

PHYSICAL MODELING STUDY ON SCOUR AND SCOUR COUNTERMEASURE FOR SEA-CROSSING BRIDGE PIERS

Hsin-Hung Chen, Ray-Yeng Yang and Hwung-Hweng Hwung

Speaker : Ray-Yeng Yang

國立成功大學水工試驗所 Tainan Hydraulics Laboratory National Cheng-Kung University Tainan, TAIWAN.

Contents

Introduction

- Hydrodynamic and Morphologic Background
- Experimental Setup
- One Pier Model for Simulation Initial Construction Stage
- Scour around Bridge Pier Groups of Sea-crossing Bridge
- Scour Protection for Bridge Pier Groups of Sea-crossing Bridge
- Conclusion

-THL-

Introduction

Sketch of the Kinmen sea-crossing bridge connecting Greater Kinmen and Lieyu

Location of foundation design of the Kinmen bridge foundation

Hydrodynamic and Morphologic Background

Test conditions of physical model on scour around sea-crossing bridge pier

test case	water depth (m)	wave height (m)	wave period (sec)	water level (m)	tidal current (m/s)	note	
SMC				M.W.L. (+0.00)		one pier	
SHTC		2.0	11.9	H.H.W.L.(+3.16)			
GMC				M.W.L. (+0.00)			
GHTC	15.0	2.0	11.9	H.H.W.L.(+3.16)	1.5	pier groups	
GMCP				M.W.L. (+0.00)		nior groups and	
GHTCP		2.0	11.9	H.H.W.L.(+3.16)		scour protection	

S : one pier G : pier groups M : M.W.L H : H.H.W.L.

T: typhoon wave

C : current

P : scour protection

Experimental Setup

Sketch of experimental setup for scour around sea-crossing bridge

Experimental Facility

current guide

rectifcation current system

current guide

Screw pump

Wave absorb section

bridge group piers model

Experimental Sensor

ADV current meter

pressure sensor

wave gauge

X-Y carriage table system

ultrasonic bottom profiler (SeaTek)

The calibration of the experimental target wave and current test condition

L5 L4 L3 L2 L1 Tainan Hydraulics Laboratory, National Cheng Kung University

One Pier Model for Simulation Initial Construction Stage

The potential impact erosion area and scour around one pier

The potential scour area obtained from the one pier experiments

tast assa	acour direction	impact area of the different scour depth (D)					
test case	scour direction	>0.2D	>0.4D	>0.6D	>0.8D		
	current-front	1.7	1.5	1.2	0.8		
SMC	current-back	1.9	1.6	1.2	0.4		
SMC	wave-front	1.8	1.6	1.6	0.9		
	wave-back	1.8	1.7	1.5	1.3		
SHTC	current-front	2.4	2.0	1.8	1.4		
	current-back	2.4	1.8	1.2	0.6		
	wave-front	2.3	1.9	1.6	1.3		
	wave-back	3.2	1.6	1.3	0.9		

Scour around Bridge Pier Groups of Sea-crossing Bridge

Tai

Experimental results comparison between single pier and group piers

Equilibrium Scour Depth, Perpendicular Waves and Current

The maximum scour depth estimated by Hyperbolic Model

 $t / (d_{s,max}/D) = a+b\times t$ $S_{max} = 1/b$ $V_s = 1/a$ Asymptote of $d_{s,max}/D$: Smax

Initial scour rate : Vs

Test run	Physical	Model test	Hyperbolic Model			
	$d_{s,max}(m)$	d _{s,max} /D	d _{s,max} (m)	S _{max}	V _s	
GMC	5.09	1.88	5.74	2.12	0.85	
GHTC	9.70	3.59	10.21	3.78	1.08	

The potential scour area obtained from the pier groups experiments

test esse	scour	impact area of the different scour depth (D)						
lest case	direction	>0.4D	>0.8D	>1.2D	>1.6D	>2.0D	>3.0D	
	current-front	1.5	1.2	0.7	0.1			
GMC	current-back	-0.4	-2.3	-3.5	-4.2			
(current)	wave-front	5.0	2.0	1.5	0.6			
	wave-back	4.8	1.5	1.3	-1.2			
GHTC (wave and current)	current-front	4.8	4.4	3.9	3.5	2.6	1.0	
	current-back	8.0	7.0	4.9	3.0	1.0	-3.4	
	wave-front	7.6	6.2	5.4	4.8	4.1	2.0	
	wave-back	7.2	6.2	5.2	4.5	3.9	2.0	

-THL

Scour Protection for Bridge Pier Groups of Sea-crossing Bridge

Experimental setup of scour protection around the bridge foundation

placement of bottom bed placement of filter stones

placement of corn stones

placement of block stones

model of scour protection

The bed configuration of scour hole around the scour protection for the sea-crossing bridge pier groups

ds,max results comparison between those obtained from with and without scour protection

test run	ds,max (m)			ds,max /D				
	12 hr	24 hr	36 hr	48 hr	12 hr	24 hr	36 hr	48 hr
GMC	4.89	5.09			1.81	1.88		
GTHC	7.55	8.50	9.29	9.70	2.79	3.15	3.44	3.59
GMCP	0.31	0.43			0.12	0.16		
GTHCP	0.87	1.63	2.21	2.77	0.32	0.61	0.82	1.03

Conclusion

- The average scour depth for bridge pier groups more increases than that around one pier. That is due to the vortices created around the piers will interact with each other, and the flow accelerated owing to contraction created by the adjacent pier. Thus, a higher sediment transport induced by the gap of bridge piers hence contributes substantially to the scour depth.
- The shape of the scour hole around the sea-crossing bridge piers may be approximated by an inverted cone having a circular base, the area of deposition downstream the pier groups increases with time.

Conclusion

In order to circumvent the scour problem, scour must be presented by means of an appropriate scour protection. Three different layers of scour protection including block stone, core stone and filter stone are proposed in this study. Finally, a three-layer scour protection is tested and investigated to be effective in preventing scour around this twenty-eight pier groups of sea-crossing bridge foundation.

Thanks for your attention !

Acknowledgement

The financial support from the CECI Engineering Consultants, Inc., Taiwan and the Taiwan Area National Expressway Engineering Bureau, Ministry of Transportation and Communications is gratefully acknowledged.