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RE-ASSESSMENT AND UPDATE OF BULK LONGSHORE SEDIMENT  TRANSPORT 
FORMULAS 

João Mil-Homens1, Roshanka Ranasinghe1,2,3, Jaap van Thiel de Vries1,4 and Marcel Stive1 

Longshore sediment transport (LST) is one of the main drivers of beach morphology. Bulk LST formulas are 
routinely used in coastal management/engineering studies to assess LST rates and gradients. Over 50 years of 
research has resulted in several bulk LST formulas that have been tested with varying levels of rigor. In this study, the 
predictive skill of one of the most recent bulk LST formulas (Bayram et al., 2007) is evaluated. The calibration 
coefficients in the formula are improved using a least-squares optimization algorithm, resulting in a significant 
improvement in predictive skill. The generality of the improved formula is verified via the statistical methods of 
bootstrapping and cross-validation. 
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INTRODUCTION 

In the surfzone, breaking waves generate several horizontal and vertical current patterns that can 
stir up and transport sediment. Sometimes this transport results only in local sand redistribution. In 
other occasions there is extensive longshore sediment displacement, moving enormous quantities of 
sand along the coast. This longshore sediment transport (LST) is one of the most important processes 
that control coastal morphology, and determines to a large extent whether shores erode, accrete or 
remain stable. Large and/or persistent LST rates may have other impacts, e.g., inlet closure/migration, 
ebb/flood delta erosion/accretion, rotation of pocket beaches, headland sand bypassing. These processes 
may represent a threat for populations settled in coastal regions, for man made structures built on the 
coastline and for the usability of waterways. The calculation of LST rates is therefore a key component 
on most coastal engineering/planning studies. 

LST models 
There are two main approaches to estimate LST: 

•  Bulk transport formulas – these are basic models that assume a simplified representation of the 
physical processes and generally use empirical coefficients for calibration. These formulas provide 
a quick estimate of the LST rate, with relatively few input parameters. Two of the most commonly 
used formulas are the CERC (CERC, 1984) and the Kamphuis (Kamphuis, 1991) formulas.  

• Process based models – intend to include a large number of physical processes (shear stress, pickup, 
suspension, wave-current interaction, etc). Process-based models try to simulate, on a detailed way, 
the LST. These models often need a large number of input parameters. Examples are: the model 
described in Deigaard et al. (1986), UNIBEST (WL|Delft Hydraulics, 1992; Stive and Battjes, 
1984) and GENESIS (Hanson, 1989).  
Both approaches are useful for coastal engineers. Bulk formulations are often used to make a first 

guess based on limited information and process-based models are generally expected to produce more 
accurate estimates but require also more accurate input information and are more labor intensive.  

The main goal of this study is to increase the predictive accuracy of one of the most recent LST 
bulk formulas, i.e., the Bayram formula (Bayram et al., 2007), by developing a new expression for the 
calibration coefficient. To accomplish that, an error analysis based on logarithmic values was used and 
the possibility of having a non-linear function as calibration coefficient was considered. 

 DATA SET 

In this study, the data set presented in Bayram et al. (2007) was used. This data set consists on a 
compilation of several smaller data sets that span in time from 1953 to as recently as 2004. A large 
variety of methods was used in the data collection, from visual observation of wave heights, to the more 
sophisticated backscattering methods of measuring suspended sediment concentration. There are also 
measurements with different time frames, ranging from the space of a few minutes to months. 
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In order to be used in this study, the data sets need to include measurements of: significant wave 
height at the breaker, peak period, wave angle at the breaker and mean grain diameter. The data set is 
composed by: 
• the data presented in Schoonees and Theron (1993) - the Data Set 1 referred in that study, 

composed by 123 data points  
•  a laboratory data set with 4 points (Smith et al., 2003)  
•  a field data set collected in Duck, North Carolina, under high energy conditions (Miller, 1999) with 

10 points  
• a field data set collected in Karwar, India (Sanil Kumar et al., 2003) with 81 points  
• a field data set collected in the East Coast and Gulf Coast of the USA (Wang et al., 1998) with 29 

points.  
An analysis of the data distribution was done. This analysis is important to access the 

representativeness of the data set. It also indicates areas where a limited number of data points is 
available. 

 

a) Histogram of significant wave height at the 
breaker values 

 

b) Histogram of peak periods 

 

c) Histogram of breaker angle values 

 

d) Histogram of beach slope values 

 

a) Histogram of mean grain diameter values  

 

a) Histogram measured LST values 

Figure 1 - Histograms of (a) significant wave heigh t, (b) peak period, (c) breaker angle, (d) beach sl ope, (e) 
mean grain diameter and (f) measured LST 

The significant wave height distribution (Figure 1a) shows that more than 70% of the data refer to 
waves smaller than 1 m, and that there are very few points above 2 m. This can be explained by the 
difficulty of the measurements in higher wave conditions. The peak period histogram (Figure 1b) shows 
a bimodal distribution, where peaks around 5 s and 11 s are observed. Regarding the wave angle at the 
breaker (Figure 1c) most values are less than 10 degrees. More than 70% of the data points are from 



 COASTAL ENGINEERING 2012 
 

3 

beaches with slopes under 0.05, which fall in the dissipative region, following Wright and Short 
(1984)’s classification. Approximately 52% of the data points correspond to fine sand (D50 under 
0.2mm), 42% enter the category of medium sand. LST rates (Figure 1f) are more concentrated between 
10−3 and 10−2. The distribution fades gradually for smaller and higher magnitude orders. 

The main shortcoming of this data set is the low number of data points in the higher transport 
region (e.g. between 0.1 and 10). This region is associated with events (storms) that are usually 
responsible for almost all significant LST during a large time period. There’s also shortness of data for 
coarse sand and reflective beaches. 

THE BAYRAM FORMULA 

In the Bayram formula (Bayram et al., 2007) it is assumed that a great share of the transported 
sediment is in suspension (suspended load), and that the sediment becomes suspended by the action of 
breaking waves. After that, any type of longshore current can transport the sediment. The wave 
breaking stirs up the sediment and maintains an average concentration distribution c(x, z) in the surf 
zone. In order to keep the sediment in suspension, the total work (W) necessary can be given by the 
product of the concentration, submerged weight and fall speed (ws): 

   
       (1) 

where x is a cross-shore coordinate with the origin at the shoreline and positive in the offshore direction, 
the subscript b refers to the breaking point, z is the vertical coordinate with origin at the still water level 
and negative underwater and d is the water depth. It is considered that the work W is a fraction of the 
flux of wave energy (F = ECg), i.e. W = εF. 

LST can be defined as the product of the suspended concentration and longshore current velocity 
(V): 

 
         (2) 

When a representative longshore current velocity is considered, Eq.(1), W=εF, and Eq.(2) can be 
combined into: 

  
            (3) 

where V is the mean (or representative) longshore current velocity over the surf zone, a is the porosity 
and ε is a coefficient that represents the efficiency of the waves in keeping sand grains in suspension. In 
Bayram et al.(2007) the transport coefficient was estimated by performing a dimensional analysis, 
Bayram et al.(2007) suggested the following coefficient: 

  
              (4) 

Wave-energy flux 
Considering a wave not normally incident to the shoreline, the wave energy flux is given by: 

                         (5) 

where Eb is the wave energy per unit crest, Cgb is the group velocity and the subscript b refers to the 
start of the breaking zone. For irregular waves, and using significant values at the breaker, the wave 
energy flux is: 

 

   
          (6) 

Energy dissipation is considered negligible before the breaker (bottom friction), so F=Fb can be 
assumed. 
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Mean (or representative) longshore current 
The ideal scenario is when longshore current data is available. When it’s not the case, V can be 

calculated from wave characteristics and beach profile. Bayram et al. (2007) uses a simple longshore 
momentum equation which assumes linearized friction and neglects lateral mixing (Larson and Kraus, 
1991): 

           (7) 

where cf is the friction coefficient, u0 is the bottom orbital velocity and Sxy is the radiation stress 
directed along the shore, and transported onshore. Assuming that shallow water conditions hold and that 
the beach profile can be approximately represented by a Dean’s equilibrium beach profile (h=Ax2⁄3, 
being A the shape parameter (Dean and Dalrymple, 2004)), an expression for the longshore current can 
be written: 

          (8) 

The shape parameter A can be related to the fall velocity ws with Eq.(9). 

          (9) 

Averaging V in Eq.(8)along a cross-shore section (x direction): 

          (10) 

This formula for the longshore current, neglects the influence of lateral mixing. In equation Eq.(10) 
the friction coefficient is characterized in a simplistic manner (it is considered constant and equal to 
0.005) and the wave climate is represented by a single representative wave. It should be noted that Eq. 
(10) is not directly dependent on wave height. 

Differences and similarities to other bulk formulas  
The Bayram formula and the CERC formula (CERC, 1984) share the basic premise that LST is 

directly correlated to the longshore component of wave-energy flux. Bayram et al. (2007) even 
calculated an expression for the transport coefficient ε that makes the Bayram formula equivalent to 
the CERC formula. However, the Bayram formula only uses the wave energy flux to account for the 
sediment stirring, while the CERC formula doesn’t distinguish between sediment stirring and longshore 
current generation. 

The Kamphuis formula (Kamphuis, 1991) is almost entirely empirically derived and is therefore 
very different from the bulk formulas mentioned above. 

PERFORMANCE MEASURES ADOPTED IN THIS STUDY 

To evaluate the overall performance the formula, root mean square error (RMSE) and bias were 
used. These values were calculated as: 

          (11) 

           (12) 

The RMSE value is a commonly used error measure. The sum of squares gives more weight to 
higher error values, and consequently higher error variances. The bias value gives an indication of any 
systematical offset of the results. Because logarithmic values (base 10) are considered in all these 
statistical measures, the values indicate errors in terms of magnitude order, e.g., a RMSE value of one 
would mean that the predicted values can be roughly 10 times higher or smaller than the measured ones. 
Another measure of the performance used in this study, is the percentage of calculated values that are 
within a factor of 2 or 4 with respect to measured values. 
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 IMPROVING THE FORMULA 

Dependency of the calibration factor on physical pa rameters 
The Bayram formula is based on a simplified model that attempts to simulate the basic physical 

processes. The calibration coefficient is expected to take into account effects that are not included in the 
basic models (or that are poorly represented). 

The formula can be written in a simplified manner: 

                   (13) 

where Q is the LST rate, ε is the calibration coefficient (also designated as the transport coefficient) and 
X is a function of the input data. 

For each data point i a comparison was made in terms of the differences between the logarithms 
(base 10) of X and measured values: ∆i=log(i)−log(Qm,i). The ∆i values will be henceforth called 
deltas. 

With the intent of finding the optimal ε coefficient, it is necessary to find a dependency of the 
deltas with some physical parameter. Being ε non-dimensional by definition, the dependency will be 
with one or more than one non-dimensional parameters, or with a non-dimensional combination of 
dimensional parameters. The parameters were chosen considering the dimensional analysis made in 
Bayram et al. (2007) and Kamphuis (1991), adding the surf similarity (related to the breaker type). The 
chosen parameters were: Hsb⁄Lo, Hsb⁄D50, surf similarity 

0bm H L  and the Dean number: Hsb⁄wsTp. 

In order to find a correlation and study the data distribution, the deltas were plotted against the 
above mentioned non-dimensional parameters. The plots show considerable scatter (Figure 3). To help 
identifying a trend, it was important to study the (y-axis) distribution of the deltas. Considering that the 
data set has a sufficient number of data points, collected with different methods, it is reasonable to 
assume that the measurement errors are normally distributed and centered on zero. A normal 
distribution of the deltas will only be visible if the error due to the formulation itself is not much higher 
than the measurement error. For this reason, it is hypothesized that the normality of the y-axis deltas 
distributions is a measure of the adequateness of the calibration coefficient because it means that 
measurement error is prevailing. The evolution of these distributions along the x-axis can then be a 
precious help to choose the best non-dimensional parameter for the calibration coefficient.  

In order to have enough points to calculate a statistically meaningful distribution across the y-axis, 
a moving window method was used. Basically this method consists in calculating a number of 
histograms from sets of 60 points, each one beginning 5 points further along the sorted x values. The 
method can be illustrated in Figure 2 that shows a scatter plot of the deltas (calculated with the CERC 
formula) vs. Hsb⁄Lo. In this figure the distance between histograms is exaggerated for visualization 
purposes. 

  

 
Figure 2 - Moving window method to estimate the evo lution of the distribution along the x-axis. Histog ram 1 
refers to the points contained on window 1 and Hist ogram 2 to window 2. 

Having a significant number of histograms, the evolution along the x-axis of the distributions can 
be plotted as a contour. Figure 3 shows the contours of the distributions for the non-dimensional 
parameters considered: the Dean number, surf similarity, Hsb⁄Lo and Hsb⁄D50. In the same figure it can be 
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observed that the range covered by the contours is different for the non-dimensional parameters 
considered. This is caused by the different distribution of points along the x-axis, being Hsb⁄Lo the 
parameter where the points are the most uniformly distributed. In this image one can also notice that the 
distribution with the Hsb⁄Lo parameter follows a more or less clear trend and that for the others 
parameters the existence of a trend is less clear. 

It is important to study the normality of the distributions, i.e. the probability that the sample of n 
points considered for each histogram came from a normal distribution. To this effect, an Andersen-
Darling (Andersen and Darling (1952)) test was used. In this test, a statistic A2 is calculated. If this 
statistic is above the critical value for a given significance level, then the null hypothesis (the sample is 
taken form a population normally distributed) can be rejected. The chosen value for the significance 
level was 5%. The critical value for that significance level is 0.74 (Figure 4). The mean values of A2 
were: 1.20 for the Dean number, 1.19 for the surf similarity, 0.46 for Hsb⁄Lo and 0.83 for Hsb⁄D50. This 
leads to the conclusion that the distribution of deltas, when expressed as a function of the Hsb⁄Lo 
parameter, is clearly the most likely to have been taken from a normal distribution. 

For the two reasons explained above (distribution along x-axis and normality), the best expression 
to describe the deltas is a function of the Hsb⁄Lo parameter for the Bayram formula. 

  

 
Figure 3 - Distribution of deltas for the non-dimen sional parameters considered: Dean number, surf 
similarity, Hsb ⁄Lo and Hsb ⁄D50 (using the Bayram formula). 
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Figure 4 -  Anderson-Darling statistic for the dimensionless pa rameters considered: Dean number, surf 
similarity, Hsb ⁄Lo and Hsb ⁄D50 (using the Bayram formula). 

Least-squares optimization 
All optimization calculations were carried out using a modified Levenberg–Marquardt (Levenberg, 

1944) least-squares optimization method. The method takes a vector of data points yi and tries to find 
the set of parameters x for the function g(t, x) such that the squared sum of residuals becomes minimal. 
The residuals are defined as fi(x)=yi−g(ti,x), where t is the available input data. The Levenberg–
Marquardt algorithm is an iterative method. It starts with an initial guess xn=x0, and in each iteration the 
algorithm determines a correction p to xn that produces a sufficient decrease in the residuals calculated 
with the new parameter set xn+1=xn+p. The solution will converge to x*, being g(t, x*) the function 
minimizes the squared sum of residuals. The calculation of the correction p is described in detail in 
Moré et al. (1980). 

This method allows for nonlinear models to be tested. However, depending on the initial guess, the 
Levenberg–Marquardt algorithm can converge to local minima, failing to find the absolute minimum. 

Taking into account the apparent trend in Figure 3, two non-linear functions were considered: one 
polynomial and the other exponential. The expressions for the deltas take the form: ∆i(x)=log[f (x)] 
where f (x)=axb+c (polynomial function) or f (x)=aebx+c (exponential function) and a, b and c are the 
coefficients to be calculated. The calibration coefficient becomes: ε=[f (x)]−1, as can be seen relating 

Eq.(13) with: : 

The optimization was carried out for the non-dimensional Hsb⁄Lo parameter considered in the 
previous section. The best result was: 

 
               (14) 

 
Figure 5 - Best fitting function (dashed line), poi nt scatter and distribution contour for the Bayram formula 
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The exponential function resulted in a slightly higher RMSE (0.4074 against 0.4069 of the 
polynomial). 

RESULTS 

Figure 6 and Figure 7 show the Qpredicted vs. Qmeasured plots with the original and new coefficients 
under the data set used in this study. With the new coefficient, there is still considerable scatter, which 
is to be expected due to the very complex nature of the processes involved, and the difficulty of 
measuring all parameters related to LST. These simplified models fail to take into account factors such 
as the existence of bars and other morphological features on the beach that can influence the current 
patterns or the wave breaking. The existence of a bar may drastically influence the value of the beach 
slope at the breaker zone, when compared with the values calculated with a representative Dean profile 
(as assumed in the Bayram formula). Probably there is also some noise in the data due to currents 
generated by forcing mechanisms other than wave breaking (e.g. wind and tides). Another source of 
uncertainty is the use of representative wave conditions to synthesize the wave climate during a period 
of time. This is a problem mainly in long term measurements. 

It is possible to use the Bayram formula with measured current data or with different formulations 
for the mean longshore current, accounting for other forcing mechanisms. However, in this study, the 
mean longshore current was always calculated from wave conditions, and measured current data was 
not used. 
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Figure 6 - Qpredicted  vs. Qmeasured  using the Bayram formula with the original coeffici ent. Solid line 
corresponds to x=y , dotted lines to x=0.5y  and x=2y  (factor of 2) and dashed lines to x=0.25y  and x=4y  
(factor of 4) 
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Figure 7 - Qpredicted  vs. Qmeasured  using the Bayram formula with the new coefficient. Solid line corresponds to 
x=y , dotted lines to x=0.5y  and x=2y  (factor of 2) and dashed lines to x=0.25y  and x=4y  (factor of 4) 

 

The performances of the original and the new coefficients are compared in Table 1. 
 

Table 1. Performance of the Bayram formula, with the  original and the 
new coefficients 

 RMSE bias Factor of 2 Factor of 4 

Original coefficient 0.570 0.01 32% 71% 

New coefficient 0.407 0 56% 85% 

 
Table 1 shows that a significant improvement was achieved with the new coefficient, both in RMSE 

values and the percentage of points between factors of 2 and 4 with respect to measurements. The bias 
value is indistinguishable from zero. 

The breaking wave height to deep water wavelength ratio Hsb⁄Lo (which is similar to the wave 
steepness), present in the new coefficient may affect LST in more than one way. Smaller wave 
steepness is usually the result of a large Tp, which can have opposite effects on the LST. A larger period 
gives more time for the sediment to settle between waves and yields smaller wave breaking angles, due 
to more intense refraction. Both these effects would result in a reduction of the LST relatively to shorter 
period waves. On the other hand, a larger wave period also corresponds to a higher surf similarity 
parameter which is known to be associated with more intense plunging breakers (Battjes, 1974). This 
type of breakers dissipates energy in a concentrated area, stirring more sediment from the bottom, thus 
resulting in higher LST. The present analysis suggests that the latter effect is more important than the 
former, as LST increases with Tp in Eq.(14). 

Model generality 
Two methods were used to access the generality of the models presented in the previous section: 

cross-validation and bootstrapping. 
The cross-validation method is one way to infer the generality of the model. The data set is 

randomly divided in two groups: the calibration group and the validation group. In this case each group 
had 50% of the data points. The calibration group will be used to calculate the coefficients, using the 
least-squares algorithm described in a previous section. The validation group will be used to test the 
predicting skill of the model. Because there is a random element, with each division of the data set 
different coefficients and different statistics will be obtained. In order to evaluate the variability of the 
results, the procedure was repeated 10000 times and the distributions of coefficients and statistics were 
determined. 
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Another way to investigate the generality of the model and the confidence level of the results, is the 
bootstrapping method. In this method, the coefficients and statistics of a high number of samples taken 
from the available data set are calculated. In basic terms, the method can be summarized by the 
following steps: first, a sample with random points (picked with replacement, i.e. the same number can 
be picked more than one time) is selected. This so called bootstrap sample has the same size as the data 
set. A least-squares fitting is performed using the bootstrap sample, and the coefficients and statistics 
are stored. The process is repeated many times (in this case 10000). Using the stored values of all the 
fitting operations, it is possible to calculate distributions for the estimated parameters and statistics, and 
evaluate their uncertainty. 

Each bootstrap sample has elements that are repeated and therefore there are points of the data set 
that are not present in the sample. This means that the coefficients obtained by the fitting process using 
the bootstrap samples were derived with less data points. The resulting distributions show the variability 
of the model when its parameters are derived with less data (as in the cross-validation method). 

Both cross-validation and bootstrapping methods were used to verify the generality of the Bayram 
formula with the new coefficient, and the statistics of the RMSE and bias distributions were determined. 
The median, standard deviation and 95th percentile of the RMSE distributions are shown on Table 2. 
The statistics obtained for the bias distribution are all indistinguishable from zero. For that reason they 
are not shown in the table.  

 
Table 2. RMSE statistics using both cross-validation and bootstr apping 
methods, using the Bayram formula with new coeffici ents. 

 median Standard deviation 95th percentile 

Cross-validation 0.414 0.0199 0.446 

bootstrapping 0.404 0.0192 0.436 

 
The resulting histograms for the RMSE values are shown in Figures 8 and 9. The results of the two 

methods are almost identical. In Table 2 it can be seen that the RMSE values are in the vicinity of 0.41, 
and have a small standard deviation (circa 0.02). The 95th percentile is equal or less than 0.45, in all 
formulations. This means that more than 95% of the samples have an RMSE value well under the one 
obtained with the previous coefficient (0.57). The low RMSE variability indicates that the improved 
coefficients have good generality. 
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Figure 8 – Histograms of RMSE values, using the calibration-validation method. 
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Figure 9 - Histograms of RMSE values, using the bootstraping method. 

CONCLUSIONS 

A comprehensive analysis of the bulk LST formula presented in Bayram et al. (2007) has been 
undertaken. The analysis resulted in new calibration coefficient, taking advantage of a least-squares 
optimization algorithm that allows the use of non-linear functions. The predictive skill of the Bayram 
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formula (RMSE=0.407, bias=0, % within factor 2=56%) was significantly better than the previous 
version (RMSE=0.57, bias=0.01, % within factor 2=32%). The generality of the improved formulas was 
examined by applying the bootstrapping and cross-validation statistical methods, both of which returned 
similar results and confirmed the generality of the formulations. It is important to notice that, despite 
the significant improvement in the prediction skills of the Bayram formulation, there is still 
considerable scatter and 44% of the predictions deviate more than a factor 2 with respect to 
observations. This may be due to the several reasons including: the non-consideration of parameters 
that may influence LST such as cross-shore profile features, 3 dimensional morphological features, tidal 
range and wind conditions in the Bayram formula. Other sources of error may be the experimental 
errors and the fact that there is insufficient data for high LST conditions. However, the study of the 
deltas distributions was only meaningful because experimental errors were present and something about 
their nature was assumed. This assumption, that given the high number of data points, the measurement 
error is expected to be normally distributed, centered on zero and that a more adequate coefficient 
would yield more normal y-axis distribution (assessed using the Anderson-Darling statistic criterion), 
resulted in a significant improvement of the calibration coefficient. This can be considered as an 
indication that the assumption was reasonable. 
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