
PART II 

Long Period Waves, Storm Surges and Wave Groups 



CHAPTER 57 

THE GENERATION OF LOW-FREQUENCY WAVES 
BY A SINGLE WAVE GROUP INCIDENT ON A BEACH 

G. Watson 1 T.C.D. Barnes 2 and D.H. Peregrine : 

Abstract 

The generation of a single low-frequency wave (LFW) pulse by a single group of 
waves incident on a beach is investigated by means of laboratory experiments 
and a numerical model. This simplified case allows the LFW to be measured in 
isolation, after the incident group has passed and before there is any reflection 
from the wavemaker. A beach consisting of two different slopes (1:100 and 
1:20) was used, and runs were made with the water level on each slope. The 
results were simulated using a composite numerical model, with Boussinesq 
equations in the deeper water and nonlinear shallow water equations in the 
surf zone. For some calculations, a friction term was included. For the 1:20 
slope, the outgoing LFW is well predicted even without the friction term. With 
a 1:100 slope, a friction factor of 0.01 gave a good result, in this case reducing 
the amplitude of the outgoing LFW by a factor of about 2 compared with the 
frictionless result. The nondimensional equations show that the friction term is 
insignificant if the beach slope is large compared with the friction factor. Runs 
of the surf zone part of the model show the outgoing LFW to be correlated with 
the swash motion. Its amplitude is largest if the duration of the wave group 
is similar to the swash period of the largest wave in the group. The model 
also showed a slightly stronger than linear dependence of LFW amplitude on 
incident wave amplitude. 
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1. Introduction 
Low-frequency waves (LFW) with periods typically 5 to 15 times those 

of wind-generated waves are formed when wind waves meet beaches. Hamm, 
Madsen & Peregrine (1993) give a general review of the phenomenon, whilst 
Herbers et al. (1992) give a good review of recent field measurements. Re- 
cent work on the theory of LFW generation has been published by Cox et al. 
(1992), List (1992a,b), Roelvink et al. (1992), Roelvink (1993) and Schaffer 
(1993). Low-frequency swash oscillations, with bichromatic waves, have also 
been investigated by Mase (1994). 

In this work, our aim was to throw some light on the question of how 
such waves are generated, by investigating the simplest possible case of LFW 
generation in as much detail as possible. Watson & Peregrine (1992) investi- 
gated the generation of low-frequency waves in the surf zone using a numerical 
model based on the nonlinear shallow-water equations. A single group of waves 
was used to illustrate the process whereby a group forces a variable set-up near 
the shoreline, which then travels offshore as a single LF pulse. This process 
has now been investigated more quantitatively, by means of laboratory exper- 
iments and a wider range of numerical computations. The range of validity 
of the model has also been extended by coupling the surf zone model to a 
Boussinesq model in the deeper water. 

The reason for choosing a single group of waves rather than continuous 
bichromatic waves (such as those used by Kostense, 1984) was that this allows 
the outgoing LFW to be measured in isolation. By the time it reaches the 
deeper water, the incident wave group has already passed by. It is also mea- 
sured before reflecting off the paddle. With continuous waves such reflections 
will contaminate the results unless they are mechanically removed or taken 
into account in the data analysis. Both of these are difficult to achieve with 
any degree of confidence. 

Details of the experiments, and discussion of one run showing the gener- 
ation of an outgoing LF pulse, are given in Section 2. A more detailed account 
of the experiments will be available in the Ph.D. thesis of T. Barnes. The 
numerical model is described briefly in Section 3 and its results are compared 
with the measurements, showing the importance of friction effects on the shal- 
lower beach slope. Section 4 discusses the influence of friction in more detail. 
Section 5 illustrates the correlation between swash motions and the outgoing 
LFW, using results from various other runs of the surf zone part of the model. 
The importance of the relative timescales of group period and swash period is 
pointed out. Discussion and conclusions are given in Section 6. 

2. Experimental Results 

Description of Experiments 
Experiments were performed in a 50 m long wave flume at Hydraulics 
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Research Ltd. in Wallingford, England. The flume is 1 in wide. It is equipped 
with a piston-type wavemaker with two paddles, controlled by a PC. A concrete 
beach with two slopes, 1:100 and 1:20, was installed in the flume as shown in 
Figure 1. Runs were performed using two different water depths of 0.35 m and 
0.20 m, so that the undisturbed shoreline would lie on a different slope in each 
case. 

An array of resistance-type wave probes was used, and Figure 1 shows 
their layout for the deeper water runs. Probe 1 was located near the paddle 
in order to measure the generated wave signal. Probes 2 and 3 were in the 
deeper water. Probes 4-11 were on the 1:100 slope and Probe 12 was on the 
1:20 slope. 

1:20 
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Figure 1: Cross-section of the HR wave flume, showing beach and positions of 
wave probes (not to scale). A current meter was located at Probe 6. 

Since a number of numerical runs were to be performed using just the 
surf zone model, particular attention was paid to measurements at a point 
where all but the smallest waves had already broken. In the case illustrated, 
this was near Probes 6 and 7, (depth 15.5 cm). Two probes were used at this 
point in order to check for consistency across the tank. 

Along-tank velocity data were also collected at this point, using an ul- 
trasonic current meter. The sensor head was placed at about half the water 
depth, the results having been found not to be very sensitive to the precise 
placement of the probe. At this location, the incident and outgoing signals 
are not separated in time, but can be approximately separated by calculating 
the Riemann invariants. This is done by combining the surface elevation and 
velocity signals as explained in Section 3. 

Wavemaker Signal 
Initially, single groups consisting of modulated sine waves were used. 

However, these waves acquired large second harmonics as they propagated 
along the tank, with each wave effectively splitting into two. To solve this 
problem, groups consisting of solitary wave solutions to the Korteweg-deVries 
equation were used instead. For the shallow water regime of these experi- 
ments, this is more appropriate than Stokes theory, which is better in deeper 
water. Stokes theory requires the Ursell parameter U = kao/(kh)3, to be 
small, whereas in these experiments it was of order 1. In the formula for U, 
k is the wavenumber, a0 the fundamental amplitude and h the undisturbed 
water depth. 
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The wavemaker signal was designed to produce surface elevation time 
series of the form 

f] = 2^?7isech i /—\ci(t — ti) — (a + o,a) sinwi 0 < t < 7r/w     (1) 

and zero outside that time interval. The wave times, i;, were equally spaced. 
The wave amplitudes, rn, were sinusoidally modulated by the function r\i — 
Asmuiti. The water depth for each wave, hi, must be adjusted for the addi- 

tional sine function: hi — h0 — (a+as) sin wi,-. The wave speed c; is Jg(hi + r/i). 

Velocity was estimated from the shallow-water approximation u = Jg/h0 r\ 
and then integrated to give the wavemaker displacement signal. 

The stroke of the paddle is not great enough to make a succession of 
solitary waves, each with its own net displacement. For this reason, the sine 
function was added. This has the same duration as the group and corresponds 
to a set-down beneath it. This means that there is little net mass flux in the 
incident wave groups. 

Results 
Surface elevations from a typical run in the deeper water (1:20 slope) are 

shown as the thick lines in Figure 2. All of the runs yielded results which were 
qualitatively similar. Numerical predictions from the model described below 
are included for comparison. The shape of the initial wave group, consisting 
of five waves, is seen in the trace from Probe 1. The form of the solitary 
waves is preserved quite well along the constant depth section, except for the 
development of a small dispersive tail (1-3). As the wave group travels into 
shallower water, the waves steepen and at Probe 6/7 all except the first are 
breaking. Near the shoreline (11 & 12) a LFW is seen to develop consisting of a 
peak, apparently like wave set-up, followed by a trough. At the same time the 
short waves dissipate their energy and get smaller, so that the LFW is more 
prominent. This wave then propagates offshore, decreasing in amplitude as it 
does so. At Probe 5 it is separated in time from the incident group. Further 
offshore it can be identified quite clearly. The moving peak and trough are 
marked with arrows. It then reflects off the wavemaker (also marked). At 
Probe 1, the amplitude appears to be twice as big, due to the superposition of 
the reflection. 

The shape and amplitude of the outgoing LFW can be seen more clearly 
if the vertical scale of the plots is expanded. This is shown for Probes 2-5 in 
Figure 3. 

3. Composite Numerical Model 
A coupled numerical model, based on the nonlinear shallow-water equa- 

tions (NLSWE) in the surf zone (Watson and Peregrine, 1992) and the Boussi- 
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nesq equations in deeper water, is able to simulate the phenomenon. 
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Figure 3: Expanded view of the outgoing LFW in Figure 2, for Probes 2-5. 
Thick line: Measurements. Thin line: Numerical prediction. 

Our primary interest here is in the mechanisms by which LFW are gen- 
erated. LFW have their greatest amplitudes in the surf zone, and the most 
important components of the generation process occur there.   It is therefore 
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important to use a model that includes all the important, physics in the surf 
zone. The nonlinear shallow-water equations for the conservation of mass and 
momentum, with a friction term, were used: 

dt + (ud)x = 0 (2) 

1        U \ V, \ 
ut + uux + gr/x + - f —-— = 0 (3) 

where f] = d — h is the surface elevation, d is the total water depth, h the 
undisturbed water depth, u the flow velocity, g gravity and / an empirical 
friction coefficient. 

These equations are able to represent spilling breakers as travelling hy- 
draulic jumps or bores, which manifest themselves as discontinuities in the 
solution. Some information on these equations without the friction term, and 
the numerical method used to solve them has been given previously (Watson 
& Peregrine, 1992; Watson, Peregrine & Toro, 1992). Treatment of the moving 
shoreline boundary condition is discussed in the latter paper. 

The friction term in the above equations is the simplest that is conven- 
tionally used to represent friction. Typical values for / are of order 10"2. For 
the present study it was necessary to modify the numerical procedure slightly 
to allow for this term. This was done by first solving the frictionless equations 
at timestep n as before, a procedure which is second-order accurate. After 
this a simple first-order forward difference step was applied at each grid point, 
altering the velocity un by an amount 

_  1        Un\Un\ M (4) 

2J        dn 
w 

At must be small enough for this to be reasonably accurate. The inclusion 
of friction in this manner destroys the second-order accuracy of the scheme. 
However, since the empirical friction term is rather approximate in any case, 
the degradation of numerical accuracy here is not important. 

In deeper water, the Boussinesq equations are appropriate because they 
include dispersive terms. The Boussinesq equations in the form due to Pere- 
grine (1967) were used: 

dt + (ud)x = 0 (5) 

ut + uux + gr)x = -h{hut)xx - -h
2uxxt (6) 

Recently, Dingemans has shown that in some circumstances, particularly 
on a barred beach, it is important to include further dispersive terms. See 
Dingemans (1995) for a full discussion. However, in our case it will be seen 
that the above equations give sufficiently good results. The friction term was 
not included in these equations, since it becomes small in the deeper water. 
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The equations were solved numerically using a finite difference scheme due to 
Peregrine (1967). 

Matching the two models together 
The models were matched at the join using a characteristics boundary 

condition. In the frictionless shallow-water equations, the wave signals prop- 
agating in each direction are given by the Riemann invariants R+ = 2c + u 
and R~ = 2c — u, where c = \fgd and d is the total water depth. This is 
also approximately true for the Boussinesq equations, which for waves of suf- 
ficiently gentle slope approximate to the shallow-water equations. Thus, an 
almost non-reflecting join can be made by taking R+ from the last point of the 
Boussinesq section and feeding it into the first point of the NLSWE section, 
and taking R~ from the first point of the NLSWE section and feeding it into 
the last point of the Boussinesq section. 

This being done, a number of runs were made in order to test the sensi- 
tivity of results to the position of the join. It was found that the join could be 
moved a significant distance without much change in the output, as long as it 
was somewhere in the vicinity of the break point. The run reported here was 
done with the join at the location of Probe 6 in Figure 1. 

The Seaward Boundary Condition 
At the offshore end of the computational domain, a boundary condition 

similar to that at the matching point was applied. This used the characteristic 
equations to allow outgoing waves to pass out with no reflection. The outgo- 
ing R~ was found from data immediately inside the domain, and the surface 
elevation was forced to be equal to that measured by Probe 1. This was suffi- 
cient information to define the incident R+. Although the reflections from the 
paddle that were present in the wave flume were not reproduced, these are not 
of any interest. 

Comparison of Numerical and Experimental Results 
The numerical results for the data in Figures 2 and 3 are shown as thin 

lines in those figures. The main feature of interest, i.e. the amplitude, shape 
and propagation of the outgoing LF pulse, is reasonably well predicted — 
although the amplitude is a little too large and the timing is not precise. Some 
properties of the short waves are not reproduced very well as the group travels 
shoreward. Their amplitude is underpredicted, the sharp wave crest is flattened 
out, and there are small timing errors. Note however that these details do not 
appear to have a significant effect on the LFW generation process. 

The success of this model in predicting the measured LFW shapes and 
amplitudes is illustrated in more detail using data from Probe 6. Results from 
two runs are shown. One has the water level set so that the shoreline is on the 
1:20 slope, the other with the shoreline on the 1:100 slope. 



GENERATION OF LOW-FREQUENCY WAVES 783 

In both cases the model was run using the measured water depth and 
velocity at Probe 6, to construct a time series of the Riemann invariant R+ = 
2-sfgZ + u. The outgoing LFW was then examined by computing the other 
invariant R~ = 2\fgd - u. This is plotted using dashed lines in Figures 4 
and 5 for the two runs, together with the numerical result. Both cases show 
the LFW quite clearly. There are spikes in the data every time an incident 
wave passes the probe. This effect is due to the fact that the shallow-water 
equations on which the Riemann invariant analysis is based do not accurately 
describe the details of the crests of steep waves, breakers, or bores. 

2.70 

U 

50 
Time (s) 

Figure 4: Outgoing signal at seaward boundary in deep water case (composite 
slope with shoreline on the 1:20 slope). Data (broken), frictionless model 
(solid). 

In the deeper water case (1:20, Figure 4), the agreement between model 
and data is quite good, except for precise details of the wave shape. In this 
case, the model gave almost the same result with or without friction. The 
frictional result is not plotted. 
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Figure 5: Outgoing signal at seaward boundary in shallow water case (1:100 
slope). Data (broken), frictionless model (dotted), frictional model (solid). 

In the shallower case (1:100, Figure 5), agreement in the frictionless case 
is not so good (dotted). The LFW is overpredicted by a factor of about 2. 
The shape of the pulse is also different, in that the peak occurs about 5 s 
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late. However when the friction term is included, with tlic value / = 0.01, the 
result is much better — as shown by the solid curve. The effect of friction is 
discussed in more detail in the following section. 

4. The Effect of Friction 
The frictional drag force acting between the bottom and the water has 

an increasingly strong effect as the depth decreases. This is simply because 
the friction force is primarily determined by the near-bottom velocity of the 
water, and in the shallow-water approximation it acts on a mass of water that 
is proportional to the depth. It will thus have its strongest effect in the swash 
zone, where the water is shallowest. Since this is where LFW processes are 
particularly important, it is to be expected that friction may have some effect 
on LFW generation. 

For a plane beach of slope a extending fom the shoreline to the offshore 
boundary, the relative importance of friction effects may be seen from the 
following scaling argument. Eqs. 2 & 3 may be written using the following 
non-dimensional variables: 

x' = x/x\,    d' = d/h1,     rj' = rj/hi,    u' = u/ui,    t' = t/ti 

where the scaling variables are Xi (the distance between the offshore boundary 
and the undisturbed shoreline), hi (the undisturbed water depth at the offshore 
boundary), u\ = \fgh[ and t\ = x\/u\. Dropping primes, the equations 
become: 

dt + {ud)x = 0 (7) 

1  f u\u\ 
ut + uux + Vx + - J- -Li = 0 (8) 

la    a 

where a is the slope hi/xi. 
For breaking waves, v? /d is of order 1, so the friction term is of order 

//a. Thus friction can be expected to have a negligible effect if / < a, a 
noticeable effect if / ~ a and to dominate everywhere if / >• a. In the two 
cases under consideration, with / = 0.01, f/a takes the values 0.2 and 1.0. 
In the former case friction had little effect, whereas in the latter the outgoing 
LFW amplitude was reduced by a factor of about 2. 

These conclusions were further confirmed by model runs made using a 
range of values of /. The same incident wave group as in Watson & Peregrine 
(1992) was used, and the height of the outgoing LF pulse was determined by 
taking the difference between maximum and minimum in R~ at the offshore 
boundary. Six runs with values of f/a ranging from 0.0 to 2.0 were performed. 
The results are plotted in Figure 6. 

The figure shows a strong dependence of outgoing LFW amplitude on 
the scaled friction factor f/a. With no friction (f/a = 0), the amplitude has 
its maximum value,   but this is reduced quite rapidly as f/a is increased, so 
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that for f/a = 0.2 the LFW amplitude is 78% of its maximum value. As f/a 
is increased, the amplitude continues to decrease, although more slowly, for 
f/a = 1.0, it is 47% of its maximum value. This is roughly consistent with 
the results in Figures 4 and 5. 

1.0 
Friction factor 

Figure 6: The dependence of outgoing LFW amplitude on scaled friction factor, 

f/a. 
This means that the agreement which was obtained in the 1:100 case with 

/ — 0.01 is open to the suggestion that it may have been merely coincidental. 
However, this value was chosen from experience as being one that is typically 
used. 

5. The Importance of Swash Motions 
During the time that the wave group is in the swash zone, there is a 

complex interaction between the waves in the group and the swash motion from 
previous waves. This affects the amplitude and shape of the LFW that finally 
emerges. The nature of the swash, and the properties of the LFW, depend 
on the relative values of the various timescales in the problem. Rather than 
attempt to understand the swash motion in detail, this effect was investigated 
in a more empirical manner by performing a number of runs of the model with 
different timescales and hence different swash regimes. 

The timing of the incident group is determined by two parameters: the 
wave period, r, and the number of waves in the group, N. The total duration 
of the group is then T = NT. There is a third timescale in the problem, namely 
the natural period of swash on the beach. Let us call this ts. This depends on 
the amplitude of the incident waves. In the frictionless case (considered here), 
the swash motion approximates fairly closely to free motion under gravity on 
the sloping beach. Thus, the larger the incident waves, the greater the initial 
velocity of the uprush and the longer the swash period ts. 

A number of runs of the model were performed with different wave pe- 
riods, different numbers of waves and and different swash periods. These were 
based on variations about a control case, summarized in Figure 7. 
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The top panel of this figure shows a perspective view of the space-time 
plot of surface elevation. The input is an idealized group of five sinusoidally 
modulated sawtooth-shaped waves, which are intended to represent waves that 
are already breaking. The peak and trough values have been set so that there 
is no net mass flux in each wave. The curved wave trajectories show how each 
wave slows down as it approaches the shore, and the wave heights can be seen 
to diminish in the process. The wave group can be seen to force a mass of 
water up the beach face on the timescale of the wave group. The seaward- 
propagating LFW pulse that this forcing generates is just about visible to the 
right of the wave group in the plot. 

Sumn 
Wave 

Figure 7: Result from the control case (see text). 

The next panel shows shallow-water equation characteristics and bore 
trajectories (indicated by black dots). The shoreline motion is also shown in 
plan view. Beneath this, the incident and outgoing signals at the seaward 
boundary of the model are plotted. These are computed from the Riemann 
invariants R+ and R~ as explained in Section 3. Note that the outgoing signal, 
which shows the shape of the LFW pulse, has been magnified by the indicated 
factor in order to make it more clearly visible. In this case it is about 10 times 
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smaller than the incident signal. The main thing to notice from this plot is 
that the shape of the LFW pulse is very similar to the shape of the runup, 
especially after the runup has been averaged over the short-wave oscillations. 

The generality of this observation was tested by performing a variety 
of model runs with different timescales. These were then used to investigate 
the effect of wave group timing on the LFW amplitude. Runs were performed 
with a range of values of r and then with a range of values of N, varying the 
wave group duration T in two different ways. Both sets span approximately 
the same range of T-values for each wave amplitude, with ts roughly central 
in each case. The runs were repeated with two different amplitudes for the 
largest wave in each group: 0.1 and 0.6 in dimensionless units. This provided 
two different values of the swash period. Separate runs using just one incident 
bore showed that for a wave of height 0.1 above still water level, the swash 
period was ts — 1.4; whereas for a height of 0.6 it was ts = 2.9. 

The results of these runs are summarised in Figure 8, with runup plotted 
next to the LFW signal (at the offshore boundary) for each run. These curves 
have been smoothed a little to remove discretization effects in the runup, and 
spikes (due to incident bores) in the LFW signals. Note the clear correlation 
between the shapes of each pair of signals, with the LFW signal occurring 
somewhat later than the runup signal. It is significant that this is true despite 
the runup signals being quite varied in nature. 

The runup is plotted so that whatever the range, the vertical extent of 
the plot is the same. The LFW plots all have the same relative scaling. Ratios 
of LFW elevation amplitude to incident wave amplitude were in the range 
0.015-0.07 (a factor of 4.7). However, ratios of LFW elevation amplitude to 
runup amplitude were in the narrower range 0.035-0.125 (a factor of 3.6). 

These two observations indicate the reflected LFW is better correleted 
with runup than with the incident wave envelope. This is consistent with the 
idea that the time-varying set-up within the wave group is manifested as swash 
when it is near the shore, and then propagates offshore as the outgoing LFW. 

The amplitude of the outgoing LFW was found to depend in a consistent 
way on the relative values of wave group duration T and swash period ts . This 
is shown in Figure 9. Here the LFW height, defined as the difference between 
the maximum and minimum in the LFW pulse, is plotted against T for each 
run. Four sets of results are presented. Figure 9(a) contains the results for 
amplitude 0.1, and Figure 9(b) for amplitude 0.6. The thick lines are runs 
with variable JV, and the thin lines for runs with variable r. 

The main feature to note is that each of these curves has a maximum 
close to the swash period for a single wave of the respective amplitude. This 
period, ts, is marked with an arrow on each plot. There are notable differences 
between the variable-N and variable-T series, and at present the explanation 
for this is not clear. However, it is suggested that the presence of a peak in each 
curve can be explained as a quasi-resonance between the wave group forcing 
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and the natural swash motion of the water on the beach face. If the wave 
group period is similar to the swash period (T « ts), then a sequence of waves 
can carry water up the beach following, reinforcing and being carried by the 
initial swash motion. Thus, a large (wave-averaged) swash motion develops. 

Runup LFW 

0.6 0.5 1 
0.6 0.5 3 
0.6 0.5 6 
0.6 0.5 10 
0.6 0.5 15 
0.6 0.1 6 
0.6 0.3 6 
0.6 0.5 6 
0.6 0.8 6 
0.6 1.1 6 
0.6 1.5 6 
0.1 0.25 1 
0.1 0.25 3 
0.1 0.25 6 
0.1 0.25 10 
0.1 0.25 15 
0.1 0.1 6 
0.1 0.175 6 
0.1 0.25 6 
0.1 0.35 6 
0.1 0.5 6 
0.1 0.5 6 
0.2 0.5 6 
0.4 0.5 6 
0.6 0.5 6 
0.8 0.5 6 

Figure 8: Swash motion and LFW signal for various runs of the model. 

0.025 

0.000 
0 12       3       4 

Duration of wave group 
2       4       6       8      10 

Duration of wave group 

Figure 9: Dependence of LFW amplitude on wave group period T.  (a) Am- 
plitude 0.1. (b)Amplitude 0.6. 
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If the wave group period is longer than this swash period (T ^> ts), then 
succeeding waves tend to meet swash already coming down the beach, and this 
opposing effect restricts the development of a large swash. In the extreme case 
of uniform waves, the swash zone becomes very narrow. For T <C ts, there is a 
strong fall-off of LFW amplitude as T decreases. Figure 8 shows that in these 
cases, the period of the LF motion does not decrease beyond ts. These shorter 
groups have less momentum and energy, so can drive less and less fluid up the 
beach as T decreases. 

With continuously modulated waves, rather than a single group, the 
number of wave groups or fraction of a wave group that is within the surf zone 
at any one time is expected to be relevant. This may be represented by a 
group-based surf-similarity parameter, G = T/t^, where T is the duration of 
the group and £& is the time it takes the largest wave to reach the shore after 
breaking. G is small for a wide surf zone and large for a narrow one. If G is 
small, several groups may simultaneously be generating LFW. There will then 
be substantial interference, which is likely to be destructive. If it is large, there 
will only be one or two waves in the surf zone at once: little interaction can 
occur and LFW generation is expected to be minimal. The strongest LFW 
generation is expected to occur when G is of order one. This idea remains to 
be investigated more thoroughly. 

6. Discussion and Conclusions 
The experiments clearly show the generation of LFW, and the numerical 

modelling successfully predicts their form and amplitude, even though the finer 
details of wave breaking are not included. It is clear that friction is important 
on the gentler slopes, on a laboratory scale, and reduces LFW amplitudes. 

In interpreting the numerical and laboratory experiments it appears that 
the swash zone, and in particular the period of swash from the largest wave 
of a group, is an important feature. It is not entirely clear however, whether 
this is an indication of set-up generated in the approach to the shore line or a 
process centred close to and in the swash zone. In addition, for the practical 
case where there may be continuous wave modulation we suggest a group surf- 
similarity parameter based on the size of the surf zone relative to individual 
groups should be important. 

The numerical experiments also indicate a slightly stronger than linear 
dependence of LFW amplitude on incident wave amplitude, in accord with 
field observations (Herbers et al., 1992). However, the question as to what 
LFW are incident on the surf zone, has yet to be resolved. The behaviour of 
wave groups with differing set-down has been investigated, but is not reported 
here. The development and decoupling of incident bound waves, as they enter 
shallow water where the Stokes theory becomes invalid and wave crests behave 
more like individual solitary waves needs to be determined. This is currently 
under investigation using a fully nonlinear potential flow solver. 
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