the significant wave height; and 2) could evaluate the 
effect of wave grouping through the relationship between the incident 
wave height distribution and groupiness factor. The experimental results 
of random wave transformations over an elliptic shoal by Vincent and 
Briggs (1989) agreed well with the predictions by the present numerical 
model in the case of non-breaking condition. In the case that wave 
breaking occurred on a shoal, the predictions were not in agreement with 
the observations. The shape of measured wave height distribution in a 
transverse section was concave, however, the calculated wave height 
distribution was convex. Therefore, one of the advantages of the present 
model, that is, the simplicity of inclusion of wave breaking process was not 
examined yet. The present model should be checked for other experi- 
mental observations over a shoal, since some of the observations showed a 
different pattern of wave height distribution. 
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