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ABSTRACT 

First a discussion is made on the relation between the time-average of a 
Boussinesq-type equation and the mean flow equation. Then nonlinear wave 
transformation on a sloping bed is computed by a set of Boussinesq equations 
including a breaker-induced energy dissipation term. Comparisons are made be- 
tween the computations and laboratory measurements for cross-shore distribu- 
tions of the wave height and mean water elevation, and for time-histories of the 
near-bottom velocity near and after breaking. Undertow current velocity in the 
nearshore zone is calculated by a semi-empirical formula and is also compared 
with measurement data. A beach profile change model is set up by combining the 
Boussinesq-type equations, a sediment transport rate formula for the sheet-flow 
proposed by Dibajnia and Watanabe, which incorporates the asymmetric orbital 
velocity due to wave nonlinearity as well as the undertow current, and a sedi- 
ment mass conservation equation proposed by Watanabe et ah, which includes 
the effect of local bottom slope. The validity of the model is examined through 
the comparisons of the computed transport rate distributions and beach profiles 
with the laboratory data obtained in large wave flume experiments. 

INTRODUCTION 

Prediction of beach processes is generally inevitable to develop or protect 
coastal zones properly. Short-term beach topography changes have usually been 
predicted in Japan by the numerical model proposed by Watanabe et al. (1986) 
or its improved versions. In this model, however, since the wave computation 
is performed with linear time-dependent mild slope equations involving breaker- 
induced energy dissipation, the calculations of the nearshore currents and the 
mean water elevation should be carried out only through the evaluation of ra- 
diation stresses, and hence the wave-current interaction can be treated by the 
iteration of the computations of waves and of currents. In addition, the effect of 
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wave nonlinearity on the sediment transport rate has been incorporated on the 
basis of the simplified semi-empirical formulas. 

Dibajnia et al. (1992) have performed the prediction of beach profile change 
applying the formula by Dibajnia and Watanabe (1992) for the sheet-flow trans- 
port rate under nonlinear waves. However, since they have employed the linear 
wave model for the wave computation, a sort of inconsistency has been existing 
from a theoretical viewpoint. 

Prediction of beach profile change under sheet-flow condition is important, 
because significant short-term beach deformation is caused by large waves, un- 
der which the sheet-flow sediment transport is usually predominant. In addition, 
under such conditions, one cannot discard the asymmetry of near-bottom or- 
bital motion and the presence of undertow particularly in the surf zone. This 
paper presents a numerical model of beach profile change based on a sheet-flow 
transport rate formula mentioned above and on Boussinesq-type wave equations, 
incorporating the effects of asymmetric velocity and the undertow. Comparisons 
will be made between the numerical computations and measurements. 

BOUSSINESQ EQUATION AND NEARSHORE CURRENT 
EQUATION 

Boussinesq-type equations include nonlinear terms to the order of 0(a2), 
where a is the wave amplitude. Since nearshore currents (wave-induced mean 
flow) and wave setup/down are the phenomena of the order of 0 (a2), they will 
be evaluated with a Boussinesq-type equation. In this section, we will show that 
the time-average of the Boussinesq equation that involves vertical velocity distri- 
butions becomes equivalent to the governing equation for the nearshore currents, 
and that thus the concurrent computation of waves and currents becomes possi- 
ble. 

Abbott (1979) has presented the Boussinesq equation involving vertical ve- 
locity distributions as follows: 

dpua       d  , .      d , . dri __ + _(w) + _(,,uma) + w__ 

Pdxadt*\ 2(h + V) j [ ' 

where h is the still water depth, rj the instantaneous surface displacement, u 
the horizontal velocity, w the vertical velocity, t the time, and x and z are the 
horizontal and vertical coordinates, respectively. The subscripts a and ft take a 
value of 1 or 2, and the summation convention is adopted. 

Boundary conditions on the free surface and the seabed are as follows: 

ft-w+u°-tr0 {z=v) (2) 

w + ua--— = 0    (z = -h) (3) 



BEACH CHANGE DUE TO SHEET-FLOW 2787 

Integrating Eq. (1) from the bottom to the free surface and using the boundary 
conditions, we obtain 

dp , dp , ..       . dr) 
Ft LpUadz + dT, L pu^dz + P9{h + r])d^a 

A    (h + r,)2 m 
pdxadt2    3 k ; 

Here we will decompose the horizontal velocity ua into the time-average 
(steady) component Ua and the periodic (wave) component u'a: 

ua = Ua + u'a (5) 

and define three kinds of mass transport as follows: 

f pu'Jz = M'a (6) 
J—h 

f pUadz = pUa(h + rj) = Ma (7) 
J—h 

f puadz = Ma = Ma + M'a = pUa{h + rj) (8) 

where rj is the mean water displacement, M'a and Ma are the mass transport 
due to the orbital velocity and to the mean flow, respectively, and Ma is their 
summation. 

Substitution of Eqs. (6) to (8) into the time-average of Eq. (4) yields 

dMa .    d   [~r ,-,   . ~r 77T      M'aM'0 i       d   {~   ~      ~r>  

f+8^{u^+Lpu'^ dz • 

On the other hand, Eq. (10) gives the governing equation for the nearshore 
current and the mean water elevation, in which the bottom friction and lateral 
mixing terms are neglected. 

8M B    ~   - Bn 
^ + —[U,M. + Sa,] + P9{h + V1± = 0 (10) 

where Sap is the radiation stress expressed as: 

~p      1 M' M'g 
Sap = }_h(.Pu>'f} + P8ag)dz - -pg{h + rjfSaP -      "    p (11) 
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Comparing Eqs. (9) and (10), we can readily find that their differences exist 
only in the radiation stress term and on the-right hand side. Since the Boussinesq 
equation holds for shallow water waves, we apply a long wave approximation to 
the pressure p in Eq. (11). Abbott (1979) has obtained the following relation for 
the pressure, in the process of his derivation of Eq. (1): 

|2 

— -9(r,-z) + w ^—^  (12) 

Substitution of Eq. (12) into Eq. (11) and some manipulations make Eq. (10) 
become identical to Eq. (9). 

It has thus been shown that, as far as the long wave approximation holds 
good, the time-average of the Boussinesq equation becomes equivalent to the 
mean flow equation. In other words, solving the Boussinesq equation, we can 
compute not only the wave field but also the nearshore current and mean water 
level field, which are obtained by taking the time-average of the solutions for the 
velocity ua and for the surface displacement rj, respectively. This means that the 
wave-current interaction is automatically incorporated in computations. 

COMPUTATION OF WAVES AND MEAN WATER ELEVATION 

A set of one-dimensional Boussinesq equations involving a breaker-induced 
energy dissipation term is expressed in terms of the surface displacement rj and 
the flow rate Q as follows: 

£+£-• <i3> at     ox 

oQ      a (Q2\ dr,     h2 d3Q      „      n 

dt     d. 

where 

D = h + r),     Q= f u 
J-h 

dz, 

u is the horizontal velocity and Mo corresponds to the breaker-induced energy 
dissipation and is given by (Sato and Suzuki, 1990) 

MD = —fDjrY 0-5) a1      ax1 

The quantity a is the angular frequency, and fp is the energy dissipation coeffi- 
cient expressed as (Watanabe & Dibajnia, 1987): 

fD - aD tan 0J- 
h\ 

Q       Qr (16) 

Qs-Qr 

in which the coefficient ao = 2.5, tan/? is the bottom slope around the breaking 
point, Q is the amplitude of Q, and Qs and QT correspond to Q in the dissipation 
zone on a uniform slope and in the recovery zone in the constant depth water, 
respectively, given by 
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Qs = IsCh (17) 

Q, = IrCh (18) 

7s =0.4 (0.57 + 5.3 tan /?) (19) 

7, = 0.4 (a-) (20) 

where C is the wave celerity, and (O//I)B is the ratio of the wave amplitude to 
the water depth at a breaking point. 

In order to avoid re-reflection of outgoing waves (reflected from the slope or 
structures, if any), we should impose such a condition that they can freely pass 
through the offshore boundary of a computation domain. For this, we express the 
flow rate Q on the offshore boundary as the summation of that of the incident 
waves Qln and of the outgoing waves Q0ut'- 

Q = Qin + Qout (21) 

The corresponding horizontal velocities are expressed, under the long wave ap- 
proximation, as: 

"in = \Jg/h ??in,       "out = -sjdl^ ??out (22) 

Using Q = u(h+rj) and neglecting terms with i)2, we obtain the following relation 
from Eq. (21): 

Q = 2Crfa-Cri (23) 

On the other hand, we impose the condition given by Eq. (24) on the shoreward 
boundary, where r is the reflection coefficient. 

Q = (1 - r) • Ct, (24) 

Using these boundary conditions, numerical computations for Eqs. (13) and (14) 
will be conducted by the finite difference method with the central difference- 
staggered mesh scheme. 

Computations of wave transformation on a slope have been made and the 
results have been compared with experimental data obtained by Sato et al. (1987). 
In the experiment, the water surface displacement and the near-bottom orbital 
velocity were recorded under the conditions that the bottom slope was 1/20 and 
the incident wave height and period were 6.1cm and 1.18s. 

Figures 1 and 2, respectively, compare the cross-shore distributions of the 
wave height and the mean water surface elevation between the computations and 
the measurements. Agreement is very good for the wave height even near the 
breaking point. The mean water level fj that has been computed by taking the 
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time average of ij, without the computation of the radiation stress, also shows a 
fairly good agreement with the measurements. 
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Fig. 1   Comparison of cross-shore distributions of wave height. 
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Fig. 2   Comparison of cross-shore distributions of mean water surface elevation. 

CALCULATION OF NEAR-BOTTOM ORBITAL VELOCITY 

The orbital velocities were measured at several points 5mm in height above 
the bottom. By considering the finite water depths in the region, the near-bottom 
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orbital velocity «b has been computed as a function of time at each location by 
the following equation: 

Q    . cosh(2rz'/L) 
h + r/    cosh (2irh/L) 

where z' is the height of a point above the bottom, and L is the local wavelength. 
Figures 3 (a), (b) and (c) show the comparisons of Mj, between the computations 
and the measurements, for three locations: (a) outside the surf zone, (b) near the 
breaking point, and (c) in the surf zone. 

In previous computations of the orbital velocities based on the small-ampli- 
tude wave theory, the method proposed by Isobe and Horikawa (1981) has given 
fairly good estimates up to the neighborhood of breaking points, but it has failed 
to evaluate them in the surf zone after breaking. As shown in Figs. 3 (a) to (c), 
the present model can directly reproduce the near-bottom orbital velocities with 
a remarkably high accuracy. The above comparisons are for a case of plunging 
breaker, and it has been found that the present wave model works for cases of 
spilling breaker as well. 
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Fig. 3   Comparisons of near-bottom orbital velocities. 
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EVALUATION OF UNDERTOW VELOCITY 

In the surf zone, the undertow (return flow near the bed) usually develops to 
compensate the shoreward mass transport accompanying the breakers. Since the 
concentration of suspended sediment is very high near the bottom, the effect of the 
undertow on the sediment transport should inevitably be taken into consideration. 
However, highly reliable models have not yet been established for the prediction 
of the undertow velocity under general conditions. 

In the present study, following Dibajnia et al. (1992), we have evaluated 
the cross-shore distribution of steady flow velocity U due to the undertow by 
decomposing it into three components: the return flow velocity UB caused by 
wave breaking, the seaward velocity t/w compensating the mass transport, and 
the Eulerian mass transport velocity UE at the outer edge of the bottom boundary 
layer. According to previous studies, the undertow velocity becomes nearly zero 
near the breaking point. Hence, for simplicity, as a parameter representing the 
degree of intensity of the breaker-induced large vortex, we have introduced the 
following function Ky, whose value is zero before the plunging point x < Xp, 
being unity after the large vortex development point X; and changing linearly 
between these two points, i.e., 

(x < Xv) 

(Xp<x<Xi) (26) 
Xp — Xi 
1 (Xi < x) 

Then the resultant total undertow velocity U has been calculated by 

U = Kv (UB + C/w + UE) (27) 

The first component UQ has been estimated by the following formula proposed 
by Sato et al. (1987): 

H2 

UB = -/l— (28) 

where H and h are the local wave height and water depth, respectively, and A 
is a dimensionless coefficient of the order of unity. In the present study, we have 
used A =' 1. 

Figure 4 shows the comparison of the undertow velocity between the compu- 
tation and the measurements, indicating a considerably good agreement. How- 
ever, this only demonstrates the validity of the present method, Eqs. (26) to 
(28), for a constant slope bed in a wave flume, and its applicability to more 
general conditions (prototype scale and complicated bottom topography) is still 
questionable. 
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Comparisons of cross-shore distributions of undertow velocity. 

COMPUTATION OF SEDIMENT TRANSPORT RATE 
AND BEACH PROFILE CHANGE 

Dibajnia and Watanabe (1992) have proposed a sheet-flow sand transport 
rate formula based on extensive laboratory data obtained in oscillatory flow tank 
experiments, considering the entrainment and settling processes of suspended 
sediment during the two successive half wave periods. According to this formula, 
the net rate of sheet flow transport qnet can be calculated as a function of the 
root-mean-square amplitudes, uc and ut and the time durations, Tc and Tt, of 
the onshore and offshore velocity, respectively, and the grain diameter d, settling 
velocity w0, and porosity A„ of the sediment, as follows: 

qnet = sign (D • 0.001 |/T'55 • w0d/(i - A„) 

r = cTc(^ + n't
3)-utTt(nf + n'^ 

(29) 

(30) 
(uc + ut)T 

where Qc, S7C, Of and Ot are functions of uc, ut, Tc, Tt, d, Wo and the specific 
density of the sediment (For details, see Dibajnia and Watanabe, 1992). 

Dibajnia, Shimizu and Watanabe (1992) have presented a numerical model 
for a profile change of a sheet flow predominant beach using the above transport 
rate formula and the linear time-dependent mild slope equations. In the present 
study, we have incorporated the effect of wave nonlinearity in the prediction of 
beach profile change by combining the wave model based on the Boussinesq equa- 
tion and the undertow model mentioned above as well as the sediment transport 
rate formula, Eq. (29). The change of a beach profile has been computed from 
the cross-shore distribution of ?net by the sediment mass conservation equation 
including the effect of the local bottom slope (Watanabe et al, 1984): 

dzh 

dt 

dh 

' dt 

d_ 

dx 
<?net — £s|<?net| 

,dzh 

dx 
(31) 
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where z\, is the bottom elevation, and a value of 2.0 has been used for the coeffi- 
cient £s. 

In order to examine the validity of the model, we have performed comparisons 
of the computations with the measurements obtained by Shimizu et al. (1985) in 
their large scale experiments. Table 1 indicates the experimental conditions for 
the adopted three cases, in which d50 is the median diameter of the sand, tan/? 
is the initial beach slope, T and Ho are the period and height of incident waves. 

Table 1   Experimental conditions. 

Case d50(mm) tan/? T(s) Holm) Breaker type 
3-2 0.27 1/20.0 6.0 1.05 Plunging 
3-4 0.27 1/20.0 3.1 1.54 Spilling 
4-2 0.27 1/33.3 4.5 0.97 Plunging 

Although the measurements were made for a total time duration of 30 hours, 
the computations have been conducted for a duration of 5 or 7 hours only, be- 
cause the accuracy of the undertow computation may become unsatisfactory as 
the beach profiles get complicated with time. Figures 5, 6 and 7 show the com- 
parisons between the computations and the measurements of Cases 3-2, 3-4 and 
4-2, respectively, for the wave height distributions, the net rates of the sediment 
transport, and the beach profiles. 

These figures demonstrate considerably good agreement between the compu- 
tations and the measurements, indicating the overall validity of the present model 
that includes the nonlinear wave equation, the formulas for the near-bottom or- 
bital velocity and for the undertow velocity, and the sheet flow transport rate 
formula. 

CONCLUDING REMARKS 

This paper has presented a numerical model for beach profile change, which 
incorporates the asymmetric orbital velocity due to wave nonlinearity as well as 
the undertow current. By using the Boussinesq equation, the iteration of com- 
putations for the waves and for the mean flow and mean water level has become 
unnecessary, and the computational accuracy of the near-bottom orbital velocities 
has been highly improved. A beach profile change model has been established 
by the combination of the wave model based on the Boussinesq equation and 
the sediment transport rate formula for the sheet flow proposed by Dibajnia and 
Watanabe (1992). An overall validity of the present numerical model has been 
examined through the comparisons of the computed sediment transport rate dis- 
tributions and beach profiles with the laboratory data obtained in large wave 
flume experiments by Shimizu et al. (1985). A better method will be required for 
the prediction of the undertow velocity distribution under general conditions so 
as to make the present model more practical and useful. 
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Fig. 5   Comparisons of wave height, net transport rate and beach profile. 
(d50 = 0.27mm, tan/3 = 1/20, H0 = 1.05m, T = 6.0s, Plunging breaker) 
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Fig. 6   Comparisons of wave height, net transport rate and beach profile. 
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