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CURRENTS WITH BOUSSINESQ 

VISCOSITY AND SECOND-MOMENT 
CLOSURE MODELS. 
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ABSTRACT 

Sediment auto-suspension criteria (specifying the limit between eroding, self- 
accelerating flow and depositing, decelerating flow depending on the slope angle 
and particle settling velocity) differ by two orders of magnitude for different 
models in use. Experiments suggest that the results from ordinary density cur- 
rents are applicable to turbidity currents. In the present study, models based 
upon well-known turbulence closures are applied in order to obtain a realistic 
description of turbidity currents: 

A two-equation (k-s) model predicts phase plane behaviour in accordance 
with results from theoretical work reported in the literature, and with limits 
for auto-suspension within the range of conventional estimates. However, by its 
design, this model and simpler gradient diffusion models are unable to produce 
turbulent diffusion of sediments up through the level of the velocity maximum. 

A model with second-moment Reynolds stress turbulence closure is applied. 
This model proves to overcome the problem of vanishing turbulent diffusivity in 
the velocity maximum and give plausible results for vertical distribution of flow 
parameters in turbidity currents. 

INTRODUCTION 

Turbidity currents belong to the class of flows called gravity currents. A turbidity 
current is forced by the down-slope component of the gravitational acceleration 
acting on the soaring sediment grains, which in turn are kept in suspension by the 
turbulence generated by the current itself. Turbidity currents on the sea-bottom 
are known to have travelled hundreds of kilometers at speeds of more than 25 
m/s and to have left turbidites (sediment deposits) of over 100 km3. The present 
study considers the portion of the flow well behind the advancing front, where 
horizontal gradients of flow variables may be ignored.  Figure 1 shows a sketch 
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of the situation with suggested mean velocity and mean concentration profiles. 
As long as the slope is sufficiently steep and sediments are available, the flow 
increases its height, velocity and amount of sediments in suspension.   For this 

Figure 1: Turbidity current sketch. 

shallow near-to-uniform flow, the thin shear layer approximation can be made, 
the equations for the mean velocity U and mean sediment concentration C may 
be written 

-jf = ^ + (ps-Pf)Cgsm/3, (1) 

— =-^-(cuJ-u;Tcos/?C). (2) 

Here, ps and pf are the solid and fluid densites and U>T is the particle settling 
velocity (positive downwards) and g is the gravitational acceleration. 

Sediment auto-suspension criteria differ by two orders of magnitude for dif- 
ferent models in use (Seymour, 1986). It is a limited supply of data for model 
verification, but experiments suggest that results from ordinary density currents 
are applicable to turbidity currents (Simpson, 1982). In the present study, sev- 
eral models based upon well-known turbulence closures are applied in order to 
obtain a realistic description of turbidity currents. 

MODELS 

The equations for U and C given above contain two additional unknowns, the 
turbulent shear stress r and the turbulent sediment flux cw. The shear stress 
may be expressed as r = — puw + 2 (ps — P/)(WT cos f3)2C + pswx cos /3CU, 
and turbulence closures are needed for the normal-the-slope fluxes of turbulent 
momentum «5J and sediment concentration CM;. 
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Boussinesq viscosity model 

In Boussinesq viscosity models, the turbulent fluxes are expressed in terms of the 
mean flow gradients and some specified diffusivity. The results to be reported 
here are obtained with the use of the well known (k-e) model. Dynamic equa- 
tions are solved for the turbulent kinetic energy k and the rate of dissipation e 
of turbulent kinetic energy: 

dk      d .vidk.      „     _ ,„. 

m=irz^
+p+G-£' (3) 

The fluxes are expressed in terms of fc, e and the mean flow gradients as 

  dU _     vTdC 
-uw = uT-z-,     -cu> = £-. (5) 

oz oc az 

The diffusivity v? (often termed the eddy viscosity) is expressed as i*p = CMfc2/e. 
The coefficients of the model are (C^, Cci, Ce2, C£3, crc, ak, cre) = (0.09, 1.44, 
1.92, 0, 1.0, 1.0, 1.22). Further details of this model is given in (Eidsvik and 
Br0rs, 1989) and (Br0rs, 1991). 

Reynolds stress model 

In Reynolds stress models, dynamic equations are solved for uw and cw, and there 
is no need for an eddy viscosity. However, several additional unknowns emerge 
in the Reynolds averaging process. It is the Reynolds normal stresses w2, v2, w2, 
the concentration flux cu and the variance of the concentration fluctuations, c2. 
With the e equation, this adds up to an eight equation model: 

f - ^g)-^-!»-<*,=•> 
- (2 - \c2 + \c2C'2})uw^ + (2 - \c3 + \c3C'3f)cug' sin p 

o o Oz o o 

- (fCs - \c3Cy)cwg' cos /? - |e, (6) 

9 9 fill       9 2 
- qC2 + '-C2C'2f)uw^ + qC3 + -C3C'3f)aig'smp 

-{\c3~\c3C'3})cwg'cos jl-\s, (7) 
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—-   =   _.(Cst02_ —-)- -(Ci w2 - -k) + 2CJw2) 
at dz e dz       k 3 

- (f Ca - |<72(7J/)uu;|j + {\c3 - ^C3C'3f)cug'sin {3 

- (2-^C3 + ^C3C^)cwg'cos/3-^e, (8) 

dww d      —kduw.      e. 3   ,     
~df   =   J-z{CsW e^ ~ k{Cl + 2°J)UW 

- (1 - C2 + ±C2C2f)w^ + (1 - C3 + -C3C'J)cwg'smp 

~ (I-C3 + ho3C'J)cug'cos p, (9) 

The closed equations for the scalar fluxes and half the variance of the scalar 
fluctuations are: 

dm d       -—kdcu.     _dC     e           ,       „  . dU 
~sr   =   -^-\ycsw

2——) - uw— TGCICM - (1 - Cc2)cw— 
at dz e dz dz     k dz 

+ (l-Cc3)?<?'sm/3, (10) 

dew 9 ,     —xkdew.     -^dC     e ,    .  
ST = Tz{c~w l^-•2^ - k{C« + c*f)cw 

-{1-C& + CcsCyyg1 cos /?, (11) 

-|— = — (O2—|—)-cw—-ec. (12 
dt       dz e dz dz 

The model equation for turbulence energy dissipation is 

^ - A(C.^|£) + i(C£lP - C;2e + C7£3max(0,G)). (13) 

The dissipation of scalar variance is approximated from an assumed constant 
ratio R between the scalar and dynamic turbulent time scales: 

In the equations, P and G denote the generation rate of turbulent kinetic energy 
by the mean velocity gradient and by gravitational effects: 

P = -^, (15) 
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G = cug'smfi — cwg'cos ft. (16) 

The function / is a damping function for the wall echo effect on the pressure strain 
correlations. It is normalized to a value of one near the wall and is expressed by 
the turbulent length scale I: 

/ocA, /s^. (17) 
Z £ 

The present model is equivalent to the one presented by Gibson and Launder 
(1977) and the same set of coefficients is used. Further details are given in 
Br0rs (1991) and Br0rs and Eidsvik (1992). The model takes into account the 
proximty or "echo" effect of the bottom on the turbulent stresses. All coefficients 
with primes in equations (6) to (13) indicate terms with this purpose. 

RESULTS 

The two-equation (k-e) model predicts phase plane behaviour in accordance with 
results from theoretical work reported in the literature, and with limits for auto- 
suspension within the range of conventional estimates (Eidsvik and Br0rs, 1989). 
However, by its design, this model and simpler gradient diffusion models are un- 
able to produce turbulent diffusion of sediments through the level of the velocity 
maximum. This feature is considered to be important for the development of 
turbidity currents, and should be reproduced by a proper model. Modifications 
of the (k-e) model with algebraic stress models and algebraic length-scale expres- 
sions are made but do not solve this problem. Use of second-moment Reynolds 
stress turbulence closure (Br0rs, 1991, Br0rs and Eidsvik, 1992) proves to over- 
come the problem of vanishing turbulent diffusivity in the velocity maximum, and 
plausible results for vertical distribution of flow parameters in turbidity currents 
are obtained. Predictions with the full, eight-equation Reynolds stress model 
mentioned here compare favourably with available data for this type of flow. 

Figure 2 (a) and (b) shows predicted normal-to-the-slope profiles for a tur- 
bidity current on a /? = 0.05 radians slope. The flow has been allowed to develop 
for t — 320 seconds, from a 0.3 m high stationary cloud. The sediment grain di- 
ameter is 50 fim and the settling velocity is 0.15 cm/s. The initial concentration 
is C = 0.3. At the time shown, the flow has reached a height of about 7 m. The 
(k-e) and Reynolds stress models are seen to produce nominally nearly identical 
velocites, although the former predicts a very pointed velocity maximum. The 
Reynolds stress model predicts a fuller C profile. 

The turbulent kinetic energy k and eddy viscosity v-t are shown in Figure 2 
(c) and (d). For the Reynolds stress model, an eddy viscosity is back-calculated 
from the prediction using the expression vj = Cliw

2k/e, with C^ being a constant 
equal to 0.263 and w2 the variance of the velocity fluctuations normal to the slope. 
The dashed line shows the vj profile for the (k-e) model. The eddy viscosity is 
seen to be zero at the level (z ~ 0.2 m) of the mean velocity maximum. Here, 
the turbulence energy production P = ur(dU/dz)2 in (3) is zero. The velocity 



PREDICTING TURBIDITY CURRENTS 1943 

minimum inhibits the transport of sediments to the outer part of the flow, and a 
strong density gradient is created at this level. The steep density gradient causes 
a large negative value for the bouyancy production term G = g'{v?/'ac)(dC'/'dz). 
This reduces k further, it eventually approaches zero, and so does Vi- 

la, zero-equation models it is usual to omit the problem by using a so-called 
"linear bridge", that is by exchanging the portion around the minimum of the v? 
profile with a straight line connecting the maxima on either side. An approach 
like this has been applied on the present (k-e) model, both to v-r and to k. The 
dashed-dotted lines in Figure 2 show predicted profiles when the dip in the k 
profile is replaced with a value 0.15 times the near-bottom k maximum value. 
Although the k bridge is seen to give U and C profile shapes similar to those 
produced by the full Reynolds stress model, it causes a large (about 50% for 
the velocity) nominal increase in the values. This could possibly be corrected by 
changing the model coefficients, although this has not been attempted. 

Figure 3 shows a prediction of one of the laboratory saline gravity currents 
of Ellison and Turner (1959). The profiles are normalized, and 21/2 is the level 
in the outer layer where the velocity is reduced to one half the profile maximum 
Um. The Reynolds stress model is seen to be superior to the (k-e) model in 
representing this experiment. 
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Figure 2: Predicted profiles for self-accelerating turbidity current. Full line; 
Reynolds stress model, dashed line; (k-e) model, dashed-dotted line; (k-s) model 
with bridge across the k profile dip. 



PREDICTING TURBIDITY CURRENTS 1945 

z/zi/2 z/zi/2 

Figure 3: Predicted mean flow profiles for saline gravity current. Symbols rep- 
resent laboratory experiments by Ellison and Turner (1959). Line types as in 
Figure 2. The slope is /3 = 0.24 radians. 
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