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ABSTRACT 

 

Probabilistic Hazard Assessment of Tsunamis Induced by the Translational  

Failure of Multiple Submarine Rigid Landslides. (August 2011) 

Arturo Jimenez Martinez, B.S., Jackson State University 

Chair of Advisory Committee: Dr. Patrick J. Lynett 

 

 A numerical study aimed at probabilistically assessing the coastal hazard posed 

by tsunamis induced by one-dimensional submarine rigid landslides that experience 

translational failure is presented. The numerical model here utilized is the finite-

difference recreation of a linear, fully dispersive mild-slope equation model for wave 

generation and propagation.  This recreated model has the capability to simulate 

submarine landslides that detach into multiple rigid pieces as failure occurs. An ad-hoc 

formulation describing the combined space-time coherency of the landslide is presented. 

Monte Carlo simulations are employed, with an emphasis on the shoreward-traveling 

waves, to construct probability of exceedance curves for the maximum dimensionless 

wave height from which wave statistics can be extracted. As inputs to the model, eight 

dimensionless parameters are specified both deterministically in the form of parameter 

spaces and probabilistically with normal distributions. Based on a sensitivity analysis, 

the results of this study indicate that submarine landslides with large width to thickness 

ratios and coherent failure behavior are most effective in generating tsunamis. Failures 

modes involving numerous slide pieces that fail in a very compact fashion, however, 

were observed to induce bigger waves than more coherent landslides. Rapid weakening 

in tsunami generation potential for some of the parameter combinations suggests that the 

hazard posed by submarine landslide tsunamis is strongly dependent on source features 

and local conditions and is only of concern for landslides of substantial dimensions.   
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NOMENCLATURE 

 

ao Initial acceleration of slide 

A Area of submerged slide 

b Slide width parallel to slope 

b’ Slide width along slope to slide thickness ratio, dimensionless 

bh Horizontal width of slide 

BEM Boundary element method 

BIEM Boundary integral equation model 

c Wave celerity 

cg Wave group velocity 

Cm Added-mass coefficient 

Cd Drag coefficient 

delay Scaling factor delimiting the time taken for the slide at rest to fail 
into Nc pieces, dimensionless 

 
f Frequency resolution, units of hertz 

h Slide thickness 

doI Baseline water depth to thickness ratio above slide centre point, 
dimensionless 

 
ds Horizontal distance traveled by slide, function of time 
 
ds/dt Slide center of mass velocity 
 
ellip Horizontal water depth profile, function of space and time 
 
 Kinematic field variation with depth  



 vii

ffL Frequency filter function dependent of landslide wave number 

ffW Frequency filter function dependent of wave number 

fq Temporal frequency, units of hertz  

F,G Auxiliary variables in MSE derivation 

FFT Fast Fourier transform 

FTCS Forward-time, centered-space 

g Gravity 

h Local water depth, function of space and time 

hc Baseline water depth above slide centre point 

hNc Combined water depth of disjoined slide pieces, function of space 
and time 

 
ho Baseline water depth, function of space 

hp, h’p Water depth representing slide passage, function of space and 
time 

 
ht Time-domain forcing function of MSE model 

htt Frequency-domain forcing function of MSE model 

hF Fourier transform in time of h, function of space and frequency 

Hmax/h Maximum wave height, dimensionless 

H0.05 Wave height with 5% exceedance probability, dimensionless  

î Imaginary number (√െ1) 

k Wave number 

ks Landslide wave number 

Ls Landslide characteristic length 



 viii

L1, L2 Landslide characteristic sides 

MSE Mild-slope equation 

nt Number of time steps in numerical model 

nx, ny Number of space steps in numerical model 

N Fourier transform in time of , function of space and frequency 

Nc Integer number of pieces detaching from slide at rest 

NGDC/WDC National Geophysical Data Center / World Data Center 

NOAA National Oceanic and Atmospheric Administration 

NSWE Nonlinear shallow water equation 

N-S Navier-Stokes 

PNG Papua New Guinea 

Q Probability of exceedance 

r Random number ranging from 0 to 1 

s Slide center of mass motion, function of time 

so Characteristic length of motion 

Sf, S’f Shape function of slide sides 

SMF Submarine mass failure 

Sw Dimensionless width of disjoined slide pieces 

SWE Shallow water equation 

t Time  

to Characteristic time scale of motion 

ts Star motion time of fragmented slide piece 



 ix

ts’ Dimensionless start motion time of disjoined slide piece 

t Difference in start motion times between a slide piece and its 
companion pieces 

 
uc Evolving velocity of slide as it moves down slope, function of 

time 
 
THmax Period of the maximum wave height 
 
ut Terminal velocity of slide 

UI Horizontal water particle velocity at undisturbed water level 

V Volume of submerged slide 

VOF  Volume of fluid 

w Wave angular frequency, units of radians 

xl, xr Left and right tanh inflection points delimiting slide width, 
functions of time 

 
xc, x’c Horizontal location of slide centre point, function of time 

xo Horizontal location of slide centre point at rest 

xoI Offshore  initial centre point horizontal location of  slide 

t Numerical time step 

x, y Numerical space steps 

 Slope angle, units of degrees 

γ Specific gravity of slide (b/w) 

 Free surface elevation, function of space and time 

 Wave angle of approach normal to boundary, in radians 

h Horizontal gradient operator 



 x

b Bulk density 

w Water density 

 Fluid velocity potential 

 Fluid velocity potential at undisturbed water surface level 

 Combined space-time coherency of slide, dimensionless 

’ Auxiliary variable for numerical computation of  

ॠm Combined mass of slide fragments  

ॠR Ratio of parent slide mass to mass of slide pieces (ॠs/ ॠm) 

ॠs Mass of parent slide 
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CHAPTER I 

INTRODUCTION AND 

CASE STUDY 

 

A tsunami is a series of waves characterized by both extremely long wavelength 

and period that result from impulsive geological events involving a large body of water, 

more commonly the ocean, such as earthquakes, volcanic eruptions, aerial and 

submarine landslides, and meteorite impacts. Tsunami propagation speed, transoceanic 

travel potential, and attainable height, among other factors, classify these waves as a 

major hazard to coastal communities around the globe. Throughout history, tsunamis 

have struck coasts worldwide, many times inadvertently, bringing severe infrastructure, 

economic, and social damage to the affected areas. The National Geophysical Data 

Center / World Data Center (NGDC/WDC), a partner of the National Oceanic and 

Atmospheric Administration (NOAA), documents in the form of a Historical Tsunami 

Database over 2400 tsunami events dating back to 2000 B.C., listing as causes of these 

phenomena the geological mechanisms previously mentioned acting either individually 

or collectively. In recent times, episodes such as the 2004 Indonesia tsunami and the 

2011 Japan tsunami, associated to human death tolls in the order of 200,000 and 15,000, 

respectively, have fostered the development of more robust tsunami hydrodynamic 

models and more efficient warning systems that can aid in protecting coastal 

communities, nearshore infrastructure, and the local environment. Both of these events 

reinstated the importance of reinforcing vulnerable shorelines and educating the people 

that live in close proximity to the coast about evacuation measures. Though catastrophic 

tsunamis are infrequent events, the hallmark of their passage may never be entirely 

erased.  

 
____________ 
This thesis follows the style of the Journal of Waterway, Port, Coastal, and Ocean 
Engineering. 
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Although the events in Japan and Indonesia were a consequence of seismic 

activity, tsunamis may also surge from other mechanisms. Among them, submarine mass 

failures (SMFs) consist of volumes of seafloor material that, driven by gravity and other 

body forces, experience motion along a rupture surface. The forcing that provokes a 

SMF may come from different sources; however, earthquakes have been the most 

investigated and documented triggering mechanisms. Once set in motion, SMFs 

stimulate the ocean surface, generating waves of destructible height that can severely 

damage the coast and offshore assets. For this reason, SMFs are categorized as 

tsunamigenic mechanisms and potential hazards for civilizations settled along the coast. 

Contemplated in the NGDC/WDC Historical Tsunami Database, submarine 

landslides are a category of SMFs characterized by a rigid body-type motion of 

essentially no internal deformation. Depending on the rupture surface over which failure 

of their mass occurs, submarine landslides can be classified as translational or rotational. 

Translational slides undergo motion over a roughly planar rupture surface whereas 

rotational slides or slumps experience motion on curved surfaces that exert rotational 

movement on the failed material. Nonetheless, additional classifications of SMFs (e.g., 

debris flows, mass flows, and turbidity currents) are derived based on the disintegration, 

deformation and dilution that slide materials undergo as failure takes place (Lee et al. 

2002).  

Although not well understood and studied in the past compared to seismic 

sources, submarine landslides earned their recognition as tsunami-triggering mechanisms 

as the extent of coastal damage and the number of human deaths were valued in the 

aftermath of various historical episodes involving this class of SMFs. Some of these 

events (1888 Trondheim Bay, Norway; 1918 Mona Passage, Puerto Rico; 1929 Grand 

Banks, Canada; 1958 Lituya Bay and 1964 Resurrection Bay, Alaska; 1998 Sissano 

Lagoon, Papua New Guinea (PNG); 1999 Fatu Hiva Island, French Polynesia), were 

driven by natural forcing, while others (1994 Skagway Harbor, Alaska; 1979 Nice 

Event, France) were a consequence of nearshore construction and harbor/port structural 

instability.  
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The 1998 PNG Tsunami: A New Conception of SMFs 

 

Among the memorable recorded events belonging to the underwater landslide 

category, the tsunami of July 17, 1998, Sissano Lagoon, Papua New Guinea stands out 

for the number of lives it inadvertently claimed and the importance it had to the research 

and coastal communities in recognizing the hazard posed by SMFs. The triggered waves 

of this event, occasioned by a seismically-induced slump, reached up to 10 m in height 

and devastated 23 km of coast, causing the deaths of over 2200 inhabitants. Within the 

historical records, the latter death toll makes the 1998 PNG event the worst catastrophe 

provoked by a tsunami of submarine landslide origin (NGDC/WDC).  

In the aftermath of the PNG tragedy, survey teams noticed a tsunami landmark 

unequal to the more familiar signature of tsunamis solely triggered by earthquakes. The 

first sign of abnormality was the lack of agreement between the magnitude of the 

earthquake and the height of the tsunami. Field measurements on the coast indicated that 

the generated waves exceeded the expected height for a magnitude 7 earthquake, using 

as reference previous coseismic tsunami events. In addition, the arrival time of the 

tsunami was not in accord with the occurrence of the earthquake’s main shock as 

reported by eye witnesses who approximated a 20-minute delay between these two 

events. The earthquake and the tsunami appeared not to share the same geographical 

origin. Adding to the signs of inconsistency, damage on the coast did not reflect the 

relatively uniform profile characteristic of a coseismic tsunami. Rather, land surveys 

indicated that 15 km away from the location of maximum run-up waves were 

significantly smaller and only minor coast deterioration could be appreciated. The height 

of the tsunami, its arrival time, and its localized devastation pattern along the coast 

suggested a different triggering mechanism.  

Supporting the hypothesis of a few scientists, marine surveys were able to locate 

a sign of recent displacement in the ocean floor off Sissano Lagoon. Combined with 

hydroacoustic data, this finding provided crucial support to the postulate of a submarine 

landslide-induced tsunami.  Further investigation concluded that, provoked by a 
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secondary aftershock that occurred 13 minutes after the main tectonic disturbance, a 

volume of 4 km3 of seafloor material located 35 km offshore of Sissano Lagoon was set 

in motion for about 45 seconds. Using these data as inputs, numerical models of the 

affected area were able to reproduce the main characteristics of the tsunami witnessed on 

July 17, 1998 in the PNG coast. More details of the event can be found in the work of 

Borrero et al. (2002), Synolakis et al. (2002) and Lynett et al. (2003) from which this 

narrative was composed. 

Though in a lamentable manner, the outcome of the PNG catastrophe gave the 

devastation potential of submarine landslide tsunamis a new meaning, rectified the need 

to more deeply study the nature of these events, and motivated the effort to incorporate 

the hazard posed by SMFs into inundation maps, nearshore evacuation plans and coastal 

infrastructure design. 
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CHAPTER II 

CHARACTERIZATION OF SUBMARINE  

LANDSLIDE-GENERATED TSUNAMIS 

 

It is possible to qualitatively characterize underwater landslide-induced tsunamis 

and differentiate their features from tsunamis of seismic origin, based on the 

observations gathered in the wake of past events. It is important to examine the 

peculiarities inherent to these waves to better understand the coupling between the 

motion of the ground and the surface of the ocean. This examination will not only allow 

to identify wave and run-up features, but also the prediction and modeling challenges 

unique to submarine landslide tsunamis. In general, however, the properties of these 

tsunamis cannot be quantitatively standardized and are a function of slide dynamics, 

slide physical properties, and local bathymetry. 

 

Distinction from Tsunamis of Seismic Origin 

 

Compared to coseismic tsunamis, the spatial source extent of a submarine 

landslide tsunami is much smaller. Consequently, the latter waves manifest peaked wave 

forms and highly directional propagation patterns that are correlated to the volume and 

direction of motion of seafloor failure (Iwasaki 1997). Subsequently, these features may 

result in higher wave amplitudes in the local field, more localized run-up patterns and a 

greater potential to flood concentrated areas compared to tsunamis triggered by seismic 

dislocation (Maretzki et al. 2007). Notice these tsunami characteristics are well 

exemplified by the PNG disaster. In contrast, a relatively uniform wave form and run-up 

landmark along many kilometers of shoreline is typical of coseismic tsunamis due to the 

greater source extent which excites the free surface in a more homogeneous manner 

(e.g., 2011 Japan tsunami).  
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In contrast to seismic sources, underwater landslides tsunamis are incapable of 

propagating over transoceanic distances because their energy release is much lower and 

due to their dispersive nature (Synolakis et al. 2002). Therefore, the hazard of these 

tsunamis is of primary concern when potential sources rest on shore vicinities. This 

implies that short arrival times could further aggravate the outcome of tsunamis parented 

by submarine landslides, as was the case of a vast majority of case studies including the 

1998 PNG tsunami.  

 

Prediction and Modeling Challenges 

 

Geotechnical and Geographical Considerations 

 

Several difficulties arise with the study of submarine landslides. An immediate 

challenge surges from the inability to predict the onset of underwater mass motion, be it 

due to an external agent (tectonic events, storm-wave loading, low-tide conditions, gas 

generation from organic matter decomposition, etc.), or to slope instability/over-

steepening. Geologists have labeled the areas where submarine mass movements are 

likely to be encountered, however. Characterized by high environmental loading, these 

landslide-prone regions correspond to fjords, deltas, submarine canyons, and continental 

slopes (Lee et al. 2002). Moreover, marine surveys have been able to map the 

geographical areas where underwater landslides are more likely to occur and to identify 

very active regions (Booth et al. 2002; Chaytor et al. 2009; McAdoo et al. 2000). In spite 

of these advances, current remote-sensing technology is not yet able to foresee the 

failure of these volumes of seafloor material. It is known, however, that excess pore 

water pressure, liquefaction, deposition rate, critical shear stresses, and local climate are 

some of the soil-related aspects to consider in attempting to predict or in determining the 

cause of submarine slope failure initiation (Biscontin et al. 2004; Tappin 2010).  

. 
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Coupling of Submarine Landslide and Free Surface 

 

Comprehending the response of the free surface to the changes occurring in the 

sea bottom due to the passage of a landslide also poses a major challenge to the study of 

submarine landslide tsunamis. Compared to earthquakes, the longer time scale of 

submarine landslides creates a more complex coupling between the changes in the ocean 

bottom and the free surface. Given the short duration and impulsive nature of the sea 

floor dislocation in a tectonic event, the initial ocean surface is assumed to mimic the 

occurred bottom displacement (Jiang and LeBlond 1992). In the case of underwater 

landslides, the free surface and the moving mass interact for the entire motion duration, 

generating waves that are a function of the time-history of the ocean bottom changes. If 

the landslide separates into multiple entities or disintegrates as it travels, then the 

hydrodynamics involved become even more sophisticated. Furthermore, as was 

previously mentioned, the extent of an undersea landslide is much smaller than that of a 

tectonic source. This translates, for the submarine landslide case, into waves of much 

shorter wavelength (though still in the order of tens of km) that make frequency 

dispersion in the generation region an important aspect to consider (Lynett and Liu 

2002). Therefore, suitable models for the generation and propagation of landslide 

tsunamis must contemplate the free surface-slide interaction as well as the frequency 

dispersive behavior of the triggered waves.  
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CHAPTER III 

ANTECEDENT STUDIES AND  

PROBLEM STATEMENT 

 

Despite the complexity of the physics involved in submarine landslide tsunamis, 

multiple analytical solutions and numerical models have been developed and 

satisfactorily validated against historical and experimental data. In fact, antecedent 

studies indicate that the problem of submarine landslide tsunamis has been confronted as 

far back as 1955 with the experimental study of Wiegel who investigated the waves 

produced by a solid body sliding down a flat slope (Wiegel 1955). Also evident in the 

literature of underwater landslides is the greater presence of numerical models compared 

to analytical and experimental studies. The scarcity of the latter two is perhaps the result 

of the well-established analytical formulations describing flow with ground motion and 

the high cost of physical experiments able of reproducing submarine slides of variable 

density that must be meticulously triggered in sufficiently large tanks. As in many other 

areas of science, numerical models seem to be experiencing significant growth in the 

topic of submarine landslide tsunamis. Thus, the assortment, theory, and applicability of 

the existing numerical models will be the main focus of the following literature review.  

 

Numerical and Physical Models with Ground Motion 

 

Three broad categories of numerical models can be identified in the literature: 

Navier-Stokes (N-S), potential flow, and depth-integrated models. Those that solve the 

N-S equations form a relatively small, but powerful category. Given that the 

assumptions of incompressible and irrotational flow are often their only limitations, N-S 

models are the most robust and accurate means to model the full slide-water surface 

interaction and the generation, propagation, and run-up of the triggered waves in the 

presence of currents and nonlinear and dispersive effects. Their potential is illustrated by 
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models such as the one developed by Assier Rzadkiewicz et al. (1997) that couples 

sediment and ambient water through the inclusion of rheological terms in the momentum 

equations and the model of Abadie et al. (2010) which contemplates the air-slide-water 

interaction that arises in partially submerged slides. Furthermore, N-S models can be 

equipped with turbulence models (e.g., k-ε and Large-Eddy Simulation) to account for 

turbulent manifestations such as wave-breaking and large-eddy motions. Liu et al. 

(2005) and Yuk et al. (2006) incorporated such turbulence models and a Volume of 

Fluid (VOF) technique (Hirt and Nichols 1981) to study the run-up and rundown 

occasioned by submarine landslide-induced waves. The accuracy and robustness of N-S 

models, however, comes at a high computational cost that makes these models 

inapplicable to large domains. 

Though absent of turbulent mixing and wave-current interaction, potential flow 

models which solve the Laplace Equation are also a way to accurately reproduce 

submarine landslide-generated tsunamis (e.g., Pelinovsky and Poplavsky 1996) without 

the need to discard nonlinear and dispersive effects. Most of the potential flow solvers 

make use of Green’s theorem to transform the Laplace Equation into a Boundary 

Integral Equation (BIE) and reduce the problem dimension by 1 (Lin 2011). For 

example, Grilli and Watts (1999) developed a two-dimensional (2-D), fully nonlinear 

BIE model which they solved utilizing a high-order Boundary Element Method (BEM) 

that is capable of describing the internal flow resulting from underwater landslides. 

Likewise, Fructus and Grue (2007) designed a three-dimensional (3-D), fully nonlinear, 

fully dispersive model where the dominant contributions of the integral equations are 

evaluated using a Fast Fourier Transform (FFT), hence granting remarkable 

computational efficiency over the model of Grilli and Watts (1999). Nevertheless, 

potential flow models are complex in essence and fall under the category of 

computationally expensive models, restricting their applicability to concentrated areas. 

By assuming the horizontal scale is much larger than the depth of the fluid or, 

equivalently, that the vertical velocity of the fluid is small, the N-S equations can be 

simplified and granted a lower computational cost. This is achieved by integrating the N-
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S equations over the water depth and assuming a hydrostatic pressure balance in the 

fluid. These depth-integrated models are popularly referred to as Shallow Water 

Equation (SWE) models or long wave models and comprise another widely-used 

technique for modeling of irrotational flows.  In particular, the nonlinear shallow water 

equation (NSWE) models have been the traditional tool employed to simulate tsunamis 

of seismic and landslide origin. Jiang and LeBlond (1992, 1993) conducted the first set 

of numerical investigations of the coupling of a submarine mudslide and the free surface 

using a NSWE model modified to incorporate ground motion. Similarly, Hienrich et al. 

(2001) utilized a 2-D NSWE model to recreate the 1998 PNG Tsunami under two 

scenarios: a slump that behaves as a viscous fluid and a slump that fails in the form of 

granular material. Conversely, relying on the linear SWE, Raney and Butler (1976) 

studied landslide-generated waves in a reservoir, Harbitz (1992) and Harbitz et al. 

(1993) modeled the Norwegian slides of Storegga and Tafjord, Imamura and Imteaz 

(1995) modeled two-layer flows using a spectral technique, and Iwasaki (1997) 

established distinctions with regard to wave form and directivity between coseismic and 

landslide tsunamis. Both linear and nonlinear SWE models, however, are deprived of 

dispersion terms and limited to regions shoreward from the surf zone (Brocchini and 

Dodd 2008). These weaknesses reduce the precision with which the SWEs can model 

submarine landslide tsunamis where frequency dispersion in the generation zone may be 

relevant and wave propagation into deep water may be a subject of interest.  

The introduction of low-order nonlinear and frequency dispersion effects into the 

SWEs yields another class of depth-integrated models known as Boussinesq models 

which emerge from the work of Peregrine (1967). The inclusion of dispersive terms 

allows these models to extend the validity of the NSWE into deeper water and account 

for diffraction, refraction, shoaling, and reflection effects. Lynett and Liu (2002) 

modeled a one dimensional (1-D) submarine slide by means of a weakly nonlinear, 

weakly dispersive Boussinesq model and concluded that, though nonlinear effects are 

relevant to predict shoreline movement and wave breaking, frequency dispersion is 

important in the generation region. Extending their Boussinesq model to a 2-D 
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multilayer scheme, Lynett and Liu (2005) studied the dependency of the run-up 

generated by 3-D submarine and subaerial landslides on various slide parameters (such 

as thickness, specific gravity, and beach slope) and estimated the magnitude and location 

of maximum and secondary run-up peaks. Further exemplifying the potential of these 

extended depth-integrated models, Fuhrman and Madsen (2009) created a high-order 

Boussinesq model capable of reenacting moving seafloors (including submarine 

landslides) and accurately reproducing tsunami generation, propagation, and run-up. As 

may be speculated, the more inclusive the nonlinear and dispersion effects, the more 

complex and computationally expensive these Boussinesq models become. This is the 

greatest limitation of these extended depth-integrated models in addition to their inherent 

irrotational and inviscid fluid assumptions. 

With the purpose of studying detailed wave field characteristics and validating 

the aforementioned numerical models, laboratory experiments have also been conducted 

in a variety of set-ups, slide shapes and kinematics, and triggering devices. Although 

most of these studies have been 2-D reenactments of submarine slides of rigid type 

(Wiegel 1955; Iwasaki 1982; Heinrich 1992; Watts 1998, 2000; Watts et al. 2000; Grilli 

and Watts 2005) and granular material (Watts and Grilli 2003; Fritz et al. 2004), 3-D 

experiments have also been performed for rigid bodies (Synolakis and Raichlen 2003; 

Enet et al. 2003; Liu et al. 2005; Enet and Grilli 2005, 2007; Cecioni and Bellotti 

2010b). Independently, each one of these experiments confirmed the dispersive and 

directional nature of the wave field created by the motion of underwater slides.  

 

A Source Term Suitable for Submarine Landslides 

 

In light of the dispersive behavior of tsunamis induced by underwater landslides, 

Tinti et al. (2006) developed a Lagrangian analytical model that incorporates seafloor 

deformations characteristic of submarine landslides and the frequency filtering effects 

caused by the water column. In their model, seafloor alterations are incorporated through 

a forcing function defined as the time derivative of the water depth (ht) while filtering of 
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high wave frequencies is implemented by means of a filter function of the form ffL = 

sech (ksh) with ks=2ߨ/Ls where ks is the landslide wave number, Ls the characteristic 

landslide length, and h the local ocean depth. The purpose of the latter function is to act 

as a low-pass frequency filter and favor the reproduction of long waves. The absence of 

the filter function would suggest that bottom disturbances are purely transmitted to the 

free surface. As mentioned previously, however, the time-scale of submarine landslides 

makes it incorrect to assume that the changes in the ocean bottom instantaneously 

transfer to the free surface, though it is a valid assumption for coseismic tsunamis. The 

product of the forcing and filtering functions constitutes the source term of Tinti et al. 

(2006) which was utilized to simulate the landslide tsunami that struck the island of 

Stromboli, Italy on December 30, 2002.  

Similarly, but following more closely the discussion of Ward (2001), Kervella et 

al. (2007) stress upon the importance of incorporating frequency-dispersion capabilities 

to submarine landslide tsunami models. They support this postulate by comparing 3-D 

linear and nonlinear tsunami generation models that do and do not account for frequency 

dispersion. Their approach with respect to the linear models is based on two crucial 

features of Ward’s work: the use of a spectral technique to solve the governing equation 

and boundary conditions and the utilization of wave number (k), rather than ks, in the 

formulation of the filter function, i.e., ffW = sech (kh). Kervella et al. (2007) concluded 

their study by stating that NSWE models are not able to reproduce the frequency 

dispersive behavior of tsunamis, but that linear theory inclusive of dispersive 

manifestations is more appropriate in this regard.  

A synopsis of the mentioned studies and their findings suggests that a model for 

the study of submarine-landslide tsunamis could be formulated using linear theory, but 

would have to account for frequency dispersion effects in the generation region, grant 

acceptable accuracy, and be applicable to large domains. To a large extent, these criteria 

can be satisfied with a model governed by the Mild-Slope Equation (MSE). 
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The Fully Dispersive MSE Model 

 

Similar to the approach employed to reduce the computational cost of the N-S 

equations, Mild-Slope Equation models offer a simpler alternative to potential flow 

models. Proposed by Eckart in 1952 and derived by Berkhoff in 1972, the MSE is a 

depth-integrated version of the Laplace equation operating under the assumption of 

inviscid flow and mildly-varying bottom slopes. The “mild-slope” acronym surges from 

assuming that, within a wavelength, the rate of change in depth is small (Demirbilek and 

Panchang 1998). Regarding their functionality, MSE models offer a mixture of the 

benefits and limitations of the SWE and Boussinesq models. Most commonly found in 

their linear form, MSE models are able to simulate small-amplitude wave environments 

where wave propagation from deep to shallow water and wave scattering effects (i.e., 

refraction, reflection, and diffraction) are encountered. The main advantages of an MSE 

model over Boussinesq approximations is that the former covers a wider range of water 

depths due to its natural incorporation of frequency dispersion and requires less 

computational effort. In view of these attributes, the MSE has been embraced as a 

suitable tool for describing coastal wave climate and wave fields in the vicinity of 

coastal structures and islands (Demirbilek and Panchang 1998). In particular, owed to its 

inclusion of frequency dispersion, MSE models are suitable for the simulation of 

submarine landslide tsunamis. 

By incorporating ground motion, Bellotti et al. (2008) developed a linear MSE 

model capable of reproducing small-amplitude transient waves and frequency dispersion 

effects caused by changes in the ocean bottom. The forcing function of their model 

consists of the ht term, as proposed by Tinti et al. (2006).  Regarding the solution 

approach to their MSE model, Bellotti et al. (2008) adopt the technique of Kervella et al. 

(2007) who solve their mathematical problem in the frequency domain by means of a 

Fourier Transform. To validate their model, Bellotti et al. (2008) recreate the 

propagation of the December 30, 2002 Stromboli tsunami, obtaining results congruent 
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with the findings of Tinti et al. (2006) and clearly showing the reproduction of frequency 

dispersion effects when comparing their solutions to those of a long wave model. 

Refining the suitability of the linear MSE model of Bellotti et al. (2008) to 

recreate tsunamis originated by underwater landslides, Cecioni and Bellotti (2010a) 

incorporated the low-pass filtering influence of the water column into the structure of the 

source term. Their filter function is the one investigated by Tinti et al. (2006), but with 

the modification suggested by Kervella et al. (2007) with respect to using wavelength 

rather than landslide characteristic length. Hence, the source term of their model in the 

physical space is formed by the product of ffW and ht. A Fourier Transform is then 

applied to obtain the elliptic MSE which will be discussed in the next chapter. 

Cecioni & Bellotti (2010a) proceeded to demonstrate the improvements made to 

the MSE model of Bellotti et al. (2008) by comparing free surface elevations against a 3-

D Laplace equation solver. In addition to exposing its computational efficiency, the 

outcome of this comparison validated the solution accuracy of the MSE model, which 

turned out to be comparable to that of a Boussinesq equation. At the same time, the 

satisfactory results were suggestive that the filter function proposed by Kervella et al. 

(2007) was the appropriate means to recreate the low-pass filtering character of the water 

column. Among their concluding remarks, Cecioni and Bellotti (2010a) motivated the 

use of the fully dispersive MSE model in early tsunami warning systems. 

 

Probabilistic Studies on U.S. Coasts 

 

The study of submarine-landslide generated tsunamis lies among the many areas 

of research where probabilistic methods are often applied. Particularly, the hazard 

assessment of these waves has been investigated under the Monte Carlo approach as this 

technique has proven to be suitable for analyzing the behavior of a system that 

transforms or evolves depending on the random behavior of multiple parameters. The 

outcome of probabilistic studies of this nature has given valuable insight on the 

correlation between tsunami amplitudes and slide characteristics (Watts 2004) and has 
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allowed for the identification of specific sites with high risks of flooding along 

continental margins (Maretzki et al. 2006; Grilli et al. 2009). 

Watts (2004) made use of a BEM (Grilli and Watts 1999) and a Monte Carlo 

approach to construct tsunami amplitude probability distributions for Southern 

California in the context of underwater landslides and slumps mobilized by seismic 

forcing. The various random input parameters defined in his study account for 

earthquake magnitude (4.4 < Mw < 7.4) and distance, sediment characteristics and 

slide/slump dimensions and are arbitrarily given uniform and Poisson probability 

distributions. The correlation analysis conducted by Watts (2004) indicates that tsunami 

amplitude is most strongly dependent on the thickness and length of the submerged mass 

for both slides and slumps. However, the results of the Monte Carlo simulations 

suggested that slumps have a greater tsunamigenic potential than slides given their larger 

width to length ratio. Watts (2004) concluded his study recognizing the challenge of 

generating precise tsunami amplitude distributions given the lack of tsunami and 

geotechnical data in the region of the study and the unrealistic parameter combinations 

that may arise from the Monte Carlo method. In spite of this, he recalls the importance 

of probabilistically creating tsunami amplitude curves on which both hazard and risk 

assessment can be promoted. 

Similar in methodology to the work of Watts (2004), Maretzki et al. (2006) 

conducted a probabilistic study, founded on a Monte Carlo method and a long wave 

model, to determine the tsunami hazard posed by SMFs originated as a result of 

earthquakes on the continental shelf and slope of the upper U.S. East Coast. Their 

probabilistic model consists of randomizing input parameters representing seismicity, 

sediment features, and slide/slump physical attributes to obtain run-up heights associated 

to 100-year and 500-year seismic return periods. Maximum run-up along the shore is 

estimated on the basis of the correspondence principle stated by Watts et al. (2005) 

which approximates maximum run-up to the magnitude of the initial tsunami depression 

provoked by a SMF. Maretzki et al. (2006) finalize their investigation identifying only 

two locations along the examined geographical domain (one near Long Island, NY and 
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another one in the proximity of Atlantic City, New Jersey) with high risk of tsunami-

induced run-up topping the regional 100-year storm surge of 5 m. In the concluding 

remarks, they also stress upon the importance of having actual geotechnical data to 

better quantify SMF-tsunami hazard. 

Elaborating on the work of Maretzki et al. (2006) for the same region, a Monte 

Carlo-based stochastic study of refined peak horizontal acceleration and slope stability 

calculations as well as inclusive of nearshore wave breaking and excess pore water 

pressure was performed by Grilli et al. (2009). In addition, the latter authors impose a 

0.02-m threshold for the initial height of the generated tsunamis to proceed with 

propagation and run-up estimation. Input parameter distributions and initial run-up 

estimation, however, resemble those of Maretzki et al. (2006), except that along-shore 

run-up is modulated assuming a Gaussian shape. The risk assessment presented by Grilli 

et al. (2009) is in terms of run-up heights for given return periods, with an emphasis on 

the 100-year and 500-year cases. Consequently, the same two sites identified by 

Maretzki et al. (2006) are again recognized as the most vulnerable locations to SMF-

induced run-up. Grilli et al. (2009) concluded their discussion noting the improvement of 

run-up prediction with the addition of wave breaking and cataloguing the overall coastal 

hazard for the entire area of the study as low. 

Several issues in assessing the hazard presented by submarine landslides and 

slumps can be inferred from the aforementioned probabilistic studies. First, actual 

bathymetry and sediment data are of primary importance to model the generation and 

propagation of the generated tsunamis. Although bathymetry seemed to be readily 

available, all three studies recognized the need to better sample continental margins to 

reduce the uncertainty in the distribution of input sediment parameters. Second, these 

studies also reflect the challenge in associating precise SMF tsunami risk levels to 

specific areas, given the simplifying assumptions and the impractical combinations that 

may result from the Monte Carlo method.  

The studies of Watts (2004), Maretzki et al. (2006) and Grilli et al. (2009) are 

outstanding examples of the valuable insight that can be gained through the use of 
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Monte Carlo simulations to estimate the hazard posed by submarine landslide tsunamis. 

These investigations, however, only explored failures that occur as a single moving 

entity, thus not providing insight on the hazard potential of submarine landslides that 

may break into multiple pieces as failure unfolds. It is this gap in the probabilistic 

studies of SMFs which will be addressed and to a first-order of approximation quantified 

in this study. 

 

Objective and Methodology of the Study 

 

By numerically recreating the linear MSE model of Cecioni and Bellotti (2010a) 

using a finite-difference scheme, this research aims at probabilistically analyzing the 

shoreward-traveling waves generated by 1-D submarine rigid landslides that experience 

translational failure. Deviating from the failure modes found in the literature, the 

modeled landslides possess the capability to fail either as a single rigid mass or as a user-

specified number of rigid pieces. For the latter case, an expression for the space-time 

coherency of the landslide will be presented in order to conceive the degree of 

compaction of the overall failure. As inputs to the model, eight dimensionless slide 

parameters influencing tsunami generation will be considered, namely: bottom slope, 

slide width, slide initial depth, number of pieces in which the slide detaches, slide failure 

delay, and specific gravity, drag coefficient, and added-mass coefficient of the slide 

mass. The latter three inputs will be randomly selected using normal distributions while 

the rest will be deterministically chosen and organized in the form of a parameter space.  

To evaluate the free surface response to the various parameter combinations, 

Monte Carlo simulations will be used to obtain probability of exceedance curves for the 

maximum dimensionless wave height from which wave statistics will be extracted. In 

addition, nondimensional relations between wave period and maximum wave height will 

also be provided. The results of the Monte Carlo simulations will then be presented for a 

parameter subspace with constant values and a parameter space in which one of the 

inputs is singularly varied. Tsunami hazard assessment will then advanced by providing 
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insight on the dependency of tsunami generation on the different slide parameters and by 

providing first-order estimation for nearshore design of the height of the waves that may 

be triggered by underwater landslides. Landslide triggering, wave breaking and run-up 

are beyond the capabilities of the recreated model; hence, the present study is limited to 

wave generation and propagation.  

The rest of this manuscript is organized in the following manner. The next 

section introduces the governing equations and boundary conditions of the MSE model. 

Then, recreation and validation of the 1-D and 2-D models are covered along with the 

equations of motion governing slide dynamics. Next, the Monte Carlo simulations are 

addressed in terms of their organization, numerical setup, and selection of deterministic 

and random inputs. The interpretation of the resulting probability distributions is then 

overseen as well as the inspection of the degree of influence of the different slide 

parameters on tsunami generation. Finally, conclusions are drawn and future 

developments suggested. 
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CHAPTER IV 

NUMERICAL RECREATION AND VALIDATION  

OF A LINEAR MSE MODEL 

 

Aware of the potential of the MSE and of the relevance of frequency dispersion 

in tsunami theory, Bellotti et al. (2008) construct a mathematical model centered about 

the frequency-dependent linear MSE which they justifiably modify to incorporate the 

seafloor alterations characteristic of earthquakes and underwater landslides. To arrive to 

this equation, Bellotti et al. (2008) follow the derivation of the hyperbolic or time-

dependent MSE proposed by Dingemans (1997) and proceed to apply a spectral method 

which, by means of a Fourier Transform in time, yields the final form of the elliptic 

MSE. The time-domain solution is then recovered through an Inverse Fourier Transform.  

 

Mathematical MSE Postulate 

 

The start point of the MSE derivation is the 2-D set of linearized wave equations 

for incompressible and irrotational fluid on an uneven bottom, namely 

 

୦׏                             
ଶ൅ ௭௭ ൌ 0            െ ݄ሺݔ, ,ݕ ሻݐ ൏ ݖ ൏ 0                                 (1) 

 

                              ௭ ൅ 
ଵ

௚
௧௧ ൌ ݖ                                      0 ൌ 0                                  (2)  

 

௭ ൅ ׏୦ · ୦݄׏ ൌ ݖ                                     0  ൌ െ݄ሺx, y, tሻ                    (3) 

 

where (x, y ,z ,t) is the velocity potential in the fluid, h(x, y ,t) is the water depth, g is 

the gravitational acceleration and z = 0 the location of the undisturbed water surface. The 

symbol h is the horizontal differential operator denoting divergence in the x and y 

directions. Equation (1) is the Laplace Equation, Equation (2) is the combined dynamic 
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and kinematic free surface boundary condition, and Equation (3) is the impermeable 

bottom boundary condition.  

The solution to the boundary value problem posed by Equations (1) - (3) is 

assumed to be of the form 

 

 ൌ ݂ሺݖ, ݄ሻ߮ሺݔ, ,ݕ    ሻ                                                    (4)ݐ
 

where  (x, y, t) is the velocity potential at the undisturbed water surface and f (z, h) is a 

function that approximates the variation of the kinematic field with depth along the 

water column. From linear theory, f is chosen as follows 

 

݂ ൌ ௖௢௦௛ሾ௞ሺ௛ା௭ሻሿ

ୡ୭ୱ୦ ሺ௞௛ሻ
                                                        (5)                  

 

where k is the wave number. Equation (5), although valid for harmonic waves 

propagating over an even bottom, holds for slowly-varying bottoms as well. Wave 

number can be computed for any angular frequency w through iteration of the linear 

dispersion relationship, i.e., 

 

ଶݓ ൌ    ሺ݄݇ሻ                                                   (6)݄݊ܽݐ݇݃
 

Alternatively, wave number can be calculated by using Eckart’s approximation to 

the linear dispersion relationship (Fenton and McKee 1990). This accurate 

approximation suppresses the need to iterate for k by taking the following form 

 

                                               ݇ ൌ ௪

௚
ቂ݄ܿݐ݋ ቀ௪

మ௛

௚
ቁቃ                                                   (7)   
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Governing Equation 

 

By means of a variational derivative originated from Hamiltonian theory of 

surface waves, Dingemans (1997) constructs two evolution equations for the free surface 

elevation  and the velocity potential at z = 0. These equations are 

 

௧ ൌ ߮ܩ െ ׏ · ሺ߮׏ܨሻ െ ݄௧                                          (8)   
 

߮௧ ൌ െ݃                                                          (9) 

 

where, in Equation (8), ht is the heuristically-added term responsible for incorporating 

any seafloor alterations occurring as a result of earthquakes or submarine landslides. 

Also present in Equation (8) are the variables F and G which are defined as follows 

 

ܨ ൌ ׬ ݂ଶ݀ݖ ൌ   ௖ ௖௚
௚

଴
ି௛                                                (10) 

 

ܩ ൌ ׬ ቀడ௙
డ௭
ቁ
ଶ
ݖ݀ ൌ  ௪

మି௞మ௖௖௚

௚

଴
ି௛                                        (11) 

 

where c is wave celerity and cg is group velocity. By differentiating Equation (8) with 

respect to time, it is possible to remove the variable  from the first evolution equation 

with the aid of the equality established in Equation (9). After this simplifying procedure, 

the following second-order partial differential equation results 

 

௧௧ െ ׏ · ሺ݃׏ܨሻ ൅ ܩ݃  ൌ െ ݄௧௧                                    (12) 

 

This equation of hyperbolic nature is referred to as the time-dependent MSE and 

is capable of reproducing the propagation of waves with a narrow frequency band. In 

view of this limitation, Bellotti et al. (2008) use a spectral method on Equation (12) to 

amplify its wave spectrum, hence increasing its adequacy for tsunami simulation. The 
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spectral technique consists of performing a Fourier transformation with respect to time 

to each term of the hyperbolic MSE. Carrying such transformation, substituting the 

expressions for F and G, and doing some algebraic manipulation yields the elliptic, 

frequency-dependent MSE, namely 

 

׏ · ሺܿܿ݃ܰ׏ሻ ൅ ݓଶ ௖௚

௖
ܰ ൌ ݄ி                                       (13) 

 

where N(x, y, w) and hF(x, y, w) are the Fourier Transform of (x, y, t) and h(x, y, t), 

respectively. Equation (13) is widely utilized to model small amplitude surface gravity 

waves in coastal regions (Demirbilek and Panchang 1998). Now in the frequency 

domain, Equation (13) is to be solved for each wave frequency in a specified frequency 

range. The time-domain solution is recovered by taking the inverse Fourier Transform of 

N(x, y, w) to regain (x, y, t). The free surface elevation due to ground motion can then 

be evaluated. Equation (13) may be further simplified by assuming shallow water limits 

or that c = cg.  

More importantly, the elliptic MSE can be adapted to more closely reenact the 

physics involved in underwater mass failures. On the reasoning grounds of Tinti et al. 

(2006) and Kervella et al. (2007), Cecioni and Bellotti (2010a) propose the addition of a 

filter function to the source term on the right-hand side of Equation (13) to reproduce the 

low-pass filter effect of the water column. Finally, the elliptic MSE equipped to model 

tsunamis with submarine landslides as their forcing mechanism is of the form: 

 

׏ · ሺܿܿ݃ܰ׏ሻ ൅ ݓଶ ௖௚

௖
ܰ ൌ ሺ݂ ௪݂ሻ ݄ி                                  (14) 

 

where ffW = sech (kho) and ho denotes, on the basis of small-thickness landslides, the 

bottom depth in the absence of the landslide. Cecioni & Bellotti (2010b) present a 

different derivation of Equation (14) by incorporating the wave-generating source term 

ht into Equation (3), the bottom boundary condition.  Nevertheless, they utilize the same 

spectral technique described here and arrive to the same governing equation. 
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Furthermore, Cecioni and Bellotti (2010a,b) have conducted various numerical 

experiments and one 3-D laboratory experiment demonstrating the validity of the 

solutions provided by Equation (14) and the computational benefits of the linear MSE 

model when compared to other models of higher accuracy and more expensive 

computational cost. In light of their validation work, the solutions provided by Equation 

(14) are considered, for the purpose of this research, appropriate for modeling small-

amplitude waves of underwater landslide origin. 

 

Boundary Conditions 

 

As indicated by Bellotti et al. (2008), Equation (14) may be assigned three types 

of Neumann lateral boundary conditions. The first type corresponds to a fully reflective 

condition appropriate for solid boundaries 

 

୬ܰ ൌ 0                                                         (15) 

 

where the subscript n denotes the outgoing vector normal to the boundary. On the 

contrary, a radiation condition that allows the waves to exit the computational domain 

can be imposed through the following expression 

 

୬ܰ ൅  î kܿݏ݋ሺߠ௡ሻܰ ൌ 0                                           (16) 

 

where î is the unitary imaginary number defined as the √െ1  and θn is the wave 

approaching angle normal to the boundary. Lastly, a wave-maker condition can also be 

established on a lateral boundary as follows 

 

୬ܰ ൌ െ ௜௪

௚
ܷூ                                                   (17) 
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where UI is the horizontal particle velocity at z=0 of the desired wave field normal to the 

wave-maker boundary. Free surface boundary conditions do not need to be specified for 

they are inherent in the mathematical formulation of the MSE, as shown in the previous 

section.  

Having formulated the governing equation and boundary conditions, the first 

phase of this research aims at numerically recreating the described mathematical model 

in one and two horizontal dimensions. This replica will then need to be validated by 

comparing free surface elevations against its parent model and other numerical and 

experimental benchmarks. Upon completion of this phase, the advantages and 

limitations of utilizing the linear MSE as a vehicle to model submarine-landslide 

tsunamis will be identified. In the following phases of the present study, the simplicity, 

accuracy, and computational efficiency of the MSE model will be used to expand on 

what is known about coastal hazard assessment with regard to submarine landslide 

tsunamis. 

 

Numerical Recreation of 1-D MSE Model 

 

The numerical approach of Cecioni and Bellotti (2010a) consists of a finite 

element scheme that approximates the solution to the elliptic MSE subjected to the 

mentioned boundary conditions. In contrast, the version presented in this study is 

entirely based on a FTCS finite-difference scheme.  By definition, the adopted scheme is 

first-order accurate in time and second-order accurate in space. Using this approach, the 

recreated model is entirely coded in MATLAB 7.6.0. For the 1-D problem, a tri-diagonal 

matrix solver based on the Thomas algorithm is used to solve the governing equation 

(Eq.14) with the appropriate boundary conditions.  

The first attempts to create a functional copy of the linear MSE model were 

based on a 1-D 4-m long, 0.1-m thick slide moving on a flat, horizontal bottom for about 

2 s in a 1.0-m water depth. The x-domain was 10-m long and discretized in space steps 

(x) of 0.05 m. The simulation time length was 100 s with time steps (t) of 0.1 s. In 
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addition, the lateral boundaries of the domain were specified as radiation conditions with 

waves normally leaving the domain, corresponding to θx-values of zero on the left 

boundary and ߨ on the right boundary. This set-up was taken from the 1-D numerical 

experiments performed by Cecioni and Bellotti (2010a) in the validation phase of their 

model. Cecioni and Bellotti (2010a) make use of a semi-elliptic landslide which, at a 

sudden instant, impulsively begins to move with a constant speed for 2 seconds and then 

comes to absolute rest. Unfortunately, using the landslide geometry and motion of the 

original model, the recreated model did not produce comparable solutions to those 

shown in Cecioni and Bellotti (2010a).  

As an alternative, the motion of the landslide was chosen to follow a 1-D 

Gaussian function which was customized to approximate the dynamics of the landslide 

described in Cecioni and Bellotti (2010a). Due to the nature of the Gaussian function, 

however, the landslide does not begin motion impulsively, but experiences a smooth 

acceleration that reaches a peak before deceleration comes into play. Therefore, wave 

amplitudes were not expected to match those of the parent model, but similarity in 

magnitude was hoped. To further simplify the recreated model, the semi-elliptic 

landslide was replaced by a body whose shape was given by a Gaussian function with a 

fourth-order exponent to flatten the middle section of the bell-shaped curve and obtain a 

better resemblance to a semi-elliptic geometry. The smoothness of the Gaussian 

functions permitted the computation of the free surface and the preliminary evaluation of 

the recreated model. Nevertheless, significant improvement over the first attempt was 

not observed, which meant that landslide geometry and motion were not the causes of 

the unsuccessful results.  

With the purpose of correcting the recreated model, a 1-D numerical experiment 

involving a wave-maker boundary condition was performed. This scenario is the 

simplest provided by Bellotti et al. (2008) because the MSE source term is equal to zero 

due to the unchanging bottom. On one lateral boundary, the wave-maker condition 

represented by Equation (17) was specified; on the opposite boundary, a radiation 

condition (Equation 16) was imposed. A symmetric sinusoidal wave of the specified 
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height and period propagating over the constant-depth bottom was expected. However, 

the erratic wave behavior of the first number of trials suggested that the wave 

frequencies were being calculated in the wrong manner for the rest of the scheme, 

including the matrix solver, was indisputably well defined. At this point, angular 

frequencies were being calculated using the time vector (t), i.e., w = 2* ߨ / t. Therefore, 

the frequency vector was redefined as the product of the number of time steps (nt) and 

the frequency resolution (f), namely 

 

݂  ൌ   ଵ 

௧כ௡௧
                                                     (18) 

 
 

   ௤݂  ൌ   ሾ0: 1: ݊ݐ െ 1ሿ כ ݂                                            (19) 
 

where fq is the temporal frequency in units of hertz. The expression inside the squared 

brackets in Equation (19) denotes a vector of size nt with elements spanning from zero to 

nt - 1 in increments of 1. Angular frequencies needed to compute wave number and 

other quantities are then calculated as follows: 

 

 ݓ ൌ  2 כ  ߨ  כ   ௤݂                                                   (20) 
 

Once this change was implemented, the symmetric sinusoidal wave of constant 

height was successfully reproduced. In addition to the new approach to calculating 

angular frequency, the wave-maker model allowed for one more refinement to be made 

to the recreated MSE model. Given that the input wave height had to be reconstructed 

after taking the inverse Fourier Transform of the frequency-domain solution, a wave that 

was different in height from the input height was an indication that a scaling factor was 

needed. Indeed, a factor of 2 multiplying the solution was found to be required to obtain 

the proper wave height. The linearity of the model permits the placement of this factor 

either in the calculation of the source term prior to solving the tri-diagonal matrix or in 

the recovery of the time-domain solution.   



 27

Likewise, the new additions were carried to the Gaussian-shaped landslide model 

which satisfactorily responded to the implemented changes.  Although the difference in 

landslide shapes created distinct free-surface responses, comparison of results between 

the parent model’s semi-elliptic landslide and the recreated model revealed that 

maximum surface elevations in the generation area were similar in magnitude. With 

respect to improving the recreated model, the Gaussian-shaped landslide scheme 

provided insight in the simulation time length needed to achieve convergence of the 

solution. Slight variations in the free surface elevations were observed when the time 

length was increased by 100 s. Though simulation times in the order of 100 s yield 

acceptable results, time lengths of 500 s were observed to produce converged solutions 

for x and t values of 0.05 and 0.1, respectively. 

 

Validation of 1-D Recreated MSE Model 

 

In order to demonstrate the validity of the recreated model, the semi-elliptic 

landslide model was revisited and modified to resemble the functional scheme of the 

wave-maker and Gaussian-shaped landslide models. The agreement between the original 

and recreated model is shown in Fig. 1 which is a combination of the surface time series 

contained in Figs. 2 and 7 in Cecioni and Bellotti (2010a). To carry out the comparison, 

the time series of Cecioni and Bellotti (2010a) were digitized using Engauge Digitizer 

4.1 and exported to MATLAB. The domain properties are summarized as follows. The 

domain length in the x-direction is limited to 10 m with x = 0.05 m. The length of the 

time series was set to 100 s with t = 0.1 s.  

 In Fig. 1, snapshots (a) and (b) display a time series obtained with a 1-D 4-m 

long semi-elliptic landslide translating over a flat, horizontal floor. The lateral 

boundaries of this scenario are specified as radiation conditions (Equation 16). Subplots 

(c) and (d) show the free surface resulting from the displacement of a 4.21-m long semi-

elliptic landslide which moves downwards on a 1:3 slope. For this case, the left 

boundary, where x = 0, is conferred reflective properties (Equation 15) by using a 



 28

0.0001-m water depth; the right boundary, where the water depth is at its maximum, is 

given radiation properties (Equation 16). Moreover, components (a) and (c) of Fig. 1 

evaluate the free surface at a horizontal location 1 m away, in the direction of increasing 

x-values, from the landslide centre point at rest. Similarly, Fig. 1(b) and 1(d) represent 

the surface time series at a location on the horizontal plane 6 m away from the landslide 

centre point prior to motion.  

 
 
 

 
 

FIG. 1. Free Surface Elevations Computed with the Recreated MSE Model (Solid Line) 
Compared to the Digitized Time Series of the Original MSE Model (Dotted Line). 
 
 
 

Subplots (a) and (b) in Fig. 1 show remarkable agreement with minor wave 

height underestimation by the recreated MSE model evident in the vicinity of the largest 
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trough.  Though also revealing satisfactory agreement, subplots (c) and (d) show 

evidence of a subtle phase lag between the two models near t = 14 s. The moderately 

accurate process chosen for image digitization may have also influenced the results 

shown in Fig. 1. In spite of this, good agreement is observed throughout the evolution of 

the free surface between the two MSE models. 

Cecioni and Bellotti (2010a) report a computational time of 7 s and 130 s for the 

horizontal and sloped bottom scenarios, respectively, on a 2-GHz CPU, 4-GB RAM 

computer. In addition, they solve Equation (14) for a reduced angular frequency range 

 associated to a significant content of wave energy. Computational (2·ߨ w ≤ 2 ≥ 102·ߨ 2)

times recorded with the recreated MSE model for the full range of frequencies (2 102·ߨ ≤ 

w ≤ 2 10·ߨ) were found to be 2.4 s for the flat-bottom case and 2.3 s for the sloped-

bottom scenario on a 2.49-Ghz CPU, 3.25-GB RAM computer. These computational 

times lead to the conclusion that the recreated model is not only satisfactorily accurate, 

but also computationally very efficient with respect to the original version.  

 

Comparison of 1-D Recreated MSE Model against Nonlinear Models 

 

Given the satisfactory performance of the recreated model when compared to its 

original version, further evaluation was carried out with the purpose of rectifying the 

accuracy of the MSE duplicate. This time, however, nonlinear models were the reference 

for comparison. The main purpose of this 1-D evaluation was to examine the importance 

of nonlinear effects in the evolution of the free surface, particularly in the generation 

region where the recreated MSE model is desired to be accurate. The selected nonlinear 

models correspond to the fully nonlinear, weakly dispersive depth-integrated model of 

Lynett and Liu (2002), the high-order Boussinesq model of Fuhrman and Madsen 

(2009), and the BIEM which served as reference for comparison for both of these 

studies. The numerical set-up utilized in this validation process was taken from Lynett 

and Liu (2002) and is shown in Fig. 2 which illustrates the seafloor conditions and 

landslide features.  
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FIG. 2. Submarine Landslide Set-Up for Comparison of 1-D MSE Model Against 
Various Nonlinear Models. 

 
 
 
The physical problem being numerically modeled is that of a smooth body 

sliding down a plane incline with a coast-resembling boundary opposite to an offshore 

open boundary. The former boundary is given reflective properties (Equation 15), while 

the latter is granted radiation capabilities (Equation 16). Before showing the outcome of 

this comparison, however, the equations that describe the motion of the slide shown in 

Fig. 2 will be presented. These equations, in fact, will also govern the slide dynamics of 

the model used for the probabilistic component of this study.  

 
Slide Equations of Motion 
 

The dynamics of the rigid slide depicted in Fig. 2 are dictated by a balance of 

forces about the slide center of mass involving inertial, frictional, added mass, 

gravitational, and buoyant forces. Thus, ignoring Coulomb friction effects, the slide 
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center of mass motion s(t) is governed by the following differential equation (Watts 

1998) 
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where ρb is the bulk slide density, ρw is the water density, Cm is the added-mass 

coefficient, Cd is the drag coefficient,  is the bottom slope (in degrees), and V and A are 

the submerged volume and area, respectively, occupied by the slide. At time t = 0, it is 

assumed that s = 0, (ds/dt) = 0, and (d2s/dt2) = ao where ao is the slide initial acceleration. 

Likewise, after a sufficiently long time, a terminal velocity (ds/dt) = ut is assumed to be 

reached, meaning ao = 0. Applying these conditions on Equation (21) results in: 
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where γ is the slide specific gravity (γ = ρb/ρw) and b is the slide width parallel to slope 

(Fig. 2). The presence of Cm, Cd, and γ in Equations (22) and (23) indicate that shape and 

sediment characteristics are influential factors in determining the initial acceleration and 

terminal velocity of the slide. An adequate value for Cm and Cd has been estimated, at 

high Reynolds numbers, to be equal to 1.0 (Watts 1998, 2000). The solution for s to 

Equation (21), using Equations (22) and (23), is given by: 
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with characteristic length of motion (so) and characteristic time scale of motion (to) 

dictated by 
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Alternatively, the solution to Equation (21) for slide center of mass velocity (ds/dt) takes 

the following form 
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A more thorough description of the introduced equations for rigid-slide motion is 

given in Watts (1998). The availability of the set of equations formed by Equations (22) 

– (26) permits the computation of the water depth function (hp), as presented in Lynett 

and Liu (2002), which describes the passage of the 1-D submerged landslide shown in 

Fig. 2, namely 
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where h is the maximum vertical height of the slide; xl and xr are, respectively, the tanh 

inflection point of the slide left side and right side; and Sf is a steepness factor which acts 

on the slide sides. Except for the latter, these variables can be geometrically understood 

by examining Fig. 2. Mathematically, xl, xr and Sf are expressed as follows: 
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in which xc, the location of the slide centre point on the horizontal plane, is given by 

 

ሻݐ௖ሺݔ ൌ ௢ݔ  ൅ ݏ כ  ሺሻ                                              (32)ݏ݋ܿ

 

where xo is the slide centre point horizontal position at rest. The last four expressions 

complete the set of equations needed to model the bottom alterations caused by the 

displacement of an underwater slide through Equation (28). A Fourier Transform is then 

applied on hp(x, t) to convert it into the forcing function of the frequency-dependent 

MSE. 

 

Comparison of Solutions 

 

The evaluation of the recreated MSE model under the explained set-up and 

equations of motion is shown in Fig. 3. These results correspond to a slide with the 

following properties: h = 0.05 m, b = 1 m,  = 6, γ = 2.0, Cm = Cd = 1.0, and xo = 

2.379. The numerical domain is 10 m in the x-dimension and uniformly discretized using 

x = 0.05 m. The simulation time length equals 100 s with t = 0.01 s for a total of 

50,001 time steps.  
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FIG. 3. 1-D Comparison between the Nonlinear, Weakly Dispersive Depth-Integrated 
Model (Dashed Line) of Lynett and Liu (2002), the High-Order Boussinesq Model 
(Solid Line) of Fuhrman and Madsen (2009), the BIEM (Dots) as Described in Lynett 
and Liu (2002), and the Recreated MSE Model (Dotted Solid Line). 
 
 
 

Near the generation area (Fig. 3a), excellent agreement is discerned between the 

various models at all locations within the domain. At t = 3.0 s (Fig. 3b), quite good 

agreement is still observed, though the solution provided by the recreated MSE model 

slightly undervalues the trough that travels with the slide (3 < x < 4). The shoreward-

propagating wave, however, is well captured. At a later time, Fig. 3c shows a more 

pronounced underestimation of the trough above the slide by the recreated MSE model 

with respect to the BIEM and the high-order Boussinesq model. Contrary to the model of 

Lynett and Liu (2002), the recreated MSE model appears to remain stable as deeper 

water is entered due to its fully dispersive character. By the time t = 5.86 s is reached 
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(Fig. 3d), nonlinear effects are more evidently manifesting, which prevents the recreated 

MSE model from offering a precise match. Nonetheless, the recreated MSE model again 

demonstrates its full inclusion of dispersion effects by adequately propagating the slide-

driven trough into deeper water.  

The results shown in Fig. 3 are suggestive that in the generation region, nonlinear 

effects are of secondary importance and that the recreated MSE model captures the free 

surface response in the initial failure stages very well. These nonlinear effects, however, 

do seem to acquire relevance as the slide continues its trajectory down slope.  The 

absence of nonlinearities is, indeed, the most prominent limitation of the recreated MSE 

model for the order of accuracy of the chosen scheme did not seem to negatively impact 

the behavior of the solution. In addition, Fig. 3 corroborated the adequacy of the 

recreated MSE model to simulate wave propagation into deep water. Therefore, given 

the exemplary agreement in the initial failure stages (Fig. 3a and 3b) and the good 

reproduction of dispersion effects throughout the free surface evolution, the results 

shown in Fig. 3 are considered satisfactory and affirm the validity of the 1-D recreated 

MSE model.  

Despite the good performance of the recreated model, an unexpected issue was 

encountered during this comparison. As the slide leaves the numerical domain, waves of 

considerable amplitude are consistently reflected off the open right boundary. Attempts 

were made to correct this behavior by inserting the source term into the radiation 

condition; however, the reflected waves could not be removed. As will be noticed in the 

next chapter, this issue had implications of considerable weight.  

 

Evaluation of 2-D Recreated Model 

 

A 2-D version of the numerical experiments covered in this chapter (semi-elliptic 

landslide, Gaussian-shaped landslide, and the landslide depicted in Fig. 2) was also 

created. Free surface animations of these scenarios confirmed one of the most peculiar 

characteristics of submarine landslide-induced tsunamis as noted in field surveys 
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posterior to the 1998 PNG Tsunami: a peaked wave subjected to rapid lateral decay. 

More formally, validation of the 2-D MSE replica was carried out by attempting to 

duplicate the times series displayed in Fig. 14 in Fuhrman and Madsen (2009) 

corresponding to a laboratory experiment conducted by Enet and Grilli (2007) in which a 

3-D rigid slide translates down a 15º-slope. To replicate the 0.082-m thick, 0.395-m 

wide slide, a 2-D uniform grid of x = y = 0.05 m was specified to cover a 2-m wide, 

3-m long domain. The simulation time length was 250 s with t = 0.01 s for a total of 

25001 time steps. 

The reference time series (Fig. 14 in Fuhrman and Madsen 2009) were digitized 

with Engauge Digitizer 4.1 and plotted against the results produced by the recreated 

MSE model. Fig. 4 shows the agreement of this comparison. For future reference, the x-

coordinate of Fig. 14c given in Fuhrman and Madsen (2009) does not actually 

correspond to the point where the time series is being evaluated.  The coordinates of that 

location should be (x, y) = (1.929,0) as shown in Fig. 4c of this manuscript (Fuhrman, 

personal communication, 2011).  
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FIG. 4. Evaluation of 2-D Recreated MSE Model (Solid Line) Against the High-Order 
Boussinesq Model (Dotted Line) of Fuhrman and Madsen (2009) and the 3-D 
Experiment (Dashed Line) of Enet and Grilli (2007). 
 
 
 

Despite the distinct wave theories supporting each model, good agreement is 

observed in Fig. 4 at the four time-series locations. Similar to the 1-D validation results, 

the absence of nonlinear effects in the recreated MSE model manifests in the form of 

wave height discrepancy and phase error. In this comparison, however, the recreated 

MSE model makes a poor prediction of the free surface behavior in the generation 

region (Fig. 4a). In spite of this, the inaccuracy seems to diminish as the slide moves 

away from this region (Figs. 4b - 4d), especially with respect to the experimental results. 

With regard to the Boussinesq solution, the recreated MSE model is observed to 

underestimate the wave heights in the dispersive tail and not to consistently capture the 
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phase of the waves past the leading wave of the dispersive tail. Moreover, the recreated 

MSE model seems to generate a wave train containing less energy than the one produced 

by the Boussinesq model in all four time series. In general, Fig. 4 suggests that solution 

disagreement between the recreated MSE model and the Boussinesq model is more 

evident for the 2-D case, perhaps indicating that nonlinear and 3-D effects are important. 

With respect to the experimental data, the recreated MSE model shows a better match in 

terms of both wave height and phase in the dispersive tails of Figs. 4b – 4d than with the 

Boussinesq model. All three data sets, however, agree well in the formation of the lead 

positive wave prior to the development of the spurious tail (Figs. 4b – 4d).  

 Due to virtual memory constraints, grid resolution could not be refined to match 

the precise time series locations as given in Fuhrman and Madsen (2009). Rather, the 

recreated MSE model solutions in Fig. 4 were obtained at the nearest possible 

computational node from where the gauges of Enet and Grilli (2007) were placed. 

Sensitivity to the evaluation location of the time series with the recreated MSE model is 

indeed appreciable, indicating that some improvement of the agreement shown in Fig. 4 

should be expected with grid refinement. Nevertheless, further validation would be 

necessary to safely utilize the recreated MSE model to simulate tsunamis induced by 2-D 

submarine landslides. 

 

Summary 

 

Among the lessons learned from the validation of both 1-D and 2-D recreated 

linear MSE models with a FTCS scheme, three factors demonstrated to play an 

important role in the behavior of the solution. The first influential parameter is the 

simulation time over which the solution is computed. Given that the recreated model is 

being solved in the frequency domain, the solution is assumed to be periodic. In order 

for the energy to leave the domain and avoid interference, the simulation time should be 

long enough. Simulation times of 500 s were found to be adequate in this regard and to 

yield converged solutions. Secondly, the water depth utilized to calculate the filter 
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function must equal the water depth without the landslide, not to be confused with the 

water depth symbolizing the slide passage. Lastly, the sequence of operations associated 

to the MSE source term must be strictly followed. This sequence is commenced by 

taking the second-time derivative of hp(x,t) which describes the landslide motion; then, 

followed by taking the Fourier Transform of the differentiated water depth or forcing 

function; next, followed by the computation of the filter function using the baseline 

water depth ho(x); and finally, terminated by multiplying the transformed forcing 

function by the filter function. An additional requirement when using the recreated MSE 

model is multiplying the frequency-domain source term or the time-domain solution by a 

factor of two. 

In order to carry out the probabilistic application narrated in the next chapter, the 

presented MATLAB-coded numerical experiments were translated to the Fortran 90 

language without any shortage of operational capability and compiled using Intel(R) 

Visual Fortran 11.1.051. For the Fortran 90 version of the 1-D model, the forward and 

inverse Fourier Transforms subroutines were obtained from Press et al. (1992) and the 

tri-diagonal matrix solver from Dr. James Kaihatu, Texas A&M University. Subroutines 

for the Fortran 90 version of the 2-D model were all taken from Press et al. (1992). 

Comparisons between the solutions provided by both interfaces (i.e., MATLAB and 

Fortran 90) demonstrated exceptional agreement. To the benefit of this research, the 

performed computer language translation resulted in a significant reduction of the 

computational time needed to obtain free surface elevations, especially when running the 

2-D models. 
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CHAPTER V 

APPLICATION OF A PROBABILISTIC  

MODEL OF MONTE CARLO TYPE  

 

Having shown the satisfactory performance of the MSE model in reproducing the 

passage of and waves excited by submarine landslides, the probabilistic component of 

this study will be the focus of this chapter. Watts (2004), Maretzki et al. (2006), and 

Grilli et al. (2009) demonstrated that Monte Carlo simulations can provide a closed-form 

solution to a problem susceptible to the behavior of multiple independent variables by 

supplying initial conditions to a numerical model from a statistical sample. Moreover, 

Geist and Parsons (2006) point out that a Monte Carlo approach is primarily suitable for 

analyses of wide geographical regions where multiple sources of uncertainty and scarcity 

of data exist. Therefore, the adoption of a Monte Carlo method to conduct a probabilistic 

study of submarine landslide tsunamis is well supported, in view of the complexity of 

the problem and previous successful applications of this method. In this light, the 

probabilistic component of this study is founded on Monte Carlo simulations.  

 

Objectives and Limitations of the Probabilistic Study 

 

The purpose of this probabilistic study is to provide a first-order approximation 

to the hazard posed by submarine rigid landslides in a computationally efficient manner 

by means of Monte Carlo simulations. In particular, to complement the work that has 

been carried out in previous risk assessments, the hazard associated to submarine 

landslides that separate into multiple rigid pieces as failure develops will be the main 

focus. The strategy is to utilize the outcome of thousands of numerical simulations with 

the recreated MSE model to complete two tasks. The first task, directed toward 

advancing the knowledge of submarine-landslide generated tsunamis, is to analyze the 

influence that the various landslide parameters has on the height of the generated waves. 
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The second task, oriented toward facilitating the integration of submarine landslide 

tsunamis into engineering design, is to provide meaningful wave probability 

distributions that can be easily interpreted. To accomplish the latter, emphasis is given to 

the waves triggered by submarine landslides that propagate toward the shore.  

Despite the use of the same Monte Carlo methodology, this investigation 

presents several differences from the referenced probabilistic studies. No geographical 

region is particularly targeted, thus sediment parameters, as will be discussed next, are 

generalized and seafloor profiles are approximated as flat slopes. Furthermore, landslide 

motion is assumed to occur at t = 0 with an acceleration given by Equation (22), hence 

discarding seismic forcing and slope stability from the calculations. In spite of this, the 

slide dynamics follow the same analytical expressions (Watts 1998) as those of the three 

probabilistic assessments used as reference. Breaking wave heights and run-up 

measurements are also not contemplated in the calculations; however, maximum run-up 

could be estimated on the basis of the correspondence principle of Watts (2005), but will 

not form part of the final outcome. Finally, only 1-D simulations are carried out.  

The data collected from the Monte Carlo simulations will be displayed for two 

cases: a parameter subspace with constant values and a parameter subspace in which one 

input is singularly varied while the others are held constant. In conjunction with the 

latter, a sensitivity analysis will be performed on the variable parameter. Although less 

inclusive than past hazard assessments, the introduction of the multi-piece slide failure 

mode and the concept of quantifying slide coherency into the present probabilistic model 

offers a new perspective to the analysis of tsunami characteristics induced by underwater 

landslides. 

 

Specification of Slide Input Parameters 

 

In addition to the inputs considered in the model validation chapter (i.e., , h, γ, 

Cd and Cm), three new parameters are needed in the numerical model being fed by the 

Monte Carlo method. The first new input is the number of pieces (Nc) that will detach 
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from the submerged mass at rest. This number must be an integer and can be given any 

value equal to or greater than 1. The second parameter is the baseline water depth (i.e., 

the water depth without the slide) to thickness ratio (doI) passing through the slide center 

of mass. The third parameter, labeled delay, is the dimensionless scaling factor 

delimiting the time taken for the initially-at-rest, single-piece slide to completely fail (i.e. 

to detach into Nc pieces). The larger the value assigned to delay, the longer the failure. In 

addition, this set-up requires slide width parallel to slope as an input, but in the form of a 

dimensionless ratio of slide width along slope to slide thickness, denoted by b’. Finally, 

bottom slope is entered in its fractional form (e.g., 1/5) and is represented by β. 

In total, not counting the fixed value of h, there are eight inputs to the model. 

Five of these inputs (β, b’, Nc, doI, and delay) are to be deterministically specified, 

meaning the user has the ability to select values for these variables at his/her own 

discretion. The remaining three inputs (γ, Cd, Cm) are to be probabilistically defined, 

meaning random distributions must be assigned to them. Given their presence in the 

slide equations of motion, all eight parameters will influence the evolution of the 

submarine failure and the subsequent free surface response. 

 

Deterministic Slide Parameters 

 

The deterministic inputs can virtually be given any value; however, parameters 

b’ and doI are constrained by two conditions. On the one hand, any combination of 

values of these two inputs should not expose any portion of the slide above the still 

water level. In other words, the slide must be fully submerged at all times. On the other 

hand, values for b’ and doI are restricted by the length of the horizontal domain because 

the slide cannot be placed at an offshore distance that will not allow the collection of 

wave data from the points of interest on the free surface (these points will be defined 

later in this chapter). Parameter β also influences the range of values for b’ and doI that 

can satisfy the conditions just mentioned. The smaller the value of β, the narrower the 
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acceptable value ranges for b’ and doI. Beware, however, that MSE models may become 

inaccurate for β greater than 1/3 (Demirbilek & Panchang 1998). 

Initially, Cd had been classified as a probabilistic parameter. The normal 

distribution that was given to it, however, resulted impractical due to the defective 

behavior of the right boundary condition. In the range where Cd < 0.8, the first detached 

slide piece was observed to move fast enough to exit the domain before the entire failure 

had reached an end, thus allowing for reflected waves. Therefore, Cd was assigned a 

constant value of 1.0 as suggested by other studies in the literature that use the presented 

set of equations to model submarine landslides. 

 

Randomized Slide Parameters 

 

The remaining inputs (γ and Cm) are to be probabilistically inserted into the 

model. Here, this is done by defining for each of these parameters a probability density 

function (PDF) formulated using available field and experimental data in the literature. 

Grilli et al. (2009) take a similar approach in defining random distributions for their 

Monte Carlo set of inputs which they prescribe by means of normal, log-normal, and 

uniform distributions. Unfortunately, this study only shares one probabilistic input in 

common, corresponding to γ, with their stochastic analysis. Hence, the two probabilistic 

parameters in the present study are assigned normal distributions due to the simplicity of 

such PDF and the absence of better guidance in the literature.  

To construct a normal distribution, a mean (μ) and a measure of the distribution 

of the population about the mean, known as standard deviation, must be specified. For a 

given μ, the unbiased standard deviation (σ) is given by 

 

ߪ ൌ  ට∑
ሺ௑ି ఓሻమ

ேିଵ
                                                 (33) 

 

௥ሺ%ሻߪ ൌ   ቀ
ఙ

ఓ
ቁ                                                     (34) 
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where X is the population set, N the number of elements in the set, and σr the relative 

standard deviation expressed as a percentage. For normal distributions, 68% of the 

population is within one standard deviation, 95% within two standard deviations, and 

99% within three standard deviations from the mean. 

The normal distribution of γ was designed to be applicable to the sediment 

encountered on the ocean bottom at continental margins. According to Almagor (1982), 

γ of marine sands and silts averages 2.65 while that of marine clayey sediments ranges 

between 2.40 and 2.85. This is a mere generalization of a much broader spectrum of soil 

types found on the seafloor. Given the unrestricted application of the model to a 

particular geographical region, the assortment of soils considered by Almagor (1982) 

will suffice for the moment. Taking μ = 2.65 and using the γ values of 2.40, 2.65, and 

2.80 as X results in σr = 12% and a normal distribution for γ as shown in Fig. 5a.  

Fig. 5b shows the normal distribution corresponding to Cm. This is the parameter 

with the greatest uncertainty due to the lack of data related to Cm values suitable for 

submarine landslides. Nevertheless, the laboratory experiment completed by Watts et al. 

(2000) in which a fully submerged semielliptical body slides down an incline indicates 

that Cm = 1.0 is a conservative approximation. A value of Cm = 1.2 is also found in this 

experimental work. Therefore, a normal distribution with μ = 1.0 and σr = 20% was 

assigned to parameter Cm. The latter percentage was calculated using values of 1.0 and 

1.2 as the population set. 
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FIG. 5. Normal Distributions of Probabilistic Slide Input Parameters: (a) Specific 
Gravity (γ) and (b) Added-Mass Coefficient (Cm). 
 
 
 
Structure of Adopted Monte Carlo Method 

 

The diagram in Fig. 6 is the step-by-step numerical procedure required to obtain 

wave height distributions for a parameter space in which one deterministic parameter is 

allowed to vary while the others remain constant. The same process is followed for a 

parameter space of constant values if the second, third, and eighth steps in the diagram 

are removed. 
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FIG. 6. Monte Carlo Method Diagram Exemplifying the Adopted Numerical Procedure 
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Numerical Set-Up for Multi-Piece Slide Failure Simulation  

 

The numerical set-up which serves as the core of the designed Monte Carlo 

simulations will be next described. The slide dynamics of this set-up are the same as 

those discussed in the model validation chapter and describe a body sliding down a flat 

slope with an initial acceleration that decays over time until a terminal velocity is 

attained. Although this scheme is preserved, some additions were implemented into the 

equations composing the Monte Carlo numerical set-up in order to grant slides the 

capability to separate into multiple rigid pieces when failure is initiated.  In light of this 

feature, these slides will be referred to as detachable or separable slides in the next 

paragraphs. As before, the objective is to obtain a water depth function capable of 

describing the movement of multiple, potentially infinite, slide pieces which dislocate 

from a single mass. Once the forcing function (i.e., the water depth) is computed, the 

remaining process of solving the elliptic MSE and recovering the time-domain solution 

is kept unchanged.  

Recalling the methodology followed in the model validation section, an 

expression for center of mass motion had to be derived in order to model the passage of 

the slide. Likewise, such an expression will be developed for the mass centers of the 

multiple pieces that may detach from the single-piece slide at rest. Even though this 

parent slide is allowed to separate, it is inherent in the equations that follow that the 

detached slide pieces cannot further separate into smaller fragments and do not undergo 

deformation of any type. Watts and Grilli (2003) showed, in fact, that slide deformation 

has little impact in tsunami generation. Moreover, the following set of equations is to be 

used with h = 1 m. The linearity of the model permits the solution obtained under this 

assumption to be scaled to thinner or thicker landslides by simply multiplying the time-

domain solution times the desired thickness. Note that, as shown in Fig. 2, thickness is 

defined as the maximum vertical height of the slide. 

With this in mind, the process aimed at formulating an expression for the center 

of mass of a separable slide begins with the specification of the nondimensional 
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deterministic parameters. Once these are defined, the model selects values for the 

probabilistic inputs, allowing for initial acceleration (ao), terminal velocity (ut), and 

characteristic time of motion (to) to be computed using Equations (22), (23) and (26), 

respectively.  

 

Equations Governing Slide at Rest 

 

In order to facilitate the mathematical description of the motion, the dynamics of 

the slide and the pieces it may separate into will be formulated in the horizontal plane 

and in the end projected onto the sloped plane. Hence, the horizontal width of the parent 

slide (bho) and its initial midpoint offshore position (xoIo) are 

 

  ܾ௛௢ ൌ  ܾԢ כ ሺሻݏ݋ܿ כ ݄                                             (35) 

 

௢ܫ݋ݔ ൌ
ௗ௢ூכ௛
୲ୟ୬ ሺሻ

                                                       (36) 

 

The quantities defined by Equations (35) and (36) are necessary to determine the 

spatial location of the various slide pieces before failure occurs. To accomplish this, the 

width of the slide pieces must be specified so that the individual slide midpoints can be 

located. A random number generator (rand in MATLAB, random_seed in FORTRAN 

90) is used to select an Nc number of values ranging from 0 to 1. Each of these numbers 

is normalized by the sum of all Nc randomly generated values, creating a set of non-

dimensional widths (Sw). Multiplying this set by bho, however, yields the dimensional 

horizontal width (bh) of the slide fragments. The midpoint of each slide chunk can now 

be determined by means of geometrical relationships. Fig. 7 is a preview of the 

submarine mass failure considered in this probabilistic analysis showing, for Nc = 3 and t 

= 0, the static features of the slide pieces, projected on the horizontal plane, that 

compose the coherent mass resting on the incline. Even though more steps have to be 

covered to delineate the shape of the displayed slides, this figure provides a helpful 
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depiction of the variables that have been introduced and the ones that will be next 

addressed which describe the motionless state of the slides. 

 
 
 

 

FIG. 7. Set-Up of 1-D Submarine Slide (Nc = 3) Showing the Horizontal Projection of 
the Rigid Pieces in Which the Slope-Resting Slide Will Detach (ts1 > ts2 > ts3). 
 
 
 

Considering that the midpoint of the single-piece slide is known (given by xoIo), 

the horizontal midpoint location of slide 1 (xoI1 in Fig. 7) can be calculated by noting 

that this body has to share the same xl location as that of the parent slide. Consequently, 

the midpoint of slide 1 can be found by adding half of its horizontal width to the point x 

= xl. In mathematical terms 

 

ଵܫ݋ݔ ൌ ௢ܫ݋ݔ െ ቀ௕೓೚
ଶ
ቁ ൅ ቀ௕೓భ

ଶ
ቁ ൌ ௟ݔ  ൅ ቀ௕೓భ

ଶ
ቁ                            (37) 
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where bh1 is the horizontal width of slide 1. In fact, Equation (37) applies to all leftmost 

slides as long as the reference midpoint point is that of the single-piece slide. The 

midpoints of slides 2 and 3 are found by following the same reasoning, but ensuring that 

the correct reference midpoint is selected. Thus, the general structure of Equation (37) 

suitable for the slide chunks resting down slope of the leftmost slide piece is 

 

௜ܫ݋ݔ ൌ ௜ିଵܫ݋ݔ െ ቂ
௕೓ሺ೔షభሻ

ଶ
ቃ ൅ ቂ

௕೓ሺ೔ሻ
ଶ
ቃ                                    (38) 

 

where the subscript i is an integer ranging from 2 to Nc  for Nc > 1.  
 

The next phase of the computational procedure oversees the start motion times of 

the slide fragments. Relying on the same random number generators mentioned above, 

the times at which the slide pieces fail can be imposed. First, a random set of numbers 

(ts’) of size Nc is created in the following manner  

 

Ԣ௜ݏݐ ൌ   Ԣሺ௜ିଵሻݏݐ ൅  (39)                                                 ݎ 

 

where r is a randomly generated number in the 0,1 range and subscript i conserves its 

previous definition. The value of ts’1 is arbitrarily set to zero. Actual onset motion times 

(ts) are produced by carrying out the operation below 

 

ݏݐ ൌ   ௧௦ᇱכ௧೚כௗ௘௟௔௬
௧௦ᇱಿ೎

                                                     (40) 

 

in which normalization by the greatest ts’-value corresponding to i = Nc has been 

performed. Equation (40) creates a row vector whose values increase with i, suggesting 

an order of motion for the slide pieces contrary to that shown in Fig. 7 where the 

leftmost slide piece (slide 1) mobilizes last. The correct hierarchy of motion, as indicated 

above each slide chunk in Fig. 7, is obtained by flipping row vector ts about a fictitious 

horizontal axis to arrange the values of ts in decreasing order from left to right with the 
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greatest value occupying the first entry and zero, or any other arbitrary motion initiation 

time, taking the last entry. The next group of formulas assumes row vector ts has been 

flipped. 

 

Space-Time Slide Coherency 

 

A quick review of the equations that have been formulated thus far indicates that 

Equations (35) to (40) permit, at a motionless state, the calculation of the width, 

midpoint location, and triggering time of multiple slides which disjoin from a single 

mass of known width and midpoint position. Although start motion times act as an 

indicator of how many seconds apart from each other the slides pieces disjoin, they do 

not provide insight on how compact or spread the overall failure is when the width of 

each fragment is factored in. The randomness involved in the determination of triggering 

times as well as in the estimation of the width of the detached pieces demands a better 

representation of the coherency of the parent slide doomed to fail. In other words, an 

indicator of whether the single-piece slide will behave as Nc entities moving in close 

proximity to each other or as Nc pieces individually failing with little or no interaction 

between them is sought. Not only would such indicator provide insight on the failure 

progression of the submarine mass, but it would also aid in conceiving the extent at 

which the detached slide pieces combine their effects in the evolution of the free surface.  

In this study, the concept of slide space-time coherency () is contemplated through an 

ad-hoc formula of the following composition 

 

 ሺ௝,௞ሻݐ ൌ     ൛ ௝ݏݐ൫ݏܾܽ   െ ௞൯ݏݐ כ ௞ୀଵݕ݈ܽ݁݀
ே௖ ൟ ௝ୀଵ

ே௖                                (41) 

 

ሺ௝,௞ሻ ൌ   ൜     ሺ௝,௞ିଵሻ ൅
ௌ௪ೖ

ൣሺଵା௧ሺೕ,ೖሻሻ൧
௞ୀଵ
ே௖ ൠ௝ୀଵ

ே௖ ; ሺ௝,଴ሻ ൌ 0                      (42) 
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where t  is the time difference in onset motion times between a single slide fragment 

and the rest of the slide pieces scaled by the specified delay value, and subscripts j and k 

are integers ranging from 1 to Nc. The variables t and Sw conceptually represent, 

respectively, the temporal and spatial components of . Thus, Equation (42) is an 

estimation of the correlation between size and start motion time of each slide piece with 

respect to the other pieces. Numerically, using FORTRAN 90 syntax, Equations (41) and 

(42) can be combined into a nested loop as shown in Appendix A. 

The final space-time coherency of a particular single-piece slide varies from 0 to 

1 and is given by the greatest value contained in the  array. As this variable approaches 

its lower bound, the slide is more likely to behave as Nc independent pieces of similar 

size. The minimum possible  value depends on the value assigned to Nc and is defined 

by 1/ Nc. In this case, the parent slide is expected to fail in the form of Nc fragments of 

equal width moving independent of each other. On the contrary, when  nears its upper 

bound, the overall failure behavior approximates that of a single coherent mass, 

implying that the slide chunks move close to each other. Regardless of the size of the 

parent slide,  = 1 whenever Nc = 1.  

Applying the introduced space-time coherency concept to the example portrayed 

in Fig. 7, Equation (42) yields  = 0.4613 for a slide having the following inputs: Nc = 

3, b’ = 50 , doI = 6, β = 1/10, and delay = 10. Given the minimum  is around 0.3 for 

this scenario, the computed   suggests that the slide chunks will have moderately 

different widths and will be mobilized distinctively apart from each other, therefore 

insignificantly combining their effects in the initial failure stage. This is verified by 

examining the dimensional widths and onset motion times for  = 0.4613, 

corresponding to case (2) in Table 1. The rest of the cases shown in this table exemplify 

the purpose of the  function in describing the spatial and temporal characteristics of the 

slide failure. 
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Table 1. Space-Time Coherency Values for the Slide Shown in Fig. 7 

 bh1 bh2 bh3 ts1 ts2 ts3  

Case (1) 15.8    16.3    17.7 36.04   18.3      0 0.3580 

Case (2) 10.3 22.8 16.6 36.04 24.3 0 0.4613 

Case (3) 32.4    11.2    6.1 36.04   5.58 0 0.6531 

Case (4) 41.4     4.3     4.1 36.04    1.88 0 0.8322 

Case (5) 2.9   46.7    0.12 36.04    14.4 0 0.9392 

 
 
 

The  values presented in Table 1 demonstrate that as  approaches 1, the slide 

pieces have to either move in closer proximity to each other (Case 3) or acquire 

disproportional sizes (Case 5). Conversely, the smallest value of  indicates a more 

spread slide failure where the slide chunks become more independent of each other and 

attain similar widths (Case 1).  

Before transitioning to the portion of the model that oversees slide dynamics, the 

mass of the single-piece slide and the combined mass of the slide chunks need to be 

calculated. These masses are not equal due to the randomness associated to the 

prescription of the widths of the slide fragments. In theory, however, the detached slide 

pieces should possess the same mass as that of the parent slide. Hence, the difference in 

masses between the original slide and its fragmented pieces in the form of a ratio is 

sought in order to properly scale the water depth function that will define the overall 

failure.  To compute the mass of any of the four slides shown in Fig. 7, for example, the 

function that outlines their shape or the water depth profile must be specified. Removing 

the ho term from Equation (28), the water depth profile (ellip) is 

 

ሻݔሺ ݌݈݈݅݁ ൌ   ଵ
ସ
݄ ൜1 ൅ ݄݊ܽݐ ൤௫ି௫೗

ௌ′೑
൨ൠ ൜1 െ ݄݊ܽݐ ൤௫ି௫ೝ

ௌ′೑
൨ൠ                         (43) 
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where xl and xr retain the same geometric and mathematical definitions given by Eqs. 

(29) and (30) with the exception of the variable xc which must be replaced by xoI. Notice 

that xoI is not a function of time because it is calculated at rest; thus, xl and xr have a 

single value here. The steepness factor (S’f) in Equation (43) also maintains its original 

definition (Equation 31) with the prime indicating the substitution of 0.5 in the 

numerator by ߨ כ ݄ . If the value of xoI is that of the single-piece slide, then the 

addition of the evaluation of Equation (43) at each node in x yields the mass (ॠs) of such 

slide, namely 

 

ॠ௦ሺ௜௜ሻ  ൌ ॠ௦ሺ௜௜ିଵሻ ൅ ;       ௜௜݌݈݈݅݁        ॠ௦ሺ଴ሻ ൌ 0                       (44) 

 

where subscript ii is an integer ranging from 1 to the number of step sizes (nx) in the 

discretized x-domain. Equation (44) is also applicable to the masses of the slide pieces 

disjoining from  the parent slide. The overall mass of these pieces (ॠm) is equal to the 

sum of their individual masses. A mass ratio of parent slide mass (ॠs) to the combined 

mass of the disjoined slides (ॠm) can now be computed, here denoted as ॠR. 

 

Formulation of Multi-Piece Slide Motion 

 

In order to model the down slope displacement of the slides in Fig. 7, the time 

dependency of the multiple centers of mass must be incorporated into Equation (43). 

This was achieved in the model validation chapter through Equation (32). Comparing the 

elements of the latter equation with what has been computed so far in this chapter, it is 

evident that an equivalent expression for s (center of mass motion) valid in the context of 

multiple slides progressively failing is missing. Such expression must contain 

information regarding the displacement of each slide fragment as a function of start 

motion time and terminal velocity development.  
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Prior to motion, a slide piece remains stationary with zero velocity. Once 

triggered, the velocity of the slide piece begins to evolve with time according to an 

alternate form of Equation (28) which better suits multi-slide submarine failures, namely 

 

ሻݐ௖ሺݑ  ൌ ௧ݑ כ ݄݊ܽݐ ቀ
௧೙ି௧௦ೕ
௧೚

ቁ                                     (45) 

 

where uc is the time-dependent velocity of a slide chunk, subscript n is an integer 

ranging from 1 to nt, and subscript j is an integer going from 1 to Nc. For times t < ts, uc 

= 0. However, when t ≥ ts, Equation (45) indicates that, once set in motion,  the velocity 

of a slide piece will rapidly increase mimicking the behavior of the hyperbolic tangent, 

attaining its maximum value (i.e., ut) when the trigonometric function reaches its 

asymptote. Therefore, despite of their difference in size and onset motion time, all the 

slide chunks acquire the same terminal velocity.  

The displacement that the slide pieces undergo as their velocity evolves also 

needs to be calculated. On the horizontal plane, the traveled distance (ds) experienced by 

each slide piece is given by 

 

௡ݏ݀  ൌ ሺ௡ିଵሻݏ݀ ൅ ௖ݑ כ ;        ݐ݀ ଴ݏ݀         ൌ 0                             (46) 

 

which becomes effective for times t ≥ ts. The horizontal center of mass motion for each 

slide fragment can finally be prescribed as follows 

 

ሻݐԢ௖ሺݔ ൌ ܫ݋ݔ  ൅ ݏ݀ כ  ሺሻ                                         (47)ݏ݋ܿ

  

where the prime in x’c has been inserted to distinguish this variable from the one used in 

Equation (32). The right and left inflection points of each slide piece as it travels, xl and 

xr, respectively, are found through Equations (29) and (30) with the center of mass 

motion given  by Equation (47).  With this, the passage of the slide pieces on the 
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horizontal plane can be entirely modeled from triggering to zero acceleration. The 

projection of the failure onto the sloped plane is obtained in the following manner  

 

݄Ԣ௣ሺݔሻ௝ ൌ ݄Ԣ௣ሺݔሻ௝ିଵ െ ॠோ כ ;     ሻ௝ݔሺ݌݈݈݅݁      ݄Ԣ௣ሺݔሻ଴ ൌ ݄௢ሺݔሻ                 (48) 

 

where h’p is the function describing the water depth profile of all slide pieces over the x-

domain and subscript j is an integer ranging from 1 to Nc. The prime in h’p is used to 

distinguish the applicability of Equation (48) to multi-piece slide failures from Equation 

(28). Note the implementation of the previously calculated mass ratio which adjusts the 

mass of a slide piece to the overall slide mass distributed among the various detached 

pieces. Also notice from the subscript arrangement in Equation (48) that the slide chunks 

are modeled one over the other from leftmost to rightmost except for the leftmost piece 

which is modeled over the original baseline water depth (ho). It is this arrangement that 

allows the creation of a single, undivided slide before failure occurs rather than Nc slide 

fragments overlapping each other like the three slides projected on the horizontal plane 

in Fig. 7.  

The process enclosed by Equations (45) to (48) is repeated for all slide pieces at 

each time step to model the translation of each piece and obtain the combined passage of 

the Nc slide chunks. Therefore, the failure evolution of a single-piece slide that separates 

into various pieces is  

 

݄ே௖ሺݔ, ሻݐ ൌ ݄Ԣ௣ሺݔሻே௖                                               (49) 

 

where hNc is the combined water depth of all disjoined slide pieces or when j = Nc in 

Equation (48). Equation (49) represents the water depth that will become the forcing 

function of the linear MSE model so that the response of the free surface to the bottom 

motions can be assessed. To more clearly illustrate the procedure outlined by Equations 

(43) to (49), the Fortran 90 code lines that address this section of the solution 

computation are presented in Appendix B. Using the same parameters with which the  
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values in Table 1 were calculated and Cd = Cm = 1.0, γ = 2.65, a snapshot of the slide 

shown in Fig. 7 undergoing failure is presented in Fig. 8. For ease of visualization,  has 

been multiplied by a factor of 10 in this figure. 

 
 
 

 

FIG. 8. Free-Surface Response and Ground Motion Corresponding to the Failure of the 
Single-Piece Slide Shown in Fig. 7 (Nc = 3). 
 
 
 
Collection of Wave Measurements 
 

To finalize the numerical procedure and obtain information about the triggered 

waves, the model records the time series of the free surface at different points within the 

domain. These locations correspond to x = xoIo - (bho/2), x = xoIo, x = xoIo + (bho/2), and 

x = xoIo + (3 bho/2). Through these points of interest, a sense of what is occurring to the 
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free surface above the rear, middle and front of the slide as well as farther offshore can 

be conceived. A zero-up crossing analysis on each time series is then implemented to 

obtain the magnitude and number of crests, troughs, heights, and periods of the 

generated waves. These time series, however, do not account for the entire simulation 

time, but only up to when the first disjoined slide piece reaches the right boundary to 

avoid the false reflected waves. In addition to this modification, an extension was added 

to the standard zero-up crossing analysis to account for any crests or troughs anteceding 

the first zero-up crossing. Though this “first” elevation or depression is not a complete 

wave, it is assigned a period equal to the length of the time series minus the sum of all 

the recorded wave periods.  

Fig. 9 shows the time series recorded at the four prescribed locations for a slide 

with the same parameters as in Fig. 8 except delay = 30 ( = 0.4586). Subplot (a), 

representing the landward limit, shows that each slide piece generates a surface 

depression that travels shoreward. As expected, the second depression is the largest one 

because it corresponds to the biggest slide piece.  Fig. 9b also displays three distinct 

disturbances, being the one associated to the last piece to move the most prominent one. 

This is due to the fact that when a slide piece fails, it gives subsequent pieces more room 

for their triggered waves to evolve before these waves are captured by the time series-

recording point above the slide middle. Showing a better picture of the offshore wave 

field, Fig. 9c portrays the crests of the triggered waves and the trough that travels with 

the slide front. The amplitude of both crests and troughs is in agreement with the size of 

the slide fragments. Moreover, the information provided by Figs. 9a and 9c is congruent 

with the observations of Jiang and LeBlond (1992) who describe a shoreward traveling 

trough, an offshore propagating crest, and a forced trough moving with the speed of the 

slide front. Finally, Fig. 9d shows the evolution of the generated waves as the slides 

enter deeper water. It is noticeable here that the crests propagate faster than the slide 

front. 



 59

 

FIG. 9. Free Surface Time Series Captured above the (a) Rear, (b) Middle, (c) and Front 
of the Single-Piece Slide Shown in Fig. 7. Subplot (d) Corresponds to the Offshore 
Location. 
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CHAPTER VI 

RESULTS 

 

As indicated in Fig. 6, a parameter space must be specified to commence the 

Monte Carlo simulations. Table 2 shows the deterministically-selected parameter space 

with which the results discussed in this section were obtained. These values were chosen 

with the intention to explore a wide variety of combinations and to facilitate the 

recognition of the degree of influence of the different inputs on the free surface response. 

Given the emphasis of this probabilistic study on the waves traveling toward the coast, 

the parameter space in Table 2 was designed to ensure that gathering of wave data from 

the landward time series location where x = xoIo - (bho/2) was possible while 

guaranteeing the full submergence of the landslide. This time series location is right 

above the rear of the landslide at rest (xl in Fig. 5). 

 
 
 

Table 2. Parameter Space for Monte Carlo Simulations 

Nc 2 5 10 50 

 

    

β   1/10   1/15   1/20   1/30 

    

b' 10 25 40 75 

    

doI 5 8 10 
 

    

delay 2 5 10 30 60 
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In total, 960 combinations can be arranged with the parameter space defined in 

Table 2. Each of one of these combinations undergoes 2,000 runs with varying values of 

γ and Cm as dictated by their normal distributions. These simulations assume h = 1 m 

and have a domain size of 800 m, a simulation time of 2047.75 s, a grid consisting of x 

= 0.4 m and t = 0.25 s, and two lateral open boundaries (the left boundary is flattened 

at  = -0.25 m from x = 0 to x = 4.5 m). The coarseness of the grid is a consequence of 

the domain size needed to avoid the false reflected waves previously mentioned. 

Nevertheless, good accuracy is still retained.  

 

Parameter Subspace with Constant Values 

 

To begin the examination of the results, a case where the deterministic 

parameters have a single value will be first considered. Figs. 10 and 11 show the 

outcome of this numerical experiment which was conducted with the following 

parameter subspace  

 

Nc = 5         β = 1/15         b’ = 40          doI = 8          delay = 30 
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FIG. 10.  Nondimensional Maximum Wave Height (Hmax/h) Charts for a Parameter 
Space with Constant Values Showing: (a) Period of Maximum Wave Height (THmax), (b) 
Number of “Relevant” Waves, and (c) Slide Coherency (). 
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FIG. 11. Probability of Exceedance (Q) Curve for Nondimensional Wave Height 
(Hmax/h) for a Parameter Space with Constant Values. 
 
 
 

Fig. 10a is a scatter chart of the dimensionless periods of the highest waves 

(THmax) versus maximum nondimensional wave heights (Hmax/h). Wave periods have 

been nondimensionalized by an arbitrary characteristic time scale for long wave motion 

equal to (g/doI)1/2 . This characteristic time scale provides information about dispersion 

by indicating how many water depths are contained in a wave length. Two groups of 

results are immediately appreciable in Fig. 10a. The wave periods close to 280 s and 

above correspond to the periods of the “wave” anteceding the first zero-up crossing (Fig. 

9). The second group of periods, ranging from 20 to 140 s, corresponds to the highest 

waves of the remaining wave record. The ample range in THmax in both groups is 

descriptive of the frequency dispersion manifestations that are present in the generation 
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region, thus rectifying the importance of using dispersive models to recreate submarine 

landslide tsunamis. 

To quantify hazard in terms of the number of waves of considerable height that 

may reach the shore, a wave-weighting operation is implemented into the processing of 

wave height data to reduce the effect of small wiggles. This operation consists of 

normalizing the record of wave heights by the maximum height in that record. These 

weighted waves are then summed to generate a number of “relevant” waves. Fig. 10b 

shows the result of performing such weighting operation. A trend of decreasing number 

of “relevant” waves with increasing Hmax/h is clearly noticeable. This behavior is, in 

fact, congruent with the essence of the weighting operation.  For this particular 

parameter subspace, Fig. 10b indicates that up to 4 waves of comparable height to a 

Hmax/h = 0.015 may reach the shore. For other parameter subspaces, a maximum of 6 

“relevant” waves was discerned. 

Furthermore, Fig. 10b provides insight on the characteristics of the slide failure. 

For a given simulation, the larger the number of “relevant” waves, the more comparable 

the generated waves are to the maximum wave height. This can only occur if the slide 

breaks into pieces of similar size. On the contrary, low numbers of “relevant” waves 

suggest that there is a substantial difference in at least one of the widths of the detached 

pieces.  

Fig. 10c presents the correlation between  and the height of the triggered 

waves. This subplot supports what has been deduced from Fig. 8b in the sense that it 

shows that slide failures whose coherency is close to that of a single-piece slide (i.e.,  

values approaching 1) tend to create the highest waves and, therefore, the lowest number 

of “relevant” waves. Despite the evident trend in Fig. 8c, the maximum wave heights do 

not correspond to the largest  values. The reason behind this discrepancy is that low Cm 

and high γ favored the magnitude of the generated waves of these moderately coherent 

data points. In spite of this,  is observed to be a good predictor of the free surface 

response to the spatial and temporal features of the slide failure progression. Though an 

upper bound for  cannot be inferred from this subplot, there is a minimum  value, 
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close to 0.21, for the considered Nc. This minimum is acquired when the slide pieces are 

very close to sharing equal widths.  

Lastly, Fig. 11 shows a probability of exceedance (Q) curve for Hmax/h. This 

curve provides the direct means to assess, in the probabilistic sense, the tsunamigenic 

potential of the examined combination of parameters. Wave statistics such as the wave 

height with 5% probability of being exceeded (H0.05) can be extracted from distributions 

of this kind. For the case being analyzed, H0.05 = 0.0344. Note this and any statistic of 

interest extracted from Fig. 11 is dimensionless and must be multiplied by h to obtain 

the actual wave height.  

 

Sensitivity Analysis 

 

The purpose of the sensitivity analysis is to observe how the height of the waves 

fluctuates in response to the variation of a particular slide parameter. Likewise, this 

analysis can be used to identify which combinations are the most tsunamigenic and to 

conceive the hazard associated to these combinations. A parameter subspace will be 

created from Table 2 and utilized throughout this analysis. Each deterministic parameter 

will then be singularly varied while holding the rest constant. In the end, tabulated wave 

statistics for H0.05 will be compared.  

 

Bottom Slope and Randomized Parameters 

 

It results convenient to analyze the influence of the randomized inputs (γ and Cm) 

in conjunction with β because all four parameters are interrelated through the 

computation of ao and ut (Eqs. 22 and 23). Therefore, β will be varied according to the 

values shown in Table 2 while assigning a single value to the remaining parameters. 

Figs. 12 -14 show the results associated to the parameter subspace shown below. 

 

Nc = 5          b’ = 40          doI = 8          delay = 30 
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FIG. 12. Relation between Slide Initial Acceleration (ao) and Nondimensional 
Maximum Wave Height (Hmax/h) for Various Slopes: (a) β=1/10, (b) β=1/15, (c) 
β=1/20 and (d) β=1/30. 
 
 
 

Fig. 12 shows how different values of β influence the magnitude of ao and how 

the latter relates to the height of the generated waves. It is evident in these scatter charts 

that values of ao increase as β becomes steep. Likewise, the increase in values of ao 

results in increasing values of Hmax/h in a linear-resembling fashion of rather weak 

character. Although this direct proportionality is clear, the scatter of data in Fig. 12 is 

owed to the randomization of γ and Cm. Thus, it is worthwhile examining which of the 

three parameters (β, γ and Cm) involved in the computation of ao is more dominant. This 

is the purpose of Fig. 13. 
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FIG. 13. Slide Initial Acceleration (ao) as a Function of Specific Gravity (γ) (left panel) 
and Added-Mass Coefficient (Cm) (right panel) for Various Slopes (β). 
 
 
 

Fig. 13 shows the relationship between γ, Cm, and ao for only three values of β 

for ease of visualization. Variations in ao due to the randomized parameters suggest that, 

for any fixed β, increasing values of γ and decreasing values of Cm correlate to 

increments in ao. Thus, it is possible to attribute the trend of increasing values of Hmax/h 

in each individual subplot of Fig. 12 to the increasing and decreasing tendency of γ and 

Cm, respectively. However, it is also clear from Fig. 13 that, although γ and Cm create 

appreciable variations in ao, the magnitude of β is what drives the major increments or 

decrements of this quantity. In other words, the contribution to ao of parameters γ and Cm 

is dominated by the magnitude of β.  A similar analysis is not shown for ut given the 
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fixed value of Cd and the observed influence of γ on ao. In spite of this, the same 

conclusions would most likely be drawn. 

 
 
 

 

FIG. 14. Probability of Exceedance (Q) Curve for Nondimensional Wave Height 
(Hmax/h) for a Parameter Space with Variable Slope (β). 
 
 
 

Although Fig. 12 provides insight on the relation between β and Hmax/h, it is 

important to directly examine the degree of dependency between these two. To 

accomplish this, a probability of exceedance curve for Hmax/h for each β value was 

constructed and is presented in Fig. 14. In this figure, values of Hmax/h are observed to 

diminish as β loses steepness, with the most notable reduction being from β=1/10 to 
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β=1/15. Moreover, wave statistics indicate that the H0.05 for the mildest slope is about 

38% of that corresponding to the steepest slope (Table 3). This difference varies 

insignificantly if other parameter combinations, for all Nc values, are analyzed while 

varying β. These probabilities seem to indicate that, even though there is a clear 

distinction between β=1/10 and β=1/30 in terms of their tsunami generation potential, 

the sensitivity of Hmax/h to β is rather moderate.  

 
 
 

Table 3. Nondimensional H0.05 Statistic for a Parameter Space of Variable β 

 β = 1/10 β = 1/15 β = 1/20 β = 1/30 

H0.05  0.0491 0.0344 0.0266 0.0185 

 
 
 
Dimensionless Slide Width 

 

In a similar fashion, the width to thickness ratio of the slide will be evaluated by 

varying its value as indicated in Table 2. The remaining inputs are assigned the 

following values 

 

Nc = 5          β = 1/20          doI = 8          delay = 30 
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FIG. 15. Probability of Exceedance (Q) Curve for Nondimensional Wave Height 
(Hmax/h) for a Parameter Space with Variable Dimensionless Slide Width (b’). 
 
 
 

The probability of exceedance for the various b’ values are shown in Fig. 15. 

This figure suggests that as b’ increases, so does the height of the triggered waves. This 

correlation argues, subsequently, that long, “thin” landslides are the most effective in 

terms of tsunami generation. In fact, this observation is congruent with b’ values 

corresponding to past catastrophic submarine landslides. Hampton et al. (1996) show 

that the Grand Banks slide, responsible for the worst Canadian tsunami catastrophe, had 

a b’ in the order of 303 resulting from a runout length of 110 km and a thickness of 365 

m. These slide dimensions resulted, according to Fine et al. 2005, in waves of up to 9 m 

in height. Hampton et al. (1996) further exemplify, through data corresponding to other 

major submarine landslide events, that this ratio may be as high as 833 (e.g., Bay of 
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Biscay slide). The tabulated b’ values provided by Hampton et al. (1996), therefore, 

support the message that Fig. 15 conveys through probability distributions. 

 Furthermore, Fig. 15 indicates that there is a strong dependency of Hmax/h on 

b’. This can be qualitatively inferred by looking at the significant weakening in the 

probability distributions as b’ becomes small. Examination of H0.05 suggests that the 

smallest b’ generates waves that are 10.3% the value of those triggered by b’ = 75 (Table 

4). This percentage is less than one third of that calculated in the sensitivity analysis for 

β and varies only by about 1% for the higher Nc values and reaches a maximum of 17% 

for the Nc = 2 case. Based on these numbers, b’ can be catalogued as a major influential 

factor in tsunami generation by underwater landslides, which is, in fact, a statement 

supported by other studies (e.g., Watts 2004).  

 
 
 

Table 4. Nondimensional H0.05 Statistic for a Parameter Space of Variable b’ 

 b’ = 10 b’ = 25 b’ = 40 b’ = 75 

H0.05  0.00497 0.0162 0.0266 0.0483 

 
 
 
Number of Slide Pieces 

 

Parameter Nc will be now investigated with regard to the degree of influence that 

it possesses on the height of the waves induced by submarine landslides. This 

investigation will be conducted through probability of exceedance curves for Hmax/h as 

before. The parameter subspace for this analysis consists of the following values 

 

β = 1/20          b’ = 40          doI = 8          delay = 30 
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FIG. 16. Probability of Exceedance (Q) Curve for Nondimensional Wave Height 
(Hmax/h) for a Parameter Space with Variable Number of Slide Pieces (Nc). 
 
 
 

Table 5. Nondimensional H0.05 Statistic for a Parameter Space of Variable Nc 

 Nc = 2 Nc = 5 Nc = 10 Nc = 50 

H0.05   0.0411 0.0266 0.0168 0.0064 

 
 
 

As might have been foreseen, the probability of exceedance for any given height 

is reduced as Nc increases. This decrement is more pronounced between the lowest Nc 
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and the one above it magnitude, but it is observed to weaken between adjacent curves 

from Nc = 5 on. The H0.05 statistic shows that there is up to a 40% reduction in Hmax/h 

from the Nc = 2 to the Nc = 5 mode, but only a 20% decrement from the Nc = 10 to the 

Nc = 50 scenario (Table 5). These percentages seem to indicate that the sensitivity of 

Hmax/h to Nc decays rapidly as this parameter increases. For Nc > 10, in particular, the 

free surface appears to become remarkably less perceptive to this parameter. Fig. 16 

suggests, additionally, that the relation between Nc and Hmax/h is reciprocal. In other 

words, submarine landslides seem to be more effective in transferring energy to the free 

surface the more they behave as a single mass (i.e., when their Nc is low) when failure 

occurs. It then would be expected, in this line of reasoning, that the Nc = 1 case be 

associated to the greatest probability of exceedance for a given wave height for the 

parameter subspace being considered.  

The results shown in Fig. 16 as well as the H0.05 statistics in Table 5 are found to 

behave in a similar manner for narrower and wider slides, steeper and milder slopes, 

shallower and deeper initial depths, and for larger delay values. Despite this consistency, 

an interesting trend is encountered when the value of delay is minimized. Fig. 16 argues 

that the greater the Nc, the smaller the height of the generated waves. However, as delay 

becomes smaller, the slide pieces, despite their number, are forced to move in close 

proximity to each other, which favors their wave generation potential as they better 

resemble a one-piece motion. Intuition may suggest that these compact failure modes 

should approach the probability distribution of the Nc = 1 case, if it was available. To 

prove this reasoning right or wrong, the same parameter subspace used for Fig. 16 will 

be examined with smaller delay values. The results of this examination are shown in Fig. 

17 where subplot (a) represents a delay value of 5 and subplot (b) a delay value of 2. 
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FIG. 17. Probability of Exceedance (Q) Curve for Nondimensional Maximum Wave 
Height (Hmax/h) for a Parameter Space of Variable Number of Slide Pieces (Nc):  (a) 
delay = 5, (b) delay = 2. 
 
 
 

According to Fig. 17a, the tsunami generation potential of the slides with Nc = 5, 

10 and 50 approaches that of the slide separating into only two pieces as the delay value 

is reduced from 30 (Fig. 16) to 5. Remarkably, when delay = 2 (Fig. 17b), the probability 

distributions undergo a shift where the Nc = 50 failure mode now dominates. This shift 

implies that slide failures involving numerous pieces can accrete their effects on the free 

surface very efficiently when the overall slide failure is significantly compact. Further 

examination of Fig. 17b indicates that there is little increase in tsunami generation 

potential for the Nc = 2 case as it transitions from delay = 5 to delay = 2. This 

insensitivity is, perhaps, due to the fact that there is still a small time gap between the 
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first piece to disjoin from the original slide and the second piece to move even when 

delay = 2. Thus, the two slide chunks fail in close proximity, but their effects on the free 

surface are only partially summed. More importantly, Fig. 17 conveys the impression 

that the probabilistic relation between Nc and Hmax/h shifts from being consistently 

reciprocal to being consistently proportional when delay = 2. This then challenges the 

notion that the single-piece failure is always the most tsunamigenic mode, at least with 

respect to the shoreward-traveling waves.  

Though these observations may seem unexpected at first glance, the fact that a 

greater Nc can be associated to greater exceedance probabilities than a lower Nc for very 

compact failures can be assimilated by examining the  values associated to these 

failure modes. Fig. 18 displays the relation between  and Hmax/h corresponding to 

each Nc for delay = 5 (left panels) and delay = 2 (right panels) as well as the minimum  

values (min) associated to each scenario.  
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FIG. 18. Slide Coherency () Versus Nondimensional Maximum Wave Height 
(Hmax/h) for a Parameter Space of Variable Number of Slide Pieces (Nc). 
 
 
 

Let us recall that  refers to the space-time coherency of a given slide. Any 

reduction in delay, therefore, automatically induces increments in  because the slide 

pieces move in closer proximity to each other. Hence, it is no surprise that each of the Nc 

cases shown in Fig. 18 experiences an increase in their min from left panel to right 

panel. Moreover, any increase in Nc is accompanied by a reduction in  because the 

slide is departing from behaving like a single-piece slide. Thus, the decrements in  

observed in Fig. 18 as Nc increases are consistent with the definition of this variable. It is 

conceivable, therefore, that a special case results as delay becomes considerably small 

and Nc large because, although in space the slide is diverting from a single-piece 
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configuration, the start motion times of each slide chunk are extremely close to each 

other, causing the overall failure to acquire a very compact appearance. In this context, 

the Nc = 50 case experiences the greatest increase in min from left to right panel 

because the start motion times of all 50 pieces are tightly confined, forcing these entities 

to move virtually simultaneously. According to Fig. 18, this gain in  is then reflected in 

an increment in tsunami generation potential. Hence, slide failures of low spatial 

coherency and very compact temporal features impart a greater amount of energy to the 

free surface than more spatially coherent failure modes. Based on this proposition, the 

Nc = 1 mode does not possess the greatest tsunami generation potential when compared 

to extremely compact failures involving numerous slide pieces.  

A point that has arisen from this discussion concerns the prediction of the 

probability distributions for other Nc values (e.g., Nc = 1, 3, 100) in the context of very 

compact failures. Evaluation of other Nc values would help to confirm the proposition of 

Figs. 17 and 18 that numerous slide pieces may manifest a greater potential to disturb the 

free surface, when triggered closely together, than a low Nc failure mode.  Single 

simulations conducted for the Nc = 1 case, however, do confirm that the waves observed 

above the rear of the landslide are smaller in height than those induced by larger Nc 

values when delay = 2. Nonetheless, any other delay value produces probability 

distributions that exhibit a reciprocal relation between Nc and Hmax/h such as that 

shown in Fig. 16. 

Wanting to explore the influence of parameter Nc in more detail when small 

delay values occur, the probability distributions of all four b’ in Table 2 were inspected 

to analyze the behavior of these compact failures as the size of the initial slide varies. 

Figs. 19 and 20 contain the results of these examinations. 
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FIG. 19. Probability of Exceedance (Q) Curve for Nondimensional Maximum Wave 
Height (Hmax/h) for Parameter Spaces of Variable Number of Slide Pieces and delay = 
2: (a) b’ = 10, (b) b’ = 25, (c) b’ = 40, (d) b’ = 75. 
 
 
 

By displaying the results obtained for all b’ for the available Nc values, Fig. 19 

suggests that the shift in wave generation potential when delay = 2 does not occur for all 

the scenarios contemplated in the parameter space defined by Table 2. Based on Figs. 

19a and 19b, slides with b’ ≤ 25 do not manifest the shifting behavior, conveying that 

the size of the slide pieces has a greater impact on the free surface response than the 

degree of compactness of the overall failure. Fig. 18b, however, gives evidence that b’ = 

25 is close to the point where the extent of failure compaction starts to play a role. 

Furthermore, panels (c) and (d) in Fig. 18 point out that as slide width increases, the 

failure modes with greater Nc  begin to overcome, in terms of tsunami generation 
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potential, the lower Nc modes. This is more prominent for b’ = 75 where the shifting 

behavior for delay = 5 (not shown here) is also exhibited. It would be reasonable to say, 

based on Figs. 19c and 19d, that when the slide becomes sufficiently long, the size of the 

individual pieces becomes secondary and the temporal compactness of the failure 

primary. Notice, however, that the waves do acquire a greater height as b’ increases 

regardless of the value of Nc. This is congruent with what was found in the sensitivity 

analysis of b’. 

Given the conduct of the results just discussed, the next intuitive step is to 

explore the probability distributions of the waves propagating away from the coast in 

order to generalize or restrict the propositions of Figs. 17 - 20. Below, Fig. 20 shows the 

probability of exceedance for Hmax/h corresponding to a location on the free surface 

above the slide front (Fig. 20a) and offshore (Fig. 20b) from the initial slide position. 

Moreover, these results correspond to a slide that has the largest b’ and smallest delay in 

Table 2. The rest of the subspace parameters remain unchanged. 
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FIG. 20. Probability of Exceedance (Q) Curve for Nondimensional Maximum Wave 
Height (Hmax/h) for Variable Nc with b’ = 75 and delay = 2: (a) Above Slide Front, (b) 
Offshore Location. 
 
 
 

The waves traveling in the offshore direction appear to behave differently, in 

general, according to Fig. 20. Although delay has been reduced to its minimum and b’ 

given its maximum, the correlation between Nc and Hmax/h does not change for either 

the location above the slide front (Fig. 20a), nor the location farthest offshore (Fig. 20b). 

The offshore-propagating waves, therefore, show a consistent pattern which supports the 

notion that the size of the waves increases as Nc decreases.  This fact, perhaps, fulfills 

the more intuitive reasoning with which the sensitivity analysis for parameter Nc 

commenced. Fig. 20 further argues that wave generation potential in the location of the 
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slide front is primarily determined by the size of the detached slide chunks rather than on 

the degree of compaction of the overall failure. Although this group of results will not be 

any further discussed, the probability distributions for the offshore field could also serve 

to assess the hazard posed by submarine landslides to offshore assets located in areas of 

high seafloor environmental loading. 

 
Nondimensional Initial Slide Depth 

 

The contribution of parameter doI to the height of submarine landslide-induced 

waves will be next tested. The constant parameters are defined as follows 

 

Nc = 5          β = 1/20          b’ = 40          delay = 30 
 
 

Fig. 21 shows the results of this evaluation condensed in the form of probability 

of exceedance distributions. Not surprisingly, the deeper the water depth at which the 

slide starts moving, the lesser the degree at which the free surface is disturbed. An 

interesting deduction from Fig. 21 is that the difference in Hmax/h between doI = 5 and 

doI = 8 is considerable, but the height of the waves generated by the largest and 

intermediate doI values are comparable. Moreover, Table 6 indicates that H0.05 for the 

largest doI is about 46% the magnitude of that corresponding to the shallowest depth. In 

general, the sensitivity of Hmax/h to doI is observed to be moderate and the weakest one 

so far explored. Be mindful, however, that doI is also the most restricted parameter due 

to the required full slide submergence, the defective right open boundary, and the points 

of interest on the free surface. 
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FIG. 21. Probability of Exceedance (Q) Curve for Nondimensional Wave Height 
(Hmax/h) for a Parameter Space with Variable Dimensionless Slide Initial Depth (doI). 
 
 
 

Table 6. Nondimensional H0.05 Statistic for a Parameter Space of Variable doI 

 doI = 5 doI = 8 doI = 10 

H0.05  0.0435 0.0266 0.0211 
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Dimensionless Slide Failure Delay 

 

To finalize the sensitivity analysis, the parameter which is involved in the 

computation of the start motion time of a slide piece will be evaluated. The constant 

parameters are 

 

Nc = 5          β = 1/20          b’ = 40          doI = 8 
 
 
 

 

FIG. 22. Probability of Exceedance (Q) Curve for Nondimensional Wave Height 
(Hmax/h) for a Parameter Space with Variable Dimensionless Slide Failure Delay 
(delay). 
 
 
 



 84

In agreement with the meaning of delay, Fig. 22 demonstrates that as the gap 

between the start motion times of the slide pieces is compressed, the energy transfer 

from each individual failure is better accreted and wave generation potential is favored. 

It is also appreciable in Fig. 22 that there is a pronounced difference between the 

minimum delay value and the following one, suggesting that the coupling with the free 

surface considerably debilitates in this transition. This weakening is in the order of 30% 

in terms of the H0.05 statistic.  In spite of this, there is only a moderate reduction in 

Hmax/h as delay continues to increase. Notice, too, that the biggest delay and the one 

below it in magnitude almost perfectly overlap their distributions. Hence, delay values 

greater than 60 are not expected to deviate much from the leftmost distributions in Fig. 

22. In general, Fig. 22 argues that the tsunami generation potential of separable 

submarine landslides rapidly decays as the slide pieces in which it fails reduce their 

degree of interaction. 

 
 
 

Table 7. Nondimensional H0.05 Statistic for a Parameter Space of Variable delay 

 delay = 2 delay = 5 delay = 10 delay = 30 delay = 60 

H0.05   0.0456 0.0348 0.0313 0.0266 0.0263 

 
 
 
Discussion 

 

Although only one parameter subspace was considered, the outcome of the 

sensitivity analysis provides valuable insight regarding the influence of the various 

parameters on tsunami generation by submarine landslides. By inspecting the gathered 

statistics for H0.05, a modest parameter rank of dominancy can be established. The order 

of this rank is not determined based on the highest H0.05 recorded, but on the degree to 

which this wave statistic fluctuates with parameter variations. In this context, the most 
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influential parameter corresponds to b’. This input was observed to drive changes of 

similar weight in the dimensionless height of the waves for all its discrete values. Next 

in the rank is parameter Nc. The effect of this parameter on the free surface response was 

valued as significant, but also observed to considerably debilitate for values greater than 

10. Third in the list is parameter β. This input was observed to be most influential in 

computing ao, but only moderately important in the resulting dimensionless wave 

heights. Parameter doI succeeds in the rank, although its impact on tsunami generation 

potential was discerned to be fairly similar to β. Recall, however, that doI was the most 

restricted parameter in terms of the values that were designated to it. Among the 

deterministic parameters, delay demonstrated to be the weakest driver of the H0.05 

statistic. This is mainly because its impact highly weakens as its value enlarges. 

Nonetheless, small delay values were observed to notably contribute to tsunami 

generation. Finally, parameters γ and Cm manifested a notable influence on the 

magnitude of ao; however, their contribution to the free surface response was only 

discerned for some data points where  was disproportional to Hmax/h. 

The various probability distributions that have been constructed during the 

sensitivity analysis of each input parameter indicate that the hazard that tsunamis 

induced by submarine landslides pose to the coast may be significant in some cases. The 

various tables containing the values of H0.05 which were drawn from the probability 

distributions of each parameter convey that H0.05 close to 0.05 may be attained with the 

selected parameter subspace. For this combination of attributes to be tsunamigenic, 

therefore, the landslide must be substantially thick. Hampton et al. (1996), however, 

show that, for example, a typical submarine landslide in the Atlantic Ocean can attain a 

thickness in the order of 1200 m.  With these figures in mind, it is easy to value the 

hazard that submarine landslides may pose to the coast when their features and those of 

the local environment favor their tsunami generation potential. It is indisputably 

important, thereby, to devise tools, such as this probabilistic model, to estimate this risk. 
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CHAPTER VII 

CONCLUSIONS 

 

A numerical study of the tsunamis induced by the translational failure of 

submarine rigid landslides has been conducted. Given the dispersive behavior of this 

specific type of waves, a fully dispersive MSE model for small amplitude waves was 

recreated using a finite-difference scheme and satisfactorily validated. This model is 

equipped with a filter function that mimics the effects of the water column above the 

landslide and favors the reproduction of long waves. Except for a boundary issue, the 

recreated model performed remarkably well, offering good accuracy, excellent 

reproduction of dispersion effects, and low computational cost in its 1-D version. 

Despite its incapability to account for nonlinear effects and abrupt bottom changes, the 

linear MSE model proved to be adequate for the modeling of tsunami generation and 

propagation in the context of underwater ground motion. 

In order to amplify what has been covered in the past with regard to submarine 

landslide tsunamis, the presented model incorporated the concept of underwater slides 

whose failure is characterized by the separation of a user-defined number of rigid pieces. 

The centers of mass motion of these detached slides was computed using the equations 

of Watts (1998) which describe rigid bodies that translate down a flat slope with a 

decaying acceleration until a terminal velocity is reached. The free surface response to 

this ground motion was observed to conform to the wave forms of submarine landslide 

tsunamis described in previous studies.  

An ad-hoc formulation for landslide coherency was developed with the purpose 

of describing the spatial and temporal characteristics of the overall slide failure. This 

expression relates the size and start motion times of each slide piece to provide insight 

on the compactness of the failure of the landslide. The results obtained with the 

completion of the study indicated that the proposed formulation was an excellent 

indicator of not only failure progression, but also of the extent to which the detached 
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slide pieces combine their effect on the free surface. In general, the presented expression 

for coherency suggested that landslide failures increase their tsunamigenic potential the 

closer they behave to the single-slide motion. 

Aiming at probabilistically studying the hazard posed by these tsunami-

generating mechanisms, a Monte Carlo method was adopted in which deterministic and 

probabilistic parameters were defined in the form of parameter spaces and normal 

distributions, respectively. The Monte Carlo simulations consisted of 2000 trials that 

captured the number, period and height of the generated waves at different locations 

above the landslide and at an offshore point of interest through zero-up crossing 

analysis. The emphasis in this study, however, was given to the shoreward traveling 

waves generated above the rear of the landslide. The Monte Carlo methodology proved 

to be adequate to examine the behavior of the multiple independent slide parameters, 

providing consistent results in the form of probability distributions for the maximum 

recorded wave height. 

In agreement with the general conception found in the literature, the results of the 

Monte Carlo simulations are suggestive that tsunamis generated by submarine landslides 

are strongly a function of the attributes of the source, the ocean bottom, and the 

dynamics of the moving mass. Attempting to recognize the extent at which these failure 

aspects control tsunami generation, a sensitivity analysis for the deterministic parameters 

was conducted. Based on wave statistics extracted from probability of exceedance 

distributions, the sensitivity analysis pointed out that b’ and Nc are the most influential 

parameters, followed by β, doI, and delay. With regard to parameter b’, it was found that 

long, “thin” landslides exhibit an effective tsunami generation potential, which is in 

agreement with estimates of b’ values for past historic events. Parameters Cm, γ, and Cd 

were observed to affect the magnitude of ao, but to be dominated by the influence of the 

other parameters in their contribution to the height of the generated waves.  

The introduction of the concept of submarine landslides breaking into smaller 

pieces as failure unfolds had a significant impact on the outcome of the simulations. For 

most of the cases contemplated, it was found that underwater landslides become 
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considerably less tsunamigenic when they separate into smaller, numerous pieces. A 

sensitivity analysis conveyed that the free surface becomes progressively imperceptive 

to these multi-slide failures as the number of pieces involved in the failure grows. The 

only exception to these findings applies to very compact failures where the slide pieces 

move almost simultaneously. In this type of failure modes, the confined triggering of the 

numerous pieces was observed to create a coupling with the free surface greater than 

more spatially coherent slides. This behavior seems to be further enhanced as the slide is 

enlarged. In view of these observations, the case in which the slide moves as one piece is 

not always the mode with the highest tsunami generation potential. This argument only 

holds, however, for the waves propagating in the direction of the shore. 

A quick evaluation of the wave data collected above the slide front and at the 

offshore location was also conducted. The offshore-traveling waves appeared to 

consistently increase in height as the slide approaches the one-piece motion. This then is 

suggestive that energy transfer to the free surface varies depending on the location above 

the slide being examined. Further investigation of the waves propagating away from the 

coast could be beneficial to estimate submarine landslide tsunami hazard for offshore 

assets. 

The presented results also provided valuable insight on the overall hazard posed 

by submarine landslides. Previous probabilistic studies have labeled this hazard as low, 

in large part due to their focus on specific geographical regions.  The results of this study 

are representative of a hazard of rather low character, but that can significantly escalate 

its potential when a favorable combination of physical attributes and failure compactness 

of the submarine landslide occur. Recall, also, that the presented hazard assessment does 

not account for the nonlinear processes or wave focusing effects that will certainly act on 

the tsunami as it reaches the coast. Nevertheless, this study does provide new insight on 

the general perception of submarine landslide tsunamis and their unquestionable threat to 

the coast. 

. 
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Recommendations for Future Research 

 

In the context of modeling the generation and propagation of submarine landslide 

tsunamis using a linear model, the fully dispersive MSE model is certainly an adequate 

vehicle. In spite of this, the radiation condition imposed on the right open boundary 

exhibited a defective behavior in the form of reflected waves as the slide left the domain. 

This issue had negative consequences in the implementation of the Monte Carlo 

simulations because the domain had to be significantly extended to capture a sufficiently 

long time series before the reflected waves could contaminate the results. With the 

extension of the domain, of course, came the need to use a coarser grid that, 

subsequently, decreased the accuracy of the results. Therefore, correcting the behavior of 

this boundary would be a very meaningful improvement to this model as the number of 

trials per Monte Carlo sequence could be increased and a more accurate and robust 

hazard assessment performed. 

Another improvement suggested for this model is to assign more adequate 

standard deviation values to the normal distributions of Cm, γ, and Cd. Perhaps, focusing 

the study on a particular geographical area will narrow the range of values that can be 

assigned to these parameters. In addition, ways of randomizing some of the deterministic 

parameters, such as delay, could be explored.  

Extension of the probabilistic study to 2-D is also recommended. Revision of the 

2-D MSE model here evaluated is crucial in order to look for improvements in the 

reconstruction of the free surface near the generation region. Moreover, a 2-D study 

would allow for the examination of 3-D effects and their impact on the characteristic of 

the triggered tsunamis. In particular, the study of the 2-D behavior of the very compact 

failure modes that were of intriguing nature in this study is highlighted. 

The hazard assessment here conducted was restricted to the parameter space 

utilized in the Monte Carlo simulations. A more robust assessment would allow for the 

prediction of wave statistics (e.g., H0.05) through calibrated expressions involving the 

various slide parameters. This approach is well exemplified by Lynett and Liu (2005) 
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who developed expressions for the run-up provoked by 3-D submarine and subaerial 

landslides. Expansion of the presented hazard assessment, therefore, should be inclined 

towards developing such expressions. The author certainly hopes to be able to 

implement this idea in the near future. 
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APPENDIX A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DO  j = 1, Nc 
 
   ’(j)=0  
 
    DO k=1,Nc 
 
       t (j,k) = abs(ts(j) - ts(k))*delay                       !Eq.(39) 
 
       ’(j) = ’(j) + Sw(k)*(1/(1+ t(j,k)))              !Eq.(40) 
             
       (j,k) = ’(j) 
 
    ENDDO 
 
ENDDO 
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APPENDIX B 

 

 

 

DO n=1,nt    
   h_p=ho  
   ellip=0.0 
 
   DO j=1,Nc  !Evaluate each slide chunk 
      ds=0  !Set initial horizontal displacement 
 
      DO m=1,n  !Determine slide velocity 
 
         IF (t(m)>=ts(j)) THEN  !Compare current time to onset time 
            u_c=u_t*tanh((t(m)-ts(j))/t_o!Velocity evolution-Eq.(45) 
         ELSE 
            u_c=0  !Slide remains stationary for t<ts 
         ENDIF 
          
         ds=ds+u_c*dt  !Horizontal displacement – Eq.(46) 
          
      ENDDO 
 
     !Slide spatial location parameters           
      x_c=x_o_I(j)+ds*cos()  !Center of mass motion – Eq.(47) 
      x_l=x_c-0.5*b(j)*cos()  !Left end – Eq. (29) 
      x_r=x_c+0.5*b(j)*cos()  !Right end – Eq. (30) 
 
      DO ii=1,nx  !Delineate slide over x-domain 
 
         ellip(ii)=mass_ratio*h*0.25*(1+tanh((x(ii)-x_l)/(S_f)))*(1-tanh((x(ii)-

x_r)/(S_f)))  !Slide delineating function - Eq.(43) 
 
         h_p(ii)=h_p(ii)-ellip(ii,j) !Record the passage of individual slide chunks and 

reuse when modeling next chunk-
Eq.(48) 

      ENDDO 
   ENDDO 
  
   h_Nc(:,n)=h_c !Store water depth at t=t(n)created by Nc slides – (Eq. 49) 
 
ENDDO   
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