
CHAPTER 84 

The Propagation of Water Waves in Prismatic Channels 

Li Li1, Robert A. Dalrymple2 and Jeffrey M. Mlynarski3 

Abstract: 
Short waves in a channel can present navigational problems and may ex- 
cite harbor oscillations. Channel sidewalk may reduce much of this wave 
energy, if they are sufficiently porous or they are sloped. Previously we 
presented a model for wave propagation in prismatic channels of arbitrary 
cross-section utilizing a numerical eigenfunction expansion. Here a series of 
small scale laboratory experiments were conducted to verify the numerical 
model. Comparisons of the numerical model to the experimental data are 
made for water surface profile and for eigenfunctions. The possibility of 
resonance between the edge wave and the second harmonic of the incident 
wave is also studied. 

1    Introduction 

Water waves encountering entrance channels present an interesting problem as the 
waves undergo reflection, refraction, diffraction and shoaling due to shorelines, shoals, 
jetties, tidal currents, and channels with varying depths. Long waves within channels 
have served as the impetus for the study of waves. Kelland (1839, as cited in Lamb, 
1945) provided a wave equation for waves in triangular channels with the sidewalls 
inclined at 45°. Scott Russell (1844) provided evidence for the presence of solitary 
waves in channels. More recently, Peregrine (1968, 1969) examined nonlinear long 
waves in narrow channel. Golinko (1987) studied the reflection of a long wave from 
the vertical walls of a channel with a parabolic cross-section.   Mathew and Akylas 
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(1990) conducted research on the wide channel case, noting the three-dimensional 
nature of the waves. Teng and Wu (1994) studied nonlinear long wave in convergent 
and divergent channels. 

However, short waves in a channel also can present navigational problems and 
may excite harbor oscillations, and less work has been done on short waves. Kelland 
(1839) and Macdonald (1894) (all cited in Lamb, 1945) obtained analytical solutions 
for triangular channels with the sidewalls inclined at 45° and 60° to the vertical. 
Recently, Isaacson (1978) studied wave decay along the center line of a trapezoidal 
channel with rubble sidewalls in a laboratory experiment. Melo and Guza (1991a, 
19916), through field and numerical means, showed that a tidal inlet comprised of 
rubblemound jetties absorbed a considerable amount of the wave energy entering the 
inlet from the ocean into the porous inlet sidewalls. Dalrymple (1992) developed a 
simple model to explain this behavior using a simple eigenfunction expansion of the 
waves in the channel (assuming a rectangular channel cross-section) and an impedance 
boundary condition at the sidewalls. It was assumed that the waves at the mouth of 
the inl et had a constant amplitude and phase; that is, they were planar and normally 
incident. One consequence of this assumption and the impedance boundary condition 
was a fictitious amplification of the waves occurring within one wavelength of the 
channel mouth. Dalrymple and Martin (1996) have reduced this amplification by 
including the effect of the scattering of waves into the ocean. Kirby, Dalrymple, Kaku 
(1994) used parabolic model to study conformal coordinate system. Dalrymple, Kirby, 
Martin (1994) used spectral model to study conformally-mapped channel, including 
the diverging channels and circular channels. 

Dalrymple, Kirby and Li (1994) using an eigenfunction expansion, studied an 
arbitrary cross-section channel. The basis of the eigenfunction expansion model is 
that the wave motion can be viewed as a summation of simple eigenmodes (Yn) in 
the cross-channel direction. The amplitudes of the eigenmodes (An) are determined 
at the mouth of the channel. The wave motion (in an assumed ideal fluid) is governed 
by the following equation: 

«Kx,2/)=]r>neiV K2-^Yn(y) 
71=0 

where x is the propagation direction, y is the direction across the channel, z is the 
direction vertically upwards from the still water level, k is the local wavenumber, g 
is gravity; C and Cg are the phase and group velocity, corresponding the dispersion 
relationship, to2 = gktimhkh. 

Channels with symmetric and antisymmetric cross section were studied. With the 
numerical model, showed that channels with sloping sidewalls give rise to the presence 
of edge waves, excited by the incident wave field, while the incident wave propagate 
in the center of channel.   The edge wave length is shorter than the incident wave 
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length.  The edge wave amplitude, represented by the zeroth mode eigenfunction, is 
much higher than the magnitude of the incident wave. 

In Trapezoidal Channal, Slop* m= 2.52 
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Figure 1: Plane View of Instantaneous Water Surface Elevation in Trapezoidal Chan- 
nel Case 2; Ocean at the Bottom of Figure, Harbor to the Top. Edgewaves are excited 
at both the left and the right sides of the channel. 

In this paper, a series of small scale laboratory experiments were conducted to 
verify the theoretical model. We studied the wave motion in triangular and trapezoidal 
channels with smooth sidewalls. Measurements of the free surface profile at different 
locations for several cross sections were obtained. The eigenfunctions were obtained 
from the wave displacement data by using Empirical Orthogonal Eigenfunction (EOF) 
method and were compared to those obtained from the numerical model. 

2    Experiment Set-up 

The wave experiments were conducted in a small tank at the Center of Applied Coastal 
Research at the University of Delaware. This section describes the experimental setup 
for the wave propagating in the channel and data acquisition procedure. 

The tank was 236.Ocm long, 122.5cm wide and 20.0cm deep. Waves were generated 
by a flap wavemaker at one end. Figures 2 and 3 show the experimental setup and 
tank. Two pieces of glass were used in the tank in order to form a triangular channel. 
Each piece of glass was 60.0cm wide, 165.0cm long and 0.64cm thick. Each glass panel 
was supported by two pieces of wood, allowing for the ability to vary the slopes of 
the sidewalls of the channel and to avoid any major deflection caused by bending. In 
order to diminish wave reflection, a gravel beach was located at the end of the tank. 
Four capacitance wave gages were used to measure the variations in the free surface. 
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Figure 3 shows the setup of the gages. Three gages were mounted on a movable 
fiberglass boom allowing for measurement at any particular position along the channel. 
The gages were numbered 1 through 4. Gage 4 in particular was placed parallel to the 
sloping side of channel and was used to measure the edge waves. Since the channel 
was symmetric in cross-section, gages were placed on only one side of the channel. In 
Figure 3, we define y as the horizontal coordinate taken to be positive landward, and 
y — 0 at the location of the midpoint of the channel cross-section. 

Figure 2: Experimental Setup (Top View) 

Figure 3: Layout of Wave Gages across Triangular Channel (Side View) 

2.1    Analysis of Wave Data 

Four tests, exploring the effect of varying channel slopes and varying wave frequencies 
for triangular channels, were conducted, as listed in Table 1. 
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Table 1: List of Experiments with Triangular Channel 

Test Slope Wave Period 

(") 
Water Depth 
(m) 

Measurement Locations 
Along Channel 
Distance from 
Wavemaker dx (m) 

Across Channel 
Distance from 
Center point dy (m) 

S1F1 1:2.9 0.700 0.0705 0.950 0.030 0.070 0.120 0.195 
S1F2 1:2.9 0.800 0.0705 0.985 0.030 0.070 0.120 0.195 
S2F1 1:3.1 0.680 0.0650 0.985 0.015 0.050 0.100 0.190 
S2F2 1:3.1 0.725 0.0650 0.950 0.015 0.050 0.100 0.190 

Two additional tests were also performed for trapezoidal channel, varying the wave 
frequencies; as listed in Table 2. 

Table 2: List of Experiments with Trapezoidal Channel 

Test Slope Wave Period 

(s) 

Water Depth 
(m) 

Measurement Locations 
Along Channel 
Distance from 
Wavemaker dx (m) 

Across Channel 
Distance from 
Center point dy (m) 

S3P1 1:2.5 0.570 0.0675 0.680 0.120 0.245 0.367 0.450 
0.512 0.565 0.625 0.730 

S3P2 1:2.5 0.570 0.0675 1.095 0.120 0.245 0.367 0.450 
0.512 0.565 0.625 0.730 

In order to test the repeatability of the experiments, each test was repeated six 
times. Test data from the six cases, including the time series and the amplitudes of 
the free surface waves were used for the data analysis. The eigenfunctions of the wave 
form across the channel were computed by the EOF method and later compared to 
the numerical model solution. The contour plots of the instantaneous wave field for 
the triangular and trapezoidal channels are also shown later. 

3    Experimental Results 

3.1    Comparison of Numerical Model To Experimental Data for Sur- 
face Profile 

The amplitude of the propagating wave measured by each gage was used to create a 
surface profile along channel cross section. The amplitude rf is defined by the mean 
maximum magnitude of time series for each gage: 

rf — max(?7!(<)) 
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The surface profiles for the numerical solution and the experimental data are shown 
in Figures 4 through 9 (by symmetry, only half of the channel is shown; solid line 
indicates results of the numerical solution and the dot marks mean experimental data). 
The group of dots on the far right, are the experimental data obtained from the 
measure point close to the shoreline, representing the maximum magnitudes of the 
edge wave. The group of dots on the far left, are the experimental data obtained from 
the measuring point near the center line of channel, which represents the maximum 
magnitudes of the incident wave. The measuring error along y distance is ±0.0018m. 
As shown in these figures, there is a good agreement between the experimental data 
and numerical solution. The edge wave amplitude, represented by the zeroth mode 
eigenfunction, is much higher than the magnitude of the incident wave. 

Figure 4: Comparison between the Cross-Channel Free Surface Profile for Case S1F1 
and Numerical Solution, T=0.700 s, 0.950 m from Wavemaker 

Figure 5: Comparison between the Cross-Channel Free Surface Profile for Case S1F2 
and Numerical Solution, T=0.800 s, 0.985 m from Wavemaker 
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Figure 6: Comparison between the Cross-Channel Free Surface Profile for Case S2F1 
and Numerical Solution, T=0.680 s, 0.985 m from Wavemaker 
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Figure 7: Comparison between the Cross-Channel Free Surface Profile for Case S2F2 
and Numerical Solution, T=0.725 s, 0.950 m from Wavemaker 
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Figure 8: Comparison between the Cross-Channel Free Surface Profile for Case S3P1 
and Numerical Solution, 0.680 m from Wavemaker 
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Figure 9: Comparison between the Cross-Channel Free Surface Profile for Case S3P2 
and Numerical Solution, 1.095 m from Wavemaker 

3.2    Comparison of Eigenfunction from Numerical Model and Exper- 
iment 

3.2.1     The EOF method 

The surface profile is assumed to be a superposition of eigenfunctions. Eigenfunctions 
can be obtained from the experimental data by using EOF(Empirical Orthogonal 
Eigenfunction) method. 

The EOF method is a widely-used statistical tool which has been used for a num- 
ber of analyses, including beach profile analysis. For the surface wave profile, the 
theoretical basis of the EOF method is the same as that for beach profile. The first 
eigenfunction is selected so that it accounts for the greatest possible amount of the data 
variance (the variance is defined as the mean square of the free surface displacement). 
The successive eigenfunctions each in turn are selected such that they represent the 
greatest possible amount of the remaining variance, Winant, Inman and Nordstrom 
(1975, as cited in Dean and Dalrymple, 1995). 

The free surface displacement time series are recorded at the same time at the I 
locations across the channel width. Assume that there are K data points in one free 
surface displacement time series. These measured elevation are denoted as rjik. 

Vik —   / , (-"nken 

for each I positions. Here, em- represents the nth empirical eigenfunction evaluated at 
the ith location across the channel width; and the constant Cnk represents a coefficient 
for the kth recorded data and the nth eigenfunction. 
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One property of the eigenfvmctions is that they are independent of each other and 
orthogonal; that is, 

s=l 

where Snm = 1 if n = m, and it is zero otherwise. To obtain the value of the unknown 
Cnk, the error is minimized in the fit of r/ik by the eigenfunction. The minimization 
is carried out in the least squares sense by 

/ N 
25Z(??i* ~ IZ Cnkeni)emi = 0 

2=1 n=l 

Using the orthogonality relationship, 

I 
^mk — / j Viken 

«=1 

Parseval's theorem is then applied: the sum of the squares of the coefficients is equal to 
the square of the variance. To find each eigenfunction, its contribution to the variance 
will be maximized. Finally, by using the Lagrange Multiplier approach, the following 
equation can be obtained 

1    K 

and the symmetric matrix equation 

/ 

Equation 1 is an eigenvalue matrix equation, consisting of a symmetric real coefficient 
matrix. By solving this matrix equation, eigenfunctions are obtained as many as 
measured locations / in the cross-section of channel. The eigenfunctions obtained by 
EOF method from experimental free surface displacement time series are discussed in 
next section. 

3.2.2     Comparison of Eigenfunction from Numerical Model and Experi- 
ment 

The zeroth mode eigenfunction for the trapezoidal channel obtained from the exper- 
iment by the EOF method is compared to that obtained from numerical solution, as 
shown in Figures 10 through 13. From the numerical model, amplitude of the zeroth 
mode edge wave is normalized to unity. The next eigenmode has a magnitude of 0.32. 
The third mode has an amplitude of only 0.18. From the experiment by the EOF 
method, the maximum amplitude of the zeroth mode eigenfunction is 1.0. The next 
eigenmode has the maximum magnitude of 0.067. The third mode has an amplitude 
of only 0.037. From both methods, it is clearly seen that the wave motion can be 
viewed as a summation of simple eigenfunctions, and the zeroth mode eigenfunction 
is the dominant one. 
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Distance trom Channel 

Figure 10: Comparison between the Zeroth Mode Eigenfunction for Case S1F2 and 
Numerical Solution, slope=l:2.9, T=0.800 s, h=0.0705 m, 0.985 m from Wavemaker 
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Figure 11:   Comparison between the First Mode Eigenfunction for Case S1F2 and 
Numerical Solution 

Eigenfunction 

Figure 12: Comparison between the Zeroth Mode Eigenfunction for Case S2F2 and 
Numerical Solution, slope=l:3.1, T=0.725 s, h=0.0650 m, 0.950 m from Wavemaker 
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from Channel Centecllne [n] 

Figure 13: Comparison between the Zeroth Mode Eigenfunction for Trapezoidal Chan- 
nel and Numerical Solution, slope=l:2.5, T=0.570 s, h=0.0675 m, 0.680 m from Wave- 
maker 

3.3    Resonance ? 

Figure 1 shows the instantaneous wave field obtained by the numerical model for the 
trapezoidal channel used in the test. It shows that zeroth mode edge wave has a 
wave length half of the incident wave length. From the nonlinear wave theory, the 
second harmonic wave over a flat bottom has a wave length equal to half of that of 
the incident wave. The issue whether there is any relationship between the zero mode 
edge wave and the second harmonic wave will be discussed will be discussed here. 
Typical wave spectra in the experiments for trapezoidal channel are shown in Figures 
14 and 15, which indicate the second harmonic wave frequency is twice of the first 
harmonic wave frequency. 

Frequsncy (Hz) 

Figure 14: Wave Spectrum from Wave Data at Point: 0.410 m from Wavemaker, 0.425 
m from Channel Center Line 
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Figure 15: Wave Spectrum from Wave Data at Point: 0.820 m from Wavemaker, 0.425 
m from Channel Center Line 

Figure 16 shows the amplitude of the first three harmonics down the trapezoidal 
channel along the center line of the half-channel width, and Figure 17 shows the 
amplitude of the first three harmonics down the trapezoidal channel along the shoreline 
of the channel. It is seen that the second harmonics does not increase as might be 
expected by nonlinear interactions with the wave in the channel providing the forcing 
for edge wave growth (as indicated before). So the edge wave does not exhibit any 
resonance with the second harmonic of the incident wave. 

o ifrequenty-' ?00Hi 

x - 1rti)u«n<y»3 3BB Hi 

• :1fequwicy-5.D3BKl 

Figure 16: The Amplitudes of The First Three Harmonics Down the Channel; Channel 
Mouth to the Left, Channel End to the Right 
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Figure 17: The Amplitudes of The First Three Harmonics Down the Channel along 
the Sidewall 

4    Conclusion 

A series of small scale laboratory experiments for triangular channel and trapezoidal 
channel were conducted to provide substance to the theoretical argument. It shows 
the experimental data exhibit good agreement with the numerical solutions.The re- 
sults from the experiments and the numerical model show that channels with sloping 
sidewalls give rise to the presence of edge waves, excited by the incident wave field, 
while the incident wave propagate in the center of channel. The edge wave length 
is shorter than the incident wave length. The edge wave amplitude, represented by 
the zeroth mode eigenfunction, is much higher than the magnitude of the incident 
wave. According to the weight of each eigenfunction, the edge wave modes are the 
dominant ones in the wave motion. Because the amplitudes of higher harmonics do 
not increase, the edge wave does not exhibit any resonance with the second harmonic 
of the incident wave. 
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