
CHAPTER 10 

EFFECTS OF MODE TRUNCATION AND DISSIPATION ON 
PREDICTIONS OF HIGHER ORDER STATISTICS 

James M. Kaihatu and James T. Kirby, Member, ASCE 

Abstract 

We investigate the effects mode truncation and dissipation characteristics have on predictions 
of wave shape statistics such as skewness and asymmetry. We demonstrate the effect of mode 
truncation by calculating wave shape statistics for data from a laboratory experiment using an 
increasing number of frequency components each calculation. We find that the values of skewness 
and asymmetry converge to a maximum as more components are retained, with the maximum 
values attained when components out to the Nyquist frequency are kept. We run a lowest order 
Boussinesq shoaling model and a nonlinear dispersive shoaling model with the data, retaining 
more components with each simulation. Both models show the same convergence characteristics as 
the data as the number of retained frequency components increases. The lowest order Boussinesq 
model, despite its shallow water formalism, yields skewness and asymmetry values closer to those 
of the data than those of the dispersive model. This is likely due to the phase mismatches in the 
dispersive model, which become large in deep water and thus violate the slowly-varying amplitude 
assumption. We also investigate the effect of spectral dissipation on these predictions. We run the 
lowest order Boussinesq shoaling model with different proportions of frequency-dependent 
dissipation and calculate wave shape statistics. We find that the distribution must take into account 
some aspect of (ff variation in the dissipation for reliable wave shape statistics. 

Introduction 

The Boussinesq equations (Peregrine 1967) are robust predictors of weakly 
nonlinear wave propagation in shallow water. The "consistent" frequency domain 
Boussinesq model of Freilich and Guza (1984) has been used in a number of 
studies (e.g., Elgar and Guza 1985; Elgar et al. 1990) concerning nearshore wave 
propagation; they have shown that this model does predict shallow water wave 
spectra reliably provided that kh«0{\), where k is the wave number and h the 
water depth. 
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In recent years, however, frequency domain models with fewer restrictions on 
the value of kh have been developed (e.g., Madsen and Sorensen 1993; Agnon et 
al. 1993; Kaihatu and Kirby 1995). These models, because of their dispersive 
nature, can be applied in greater water depths (and take into account a greater 
frequency range) than the lower-order Boussinesq-type models. Application of 
these models to laboratory data have shown their utility. 

A different test of these frequency domain models would be to evaluate their 
ability to replicate surface shape characteristics. This involves evaluating 
quantities such as skewness and asymmetry. These higher order statistical 
quantities track the free surface characteristics of waves, and thus lend insight 
into the effect nonlinear energy exchange has on the evolution of the wave shape. 

Elgar et al. (1990) have investigated skewness and asymmetry predictions 
from the consistent model of Freilich and Guza (1984) and compared these 
quantities to field data taken at both Torrey Pines, CA and Santa Barbara, CA in 
1980. Because of the lowest order dispersion characteristics of the model, the 
simulations required an upper frequency cutoff that was based on the relative 
magnitude of the dispersion parameter kh. This upper frequency was established 
prior to simulation and analysis so that no nonlinear interaction with frequencies 
beyond the cutoff could occur. They found good data-model agreement for 
relatively narrow banded spectra, but somewhat poorer agreement for broad 
banded spectra. This is primarily due to the spectral energy content beyond the 
cutoff frequency for the broad spectra data. 

No corresponding studies have been undertaken for the more dispersive 
frequency domain models, particularly as applied to field measurements. The 
ability of these models to simulate processes at frequencies beyond the small kh 
limit is particularly germane to this problem. Bowen (1994) showed that the 
calculation of skewness and asymmetry varied significantly with the number of 
harmonics of the spectral peak retained. He used his laboratory data of shoaling 
irregular waves on a slope to calculate these quantities with varying numbers of 
harmonics of the spectral peak, and found that the values of skewness and 
asymmetry converged to a maximum as the number of components retained 
increased. The maximum values of skewness and asymmetry were reached when 
the upper limit cutoff frequency reached the Nyquist limit. Bowen (1994) also 
noted that the differences between the values of skewness and asymmetry as the 
number of components increased were most marked in the breaking zone. This 
would likely be due to the increased nonlinear shifting of energy to the higher 
frequency components. The dependence of skewness and asymmetry on the 
number of retained components was not evident in the work of Elgar et al. (1990) 
due to the dispersion-based upper frequency cutoff for both model and data. This 
upper frequency cutoff is not a function of kh in the more dispersive frequency 
domain models, so a different criteria needs to be applied to determine this cutoff. 
Kaihatu and Kirby (1995), for example, use percentage of total variance. Other 
concerns, such as upper frequency limitations on pressure to surface conversions 
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(required when deducing free surface fluctuations from pressure records), can also 
affect the choice of cutoff frequency. 

In this study we wish to investigate the effect the upper frequency cutoff has on 
simulating these higher order statistics. We will first investigate skewness and 
asymmetry values gleaned from experimental data. This will also lend insight into 
the sensitivity of these statistics to cutoff frequency. We will then run two 
shoaling models and determine the effect that retaining various numbers of 
components has on the reliability of predictions of skewness and asymmetry. We 
will find that the nature of the model has a strong effect on the predictions. 

Skewness and Asymmetry in the Wavefield 

As waves in the nearshore shoal, nonlinear effects become more important. 
The wave crests become sharper and the crests flatter. This is represented as an 
increase in skewness (asymmetry about a horizonal plane). As the waves begin to 
approach breaking, the front face of the wave becomes steeper. This is quantified 
as an increase in negative asymmetry (in this context, referring to asymmetry 
about a vertical plane). 

Skewness is defined as: 

\2 

and asymmetry as: 

skewness j- (1) 

(ff(i3)) 
asymmetry = — (2) 

W 2 

where the brackets denote a time average, T) is the free surface elevation and H is 
the Hilbert transform. 

We will be working with the Case 2 data of Mase and Kirby (1992); full details 
of the experimental setup can be found therein. The tank consisted of a constant 
depth section (/i=47cm) of 10m length, and a 1:20 slope. A Pierson-Moskowitz 
spectrum was input at the wave paddle. For Case 2, the value of kh at the spectral 
peak in the deep portion of the tank was 1.9, a severe test of the dispersive wave 
models. In this experiment, the sampling rate At = 0.05.S with the data divided 
into seven realizations at 2048 points each. The Nyquist frequency was 10Hz. The 
evolution characteristics of this data are shown in Figure 1. This figure shows the 
spectra at several gages taken out to the Nyquist frequency. It is apparent that the 
high frequency tail increases in energy, particularly in shallow water. 

We use (1) and (2) to calculate the higher order statistics from the data. For 
each calculation we retain in turn 300, 500, 700, 900, and 1024 frequency 
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components (1024 components takes the calculation to the Nyquist limit). Plots of 
Hmts (root-mean-square wave height), skewness and asymmetry appear in Figure 
2. There is not much difference between the measured H,• values for different 
numbers of retained components; this implies that iV=300 retains a significant 
percentage of the energy content in the spectrum. However, the skewness and 
asymmetry values clearly indicate that the number of retained frequency 
components has a profound effect on the calculation of high order statistics, with 
an increase in the number of components evidencing a convergence to a 
maximum value. The differences are most apparent in the nearshore, as 
nonlinearity becomes more prevalent in the wavefield. Additionally, the skewness 
measure for the JV-300 case is clearly less than those for more retained 
components even in the offshore area, an indication that this number of 
components is insufficient to describe the evolution of the shape of the wavefield. 
This is in spite of the fact that #=300 retains sufficient energy for Hrm, 
quantification. 

Shoaling Models 

Now that we have demonstrated the effect the number of retained components 
has on the evaluation of skewness and asymmetry, we now wish to determine how 
this affects our ability to accurately model these effects. This is more germane for 
the dispersive models, since the linear characteristics of the higher frequencies 
could be more accurately modeled 

The consistent model of Freilich and Guza (1984) is: 

h,         in3k3h2 3ink("-i N~n   *       \ Anx+-^\ ~ g—K +~^~[£Ai\-i +2 E ^ An+lJ = -a„An (3) 

where A is the complex amplitude, and N is the index of the highest frequency 
component considered. The right hand side is a dissipation term that removes 
energy from the spectrum in accordance with the probabilistic dissipation 
expression of Thornton and Guza (1983). The distribution of that dissipation over 
the frequency range is discussed in a later section. The second term in (3) is the 
Green's Law shoaling term. 

The nonlinear finite-depth shoaling model of Kaihatu and Kirby is: 

Anx + 2Cg
An + S0>nCgn 

YRAiAn_,eIB+2NlSA;An¥,etv = -anAn        (4) 

where ^? and S are interaction coefficients, and: 

© = jki+kn_l -kndx (5) 



MODE TRUNCATION AND DISSIPATION 127 

V = \kn+l-kl-kndx (6) 

are referred to as "phase mismatches" since they determine the relative amount of 
detuning away from resonance in x. They have the capacity to become quite large 
in deep water, thus causing the nonlinear term to oscillate. The expansion 
technique used to derive (4) assumes that the amplitudes are slowly varying in 
space, an assumption which may be violated in deep water. 

We use the shoaling models to determine the effect of the cutoff frequency on 
the simulation of these higher order statistics. Both models utilized error-checked 
variable stepsize ODE integration schemes; the consistent model used the 
Bulirsch-Stoer method with Richardson extrapolation, while the dispersive model 
used a fourth order Runge-Kutta scheme. We note that the consistent model of 
Freilich and Guza (1984) is formally invalid in this water depth. The lack of phase 
mismatch in the model is due to the nondispersive nature of the 

Figure 1. Evolution of spectra in experiment of Mase and Kirby (1992). Top 
figure: h=41cm (solid), h=25cm (dashed), h=l5cm (dotted), h=1.5cm (dash-dot), 
h~2.5cm (dash-x) 
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Figure 2. Statistics calculated from Case 2 data of Mase and Kirby (1992). In each 
figure: #=300 (bottom solid), #=500 (dashed), #=700 (dotted), #=900 (dash- 
dot), #= 1024 (top solid). Top figure: Hms- Middle figure: skewness. Bottom 
figure: - asymmetry. 
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nonlinear terms; in shallow water k„ --nku where ki is the wavenumber associated 
with the lowest frequency (o i in the spectrum. This causes the phase mismatches 
to become zero. The dispersive models, with the finite phase mismatches, have 
linear characteristics that work well in deep water, but have nonlinear terms that 
may oscillate fast enough in deep water to cause difficulty in replicating the wave 
shape. The phase mismatches are a consequence of the somewhat misordered 
derivation of the dispersive models. 

We ran the two models with increasing numbers of components (N-300, 500, 
700, 900 and 1024) to simulate the experiment of Mase and Kirby (1992). Then 
we filter the data similarly, and calculate H„ns and third moments. The 
comparisons between the consistent model and the data are shown in Figure 3. We 
were able to simulate the spectrum out to the Nyquist frequency with this model; 
it is relatively expedient compared to the more computationally intensive 
dispersive model (4). Even so, the consistent model with JV=900 and AM024 
requires substantial computational resources. Most runs were performed on the 
US Army Waterways Experiment Station Cray YM-P. The iV=900 and AM 024 
runs, however, required a Cray batch queue with a very low assigned priority; thus 
these were done, one realization at a time, on a Silicon Graphics Indy. 

Figure 3 shows that the consistent model greatly overpredicts the Hms values 
of the data. This is not surprising, since the model is clearly outside its area of 
validity; Green's Law, the linear shoaling mechanism in the consistent model, 
overpredicts the shallow water spectral amplitudes when initialized in deep water. 
In addition, the model results for all simulations agree, which indicates that 
N=300 is sufficient for describing the energy level in the spectrum. The skewness 
and asymmetry values, on the other hand, agree reasonably well with the data. 
This seems inconsistent with the fact that the consistent model is far outside its 
range of validity. Additionally, the model results show the same tendency to 
converge to a maximum value as N increases as shown by the data. 

The dispersive model (4) required significantly more computational resources 
than the consistent model. This is primarily due to the phase mismatches of the 
dispersive model; their size in deep water causes difficulty in solving the sets of 
equations. Available computational resources only allowed the ^=300 and iV=500 
cases to be run with this model. 

Figure 4 shows the comparisons between the statistics from the experiment of 
Mase and Kirby (1992) and the dispersive model (4). The Hrms comparison is not 
unexpected, since the dispersive model does have the ability to reliably model 
spectral shoaling from deep to shallow water. The third moment comparisons, 
however, look worse than those of the consistent model. This is somewhat 
surprising, since the dispersive model has linear characteristics that can be applied 
to deeper water. However, the likely cause of these deleterious comparisons are 
the phase mismatches. We define a normalized phase mismatch: 
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M = 
*1 ~^N-1 ~^N\ 

(7) 

The magnitude of M when iV=1024 is 25 in the deep portion of the tank. This 
magnitude of mismatch can induce oscillations which have deleterious effects on 
the replication of the free surface. Thus, these phase mismatches serve to keep the 
wave from attaining a realistic form. This is not evident in spectra comparisons 
shown in studies of dispersive frequency domain models (e.g., Agnon et al. 1993; 
Kaihatu and Kirby 1995) since these effects are averaged. 

One feature that is apparent with both the consistent and dispersive model 
simulations is that the model results underpredict the skewness and asymmetry 
values seen in the data for each particular cutoff frequency; this is true even at the 
Nyquist frequency. One reason for this underprediction for A?<1024 is that all 
frequencies of the data have undergone nonlinear energy exchange with all others, 
while the model simulations are limited to those below the cutoff. 

Effect of Dissipation Mechanism on Statistics 

Both models have a dissipation mechanism that removes energy in the 
spectrum based on a probabilistic decay function developed by Thornton and 
Guza (1983). This dissipation mechanism is: 

r / '2 
Jn 

v J peak 
a, •n\ (8) 

where: 

an0 = Fp(x) 

«ni = (^W-«no) 
fpeak E1^!1 

v   £/„2iA,i2 

v n=i y 

(9) 

(10) 

where fpeak is the peak frequency of the spectrum, /„ is the n'h frequency, F is a 
weighting factor, and/J(jc) is the simple dissipation model of Thornton and Guza: 



MODE TRUNCATION AND DISSIPATION 131 

6 

5 

I4 
(A 

J3 

10 

 1 1 j M 1—^ 1 1 1 1 1  

• "     •     u 

m 

15 20 25 
h (cm) 

30 35 40 45 50 

1 

0.8 

tn 
8 0.e 

\M 

0.2 Y 

y/% 

11   1 —r _..,,  , 
i 

r'° ^•5. 

X * ;r • 

' X 
X • 

X • " " 

• 

X * * Ml 
- . " ^~~—» 

' • 1 ' i • 
10 15 20 25 

h (cm) 
30 35 40 45 50 

0.5 

N 

—i—  r  1 1 

* 
-     \ - 

X B\^ 

X *Y PI =Js~--«- U 

10 15 20 25 
h (cm) 

30 35 40 45 50 

Figure 3. Comparison of modeled statistics to data of Mase and Kirby (1992) 
using the consistent model of Freilich and Guza (1984). In each figure: AT-300 
(bottom solid line is data, bottom "x" is model), JV=500 (dashed line is data, "o" is 
model), JV-700 (dotted line is data, "*" is model), #=900 (dash-dot line is data, 
"+" is model), AM 024 (top solid line is data, top "x" is model). Top figure: H•. 
Middle figure: skewness. Bottom figure: -asymmetry. 
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Figure 4. Comparison of modeled statistics to data of Mase and Kirby (1992) 
using the dispersive model of Kaihatu and Kirby (1995). In each figure: N=300 
(bottom solid line is data, bottom "x" is model), N=500 (dashed line is data, "o" is 
model), iV=700 (dotted line is data), N-900 (dash-dot line is data), AM 024 (top 
solid line is data). Top figure: Hms- Middle figure: skewness. Bottom figure: - 
asymmetry. 
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3VJrB3^f, 5 
rms P(x)= "'T (ID 

where B and y are free parameters set to 1.0 and 0.6, respectively. The mean 

frequency / is taken to be the peak frequency. These values are close to those 
found by Thornton and Guza (1983). The proper value of F is a matter of some 
discussion; this weighing factor determines the dependence of the dissipation on 
frequency. Setting F-1.0 causes the dissipation to be equal across all frequencies, 
while setting F=0 weights the dissipation proportionally to (ff. Physical 
arguments for the proper value of F are presented elsewhere (Eldeberky and 
Battjes 1996; Kirby and Kaihatu 1996) and thus will not be presented here. The 
primary intent in this section is to discern the effect the particular value of F has 
on higher order statistics. 

Realizing that we will not obtain accurate predictions of these quantities (for 
the reasons described earlier), we instead look for the effect various values of F 
have on the trends of the skewness and asymmetry values as waves propagate into 
shallow water. We ran both the consistent model of Freilich and Guza (1984) for 
various values of F, using N-300. Figure 5 shows skewness and asymmetry 
results for the consistent model with F=0„ 0.25, 0.5, 0.75, and 1.0. The skewness 
results indicate that F-0.75 follows the trend of the data best, while the 
asymmetry results show that F=0.5 is most representative. However, what is more 
instructive are the comparisons between the simulations. The skewness values for 
F=0, F=0.25 and F-0.5 show a decrease at the last three gages. These values of F 
weight the dissipation higher towards higher frequencies, thus suppressing the 
nonlinear energy transfer to higher frequencies. The converse trend is evident in 
the asymmetry predictions. The F-0 has the most negative asymmetry for water 
depths up to 1.5cm, at which point the negative asymmetry unexpectedly 
decreases in the inner surfzone. The fact that the F=0 curve exhibits the most 
negative asymmetry until its sudden downturn is indicative of the sawtooth shape 
of the breaking waves, which are in line with an (ff distribution of dissipation. 
Kirby and Kaihatu (1996) discuss the physical basis behind this supposition. As 
mentioned before, the F=0.5 best matches the trend of the data for the entire range 
of water depths. The fact that the F-1.0 curves are not the best representations of 
the skewness and asymmetry trends indicates that some weighting of the 
dissipation toward higher frequencies is required to simulate this reliably, contrary 
to Eldeberky and Battjes (1996), who indicate that no such weighting need take 
place. In fact, it may be that if all components of the spectrum out to the Nyquist 
frequency were retained we can rely solely on the (ff representation of the 
dissipation distribution, and that retention of an0 in (8) is an artifact of the 
truncation of the spectrum below the Nyquist frequency. Additionally, the sudden 
downturn of both skewness and asymmetry from the model results in the inner 
surf zone may also be an artifact of the mode truncation; Kirby and Kaihatu 
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(1996) show a comparison of third moments between the Case 2 data of Mase and 
Kirby (1992) and the time-domain extended Boussinesq code of Wei et al. (1995). 
This comparison, which utilized the entire unfiltered data set in the model 
simulation, showed that the time-domain model can reliably replicate third 
moment statistics. 

Conclusions 

We used the data of Mase and Kirby (1992) and two nonlinear shoaling models 
to investigate the effect mode truncation and dissipation mechanisms have on the 
prediction of third order statistics. We found that the number of components used 
in the calculation has a strong effect on the skewness and asymmetry values; this 
was true for both the data and the model simulations. The consistent model of 
Freilich and Guza (1984), though formally invalid for the peak kh values of the 
experiment, actually modeled the third order moments better than the dispersive 
model of Kaihatu and Kirby (1995). This is due to the phase mismatches in the 
dispersive model; their size in deep water causes the nonlinear term to oscillate 
considerably, keeping the wave from attaining a realistic form. We also looked at 
the effect different weightings of frequency dependent dissipation mechanisms 
have on the predictions of these statistics, and found that these mechanisms must 
contain some frequency dependence to model skewness and asymmetry 
realistically. This is contrary to Eldeberky and Battjes (1996), who maintained that 
a constant distribution of dissipation over frequency is optimum. Further work in 
this area will focus on continued development of the dissipation models. 
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Figure 5. Skewness and asymmetry comparisons between the consistent model of 
Freilich and Guza (1984) and Case 2 data of Mase and Kirby (1992) for different 
values of F. In each figure: data (*); F-0 (solid); F=0.25 (dashed); F=0.5 
(dotted); F-0.75 (dash-dot), F=1.0 (dash-x). Top figure: skewness. Bottom figure: 
- asymmetry. 


