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A fully nonlinear Boussinessq-type model with 7 Nwogu’s α-like coefficients is considered. The model is one-layer
and low-order to simplify the numerical solvability. The coefficients of the model are here considered functions of the
local water depth so as to allow an improvement of the dispersive properties for narrow banded trains in very deep
waters. The proposed model is fully nonlinear in weakly dispersive conditions, so that nonlinear wave decomposition
in shallower waters is well reproduced.
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INTRODUCTION
Water wave propagation does not depend on water depth in deep waters. For example, the wave celerity

c for a wave with a period T is c = gT/2π, with g the gravity acceleration. Because each wave period has a
different velocity, deep waters are called dispersive. Furthermore, in deep waters the wave amplitude, a, is
usually much smaller than the water depth h and the model equations are linear (Airy theory).

As water waves propagate to the shore the water depth h decreases and wave propagation becomes
influenced by it. In shallow waters the wave propagation is dominated by the water depth and the wave
celerity is given by

√
gh, independently of the wave period (i.e., non dispersive). Besides, nonlinear effects

become important. An important physical characteristic of shallow waters is that the horizontal velocity
profile is nearly uniform in the vertical, a fact which is exploited to obtain Nonlinear Shallow Waters
Equations (NSWEs): these equations are vertically integrated.

Shallow waters correspond to kh . 0.3, with k = 2π/λ the wave number and λ the wave length, while
kh & 3 corresponds to deep waters (Dean and Dalrymple, 1984). In intermediate waters (0.3 . kh . 3)
nonlinear and dispersion effects coexist and neither Airy theory nor NSWEs can properly represent the
physics. To overcome this problem, two main pertubation approaches are found (Dingemans, 1997). On
the one hand, Stokes theory departs from the fully dispersive linear Airy theory to incorporate weakly non-
linear effects. On the other, Boussinesq-Type Equations (BTEs) depart from NSWEs and include weakly
dispersive effects. We will focus on BTEs here.

Being a0, h0 and k0 characteristic values for wave amplitude, water depth and wave number respec-
tively, the dimensionless parameters

ε ≡
a0

h0
, and µ ≡ k0h0, (1)

represent nonlinear and dispersive effects respectively. The NSWEs can represent fully nonlinear waves for
the nondispersive case, and the original BTEs by Peregrine (1967) included all the nonlinear non dispersive
terms (NSWEs) plus the weakly nonlinear and weakly dispersive terms O (ε1µ2) , but disregarded the highly
nonlinear and weakly dispersive terms O (ε2µ2, ε3µ2) . The inclusion of the highly nonlinear and weakly
dispersive terms O (ε2µ2, ε3µ2) was done, e.g., by Green and Naghdi (1976) and Wei et al. (1995).

Equations by Peregrine (1967) were derived for the vertically averaged horizontal velocity and give
good linear dispersive performance (errors below 1% relative to Airy’s celerity) up to kh . 1.1. To improve
the range of applicability, several different approaches are found in the literature. Two of them are higher
order and multilayer models: higher order models include terms O (µ4) or higher Gobbi et al. (2000), while
multilayer models will split the flow into several layers, applying low order models into each one Lynett
and Liu (2004). These two kind of models increase the numerical complexity for they include fifth order
derivatives or more unknowns.

Using a low order one-layer model, Nwogu (1993) improved the linear dispersive performance up to
kh . 3.3 by using the horizontal velocity uα at z = zα instead of the depth averaged velocity proposed by
Peregrine (1967). Above mentioned models by Wei et al. (1995) and Lynett and Liu (2004), amongst other,
follow this idea to (further) improve the linear dispersion performance.
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Following the track of low order monolayer BTEs, Madsen and Schaffer (1998) modified the equations
by Wei et al. (1995) by introducing particular new terms which included free coefficients. While the equa-
tions remained exact up to O (µ2) , similar to those by Wei et al. (1995), for the proposed coefficients they
obtained errors in linear dispersion below 1% for kh . 6.2.

All the above works consider that the free coefficients introduced are constant. Here we consider that
these coefficients are functions of the water depth to improve the model properties up to deeper waters. As
a counterpart, it will be required that the wave train travelling to the coast is, in deep waters, narrow banded
(swells).

GOVERNING EQUATIONS
The fully nonlinear BTEs by Galan et al. (2012), hereafter G12, are

X − X∗ + ∇· [d1αh2
∇X + d2αh3

∇Y] +

+ ∇·

[(
c1αh −

η

2

)
η∇X +

(
c2αh2 −

η2

6

)
η∇Y

]
+

+ (δ − δh)∇·
[
h2
∇ (X − X∗)

]
+ δh∇

2
[
h2 (X − X∗)

]
+

+ δε∇· [hη∇ (X − X∗) ] = 0, (2a)

and

Z − Z∗ + c1αh∇∇· (hZ) + c2αh2
∇∇·Z − ∇

[
η∇· (hZ) +

η2

2
∇·Z

]
+

+ ∇

[
(c1αh − η) u·∇X +

(
c2αh2 −

η2

2

)
u·∇Y +

(X + ηY) 2

2

]
+

+ (γ − γh) h2
∇∇· (Z − Z∗) + γhh∇∇· (h (Z − Z∗))−

− γε∇ [η∇· (h (Z − Z∗) ) ] = 0, (2b)

with η the free surface elevation, u the horizontal velocity evaluated at z = zα = αh, Y ≡ ∇·u and

X ≡ ∇· (hu) , Z ≡ ut, (3a)

X∗ ≡ −ηt − ∇· (ηu) , Z∗ ≡ −
1
2
∇ (u·u) − g∇η, (3b)

with g is the gravity acceleration. In equations (2)

c1α ≡ α, c2α ≡
α2

2
, d1α ≡ α +

1
2
, d2α ≡

α2

2
−

1
6
, (4)

where α is a free coefficient, as well as δ, γ, δh, γh, δε and γε . Table 1 shows the values by Galan et al.
(2012) and also the ones required to recover the equations by Madsen and Schaffer (1998) and Wei et al.
(1995).

The equations (2) are obtained using an asymptotic expansion in kh and are exact up toO (µ2) . Because
no limitations have been imposed on the nonlinearity, they can represent fully nonlinear waves up to order
O (µ2) . For kh → 0 they tend to the exact shallow water equations. The weighting coefficients influence
the behavior of the equations only in deeper waters. Being more specific, the linear dispersion (which is
the feature we are concerned in here) is influenced by α, δ and γ, coefficients δh and γh only influence the
linear shoaling and the coefficients δε and γε affect only the nonlinear performance. All seven coefficients
have been chosen so as to improve the linear and weakly nonlinear performance in deeper waters.

As shown by G12, the linear dispersion relationship embedded in the above equations (2) isc2
bte

gh
=

 ω2

gk2
bteh

=
1 − (dα + γ + δ) (kbteh) 2 + (dα + δ) γ (kbteh) 4

1 − (cα + γ + δ) (kbteh) 2 + (cα + γ) δ (kbteh) 4 , (5)
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W95 M98 G12
α −0.53096 −0.54122 −0.54217
δ — −0.03917 −0.02409
γ — −0.01052 −0.00492
δh — −0.14453 −0.15530
γh — −0.02153 −0.07897
δε — — −0.36052
γε — — 0.13169

Table 1: Constant coefficients for Wei et al. (1995) Madsen and Schaffer (1998), and Galan et al. (2012),
denoted respectively as W95, M98 and G12.

where cbte wave celetiry corresponding to these BTEs, kbte the wave number, ω the wave angular frequency,
cα ≡ cα,1 + cα,2 = α2/2 + α and dα ≡ dα,1 + dα,2. The exact Airy dispersion expression isc2

Airy

gh
=

 ω2

gk2
Airyh

=
tanh (kAiryh)

kAiryh
. (6)

For given values of gravity acceleration g, water depth h, angular frequency ω and coefficients α, δ and
γ, the values of kbte and kAiry from the equations (5) and (6) are different in general, thus giving an error in
the wave celerity (the linear dispersion error). Figure 1 shows the error in linear dispersion, defined as

εc ≡
cbte

cAiry
− 1

{
=

kAiry

kbte
− 1

}
, (7)

as a function of the dimensionless group κ ≡ ω2h/g. This group, κ, can be used as a k-independent
alternative to ξ ≡ kh to evaluate whether deep or shallow waters hold Nwogu (1993). It has the advantage
of not introducing k, which is different depending on whether equation (5) or (6) are used. For Airy theory
κ = ξ tanh ξ, and therefore, κ ≈ ξ for ξ & 3.
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Figure 1: Errors εc and εs for G12 (full lines), M98 (dashed) and W95 (dash-dotted). Shoaling errors, εs,
are denoted with symbols.

Although it is not the focus of this work, the Figure 1 also includes the error in the representation
of wave amplitude assuming mild slope conditions: the relative error in the wave amplitude for a linear
propagation over mild slopes from κ to the shore Chen and Liu (1995); Lee et al. (2003); Galan et al. (2012).
From Figure 1, the coefficients proposed by Galan et al. (2012) provide a better performance compared to
the other sets both in linear dispersion (εc) and, specially, in linear shoaling (εs).
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From the figure, in deep waters the error increases. This is a natural consequence of the perturbative
nature of the BTEs. By construction, using constant coefficients in the BTEs, from equation (5) one gets
c ∝

√
gh as kh increases (deep waters), so that one could never obtain the desired result c = g/ω provided

by the Airy theory in deep waters. To circumvent this problem, we will consider here that the coefficients
are functions of h.

COEFFICIENTS FUNCTIONS OF WATER DEPTH
Let us consider that the coefficients are functions of the water depth h. Thinking in a dimensional way,

the coefficients α, δ and γ (we focus on linear dispersion) will be functions of gravity g, local water depth
h and the limits of the angular frequencies in deep waters, ωmin and ωmax. Applying dimensional analysis,
e.g., for α, we get

α = f (g, h, ωmin, ωmax) = f
(
κmax ≡

ω2
maxh
g

, % ≡
ωmin

ωmax

)
,

where f stand for “function of”.
In the following approach the ωmin and ωmax are replaced by a single frequency ω0, and therefore

α = f (g, h, ω0) = f
κ0 ≡

ω2
0h
g

 .
Let us consider first the deep-water propagation of monochromatic waves with an angular frequency

ω = ω0. In deep waters nonlinear effects are negligible and, hence, monochromatic waves remain monochro-
matic. In fact, the main feature to be captured by any model equations are wave celerity and amplitude.

Equation (5), which is valid for variable coefficients, and equation (6) can be understood as kbte =

fbte (α, δ, γ, g, h, ω) and kAiry = fAiry (g, h, ω) . Therefore, imposing the linear dispersion to be exact, i.e.,
cbte = cAiry, which is equivalent to impose kbte = kAiry, gives the condition

{ fc ≡} fbte (α, δ, γ, g, h, ω = ω0) − fAiry (g, h, ω = ω0) = 0. (8)

For given values of g, h and ω0, the above condition can be satisfied in an infinite number of ways since
we have three free coefficients. However, considering, e.g., δ = γ = 0 we can obtain α (or cα) biunivocally.
Recalling that dα = cα + 1/3, we get

cα =
k0h − (k0h) 3/3 − tanh (k0h)

(k0h) 2 (k0h − tanh (k0h) )
, (9)

where k0h is obtained from κ0 ≡ ω2
0h/g since κ0 = k0h tanh (k0h) . From cα we recover α as α = −1 +

√
1 + 2cα.

The above condition (9) was already obtained by Lee et al. (2003) departing from BTEs with only one
free parameter (α, since δ = γ = 0 are not present in their approach). Taking advantage of the fact that we
have three free coefficients for linear dispersion (α, δ and γ) we will now improve the dispersion perfor-
mance in a neighbourhood of ω = ω0. Instead of imposing fc = 0, in order to improve the performance
around ω0 (and to increase the number of equations up to the number of unknowns, three) we consider

fc (ω = ω0) =
d fc
dω

(ω = ω0) =
d2 fc
dω2 (ω = ω0) = 0. (10)

The above is a system of three equations for our three unknowns cα (i.e., α), δ and γ. The analytical
solutions of the above equations are shown in the appendix. There are four different sets of solutions. The
first solution, “+&+” in the appendix, has values similar to those in Table 1 for M98 and G12. In all cases,
the functions α, δ and γ turn out to be functions of the dimensionless group κ0 ≡ ω

2
0h/g: this fact has been

anticipated through dimensional analysis.
The consequences of imposing the conditions (10) are illustrated in Figure 2 for ω0 = 1s−1 considering

four different water depths h. The values of α, δ and γ are different at each water depth h since κ0 = ω2
0h/g

changes. The error εc always cancels at ω = ω0 and, since the first and second derivatives are null, the
error is kept small around ω0. In fact, for h = 250 m, 500 m and 1000 m the errors behave similarly and are
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Figure 2: Illustration of the consequences of imposing fc = ∂ fc/∂ω = ∂2 fc/∂ω
2 = 0 at ω = ω0 = 1 s−1.

below 1% for 0.83 s−1 6 ω 6 1.20 s−1. For h = 50 m, i.e., in shallower waters, the error behaves, naturally,
better: in this case the error is below 1% for 0 6 ω 6 1.32 s−1. The solution “+&+” in is considered to
build Figure 2.

For a given ω0, Figure 3 shows the range frequencies ω that can be propagated with some given errors
(5%, 1% and 0.1%) as a function of h using variable coefficients α, δ and γ obtained above. The results are
presented showing the ranges ω/ω0 as a function of κ0 ≡ ω2

0h/g. We recognize the very convenient fact
that the curves tend to be horizontal as h → ∞, so that the same range of frequencies can be propagated
up to arbitrary deep waters. From Figure 3, using the coefficients as functions of κ0, shown in , one can
propagate in arbitrary deep waters waves the range 0.71ω0 6 ω 6 1.39ω0 with error εc < 5%, the range
0.83ω0 6 ω 6 1.20ω0 with εc < 1% (as already stated), and the range 0.92ω0 6 ω 6 1.09 κ0 with
εc < 0.1%.
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Figure 3: Range of application for the coefficients correspondig to a given κ = κ0. The errors are εc.

For a given range of frequencies [ωmin, ωmax] and a given maximum depth h, the value of ω0 that
minimizes the error in the range, which is not necessarily the mean value (ωmin + ωmax) /2, can be found.
As already mentioned, in shallow waters, as it corresponds to BTEs, all frequencies are well represented.
This fact is clear from Figure 3: the range ω/ω0 increases as κ0 → 0. For instance, for κ0 = 3 the errors are
below only 0.1% for any ω . 1.27ω0, what is to say for any κ = ω2h/g . 1.272ω2

0h/g = 1.61κ0 ≈ 4.83.
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CONCLUDING REMARKS
The possibility of using variable coefficients (functions of the water depth) in enhanced Boussinesq-

type equations has been studied and presented to improve linear dispersion in deep waters. An analytical
approach is presented to obtain the variable coefficients that improve the linear dispersion performance.
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APPENDIX: ANALYTICAL SOLUTIONS
For given g, h and ω0, the solution of equations (10) is

δ = (%1 ±

√
%2

1 − 4%2) /2, (11a)

γ = (%1 + 1/3 ±
√
%2

1 + 1/9 + 2%1/3 − 4%3) /2, (11b)

and cα = %1 − γ − δ so that, since cα ≡ α2/2 + α, we can recover the coefficient α as α = −1 +
√

1 + 2cα.
Above

%1 =
n1

3ξ2
0d
, %2 =

n2

3ξ4
0d
, %3 =

n3

3ξ5
0d
, (12)
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with ξ0 verifying ξ0 tanh ξ0 = κ0 {≡ ω
2
0h/g} and

n1 ≡ 6 {2s2
0ξ

2
0 + 5} t2

0 + {2s2
0ξ

4
0 + (−12s2

0 + 1) ξ2
0 − 6 (7s2

0 + 3) } ξ0t0+

+ {−s2
0ξ

2
0 + 6 (2s4

0 + 3s2
0) } ξ2

0 ,

n2 ≡ 3 {2s2
0ξ

2
0 + 15} t2

0 + {2s2
0ξ

4
0 − 3 (2s2

0 + 1) ξ2
0 − 9 (3s2

0 + 7) } ξ0t0+

+ {3s2
0ξ

2
0 + 3 (2s4

0 + 5s2
0 + 8) } ξ2

0 ,

n3 ≡ 24t3
0 + {2s2

0ξ
4
0 + (6s2

0 − 1) ξ2
0 − 27} ξ0t2

0+

+ {−7s2
0ξ

2
0 + 9 (−3s2

0 + 1) } ξ2
0t0 + {2s4

0ξ
2
0 + 3 (2s4

0 + 5s2
0) } ξ3

0 ,

d ≡ {2s2
0ξ

2
0 + 3} t2

0 − {2s2
0ξ

2
0 + (5s2

0 + 1) } ξ0t0 + {2s4
0 + s2

0} ξ
2
0 ,

with s0 ≡ sech ξ0 and t0 ≡ tanh ξ0.
The coefficients α, δ and γ are, thus, functions of κ0 ≡ ω2

0h/g. As κ0 → 0, κ0 → ξ2
0 and %1 →

−4/9, %2 → 1/63 and %3 → 1/945, so that we recover the Padé [4/4] approximation Madsen and Schaffer
(1998); Gobbi et al. (2000). In equations (11), there are four possible combinations depending on the signs,
equivalent to the four possible solutions discussed by Madsen and Schaffer (1998).

Figure 4 shows the three functions α, δ and γ in all four cases. For “+&+” the values are similar to
the values by M98 and G12 in Table 1. However, all four solutions give the same results in terms of linear
dispersion.
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Figure 4: Coefficients α (full line), δ (dashed line), γ (dash-dotted line), which are functions of κ0 ≡ ω
2
0h/g,

depending on the signs considered in equations (11). For instance, the case “+&−” results from considering
“+” in equation (11a) and “−” in equation (11b).
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