ICCE 2012; Santander, Spain July 5, 2012

FREQUENCY-BASED HARBOR RESPONSE TO INCIDENT TSUNAMI WAVES IN AMERICAN SAMOA

Ziyi Huang Jiin-Jen Lee

Department of Civil Engineering, University of Southern California

Contents

September 29, 2009 Samoa tsunami

Epicenter northern Tonga Trench

- Connecting Australian and Pacific plate
- 200 kilometers away from Samoa
- 14 shakes of magnitude 7.5 or greater since 1990 (USGS)

Earthquake (USGS)

- Magnitude 8.1
- Seismic moment 1.2×10^{28} dyn-cm

> Tsunami

- Arrives at American Samoa 20 minutes later
- Hit Samoa archipelago before Pacific Tsunami Warning Center issued an alert

Tsunamigenic Predecessors (Okal et al., 2011)

 Historical tsunami in Samoa region

USC Viterbi

School of Engineering

- Large earthquake generated tsunamis are shown by circle dots
- Earthquakes with decimetric tsunamis are shown by square dots
- Conclusion: only 1917 earthquake caused a destructive tsunami comparable to 2009 event, but lack of ancestral memory due to the 1918 influenza epidemic

Fatalities and Damages

USC Viterbi School of Engineering

Tsunami Measurements

Google satellite map superimposed by locations of Pago Pago Harbor tidal gauge and two buoys

Tsunami Measurements (continued)

USC Viterbi School of Engineering

Numerical Model (Lee & Xing, 2010)

Mild slope equation (Berkhoff, 1972)

- Hybrid model: numerical solution in harbor and inner region; analytical solution in ring-shape, infinite outer area
- Solutions in inner and outer region should match at semi-circle connecting boundary
- Energy losses due to partial boundary reflection, flow separation at entrance, and bottom friction are also incorporated

Numerical Model (Lee & Xing, 2010)

$$\delta \Psi = \lim_{\alpha \to 0} \frac{\Psi(\phi + \alpha \varepsilon) - \Psi(\phi)}{\alpha} = 0$$

The whole computational domain is discretized into 1,984 elements

Boundary conditions

- Partial reflection at harbor boundary
- Incident waves enter from semi-circle
- Non-reflection at semi-circle

Numerical experiment on Pago Pago Harbor

- Interested in amplification factor: responded wave amplitude / incident wave amplitude
- Eight different incoming directions
- Various wave modes
- Use partial reflection at harbor boundary
- Variable water depth

Response curves

- Amplification factor is the largest at 18-min period for all directions
- Amplification factor does not vary with different directions at the fundamental mode
- Incoming waves with the fundamental mode can be amplified 9 times!
- Explains the considerable difference of wave amplitude recorded by tidal gauge and buoys
- Secondary mode is 4.7-min period

Pago Pago tidal gauge location

- Response curves
- Amplification factor becomes larger to inside of the harbor at 18-min
- Large amplification factor at the most interior for a wide range of wave modes

Comparison with Tidal Measurements

Google satellite map superimposed by the date and location of tsunami events selected for comparison with numerical results

Surface oscillation of Selected Events

Spectral Density of Selected Events

Mode shape

- Distribution of amplification factor inside harbor
- A particular wave mode and incoming direction

- Identical amplification distribution for 18-min wave from different directions
- Maximum wave amplitude occurs at the most interior

Fundamental mode oscillation

- Greater amplification factor for 18min wave
- More crests and troughs for 4.7-min wave
- Shorter wave length for 9-min and 4.7-min wave
- Large wave amplitude at semienclosed areas

Spectral density of Samoa event's tidal measurement

- Significant wave energy on periods other than 18.2 min
- Hypothetical interpretation
- Waves appear at fundamental mode for far-field events
- Near-field tsunami
- Insufficient distance for the dispersion process
- Future researches are required, including tectonic and seismological information, dispersion process from epicenter, response inside harbor

Conclusion

Sep 29, 2009 Samoa tsunami

The largest destructive tsunami ever in Samoa

Led to numerous fatalities and economic losses

Tsunami surges magnified inside Pago Pago Harbor

Frequency-based Simulation results

Response curves: identification of the fundamental mode

Mode shape: distribution of the amplification factor

Verified by field measurements: local response of harbor

Thank you & Questions ?

