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MODELLING WAVE-INDUCED RESIDUAL PORE PRESSURE AND DEFORMATION OF 
SAND FOUNDATIONS UNDERNEATH CAISSON BREAKWATERS 

Hisham El Safti1, Matthias Kudella2 and Hocine Oumeraci3

A finite volume model is developed for modelling the behaviour of the seabed underneath monolithic breakwaters. 
The fully coupled and fully dynamic Biot’s governing equations are solved in a segregated approach. Two 
simplifications to the governing equations are presented and tested: (i) the pore fluid acceleration is completely 
neglected (the u-p approximation) and (ii) only the convective part is neglected. It is found that neglecting the pore 
fluid convection does not reduce the computational time for the presented model. Verification of the model results 
with the analytical solution of the quasi-static equations is presented. A multi-yield surface plasticity model is 
implemented in the model to simulate the foundation behaviour under cyclic loads. Preliminary validation of the 
model with large-scale physical model data is presented. 
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INTRODUCTION  
Caisson breakwaters are more advantageous compared to rubble mound breakwaters in terms of 

environmental considerations, quality control, construction speed and multi-purpose use (Oumeraci, 
2004). However, most of the failures experienced by monolithic breakwaters are of geotechnical nature 
(Oumeraci, 1994). Despite the extensive research in the past (e.g. Oumeraci and Kortenhaus, 1994; 
Oumeraci et al. 2001; Kudella et al., 2006), the behaviour of sand foundations underneath monolithic 
structures, subject to breaking wave impacts, has not yet been satisfactorily numerically simulated (nor 
has it been fully understood). This is partially due to simplifications adopted in the governing 
equations (i.e. using uncoupled solution or Biot’s quasi-static poro-elastic model (e.g. Liu and García 
2006). For a comprehensive review of available models refer to Jeng (2003). Another significant 
aspect is the selection of a suitable soil constitutive model, which should be able to reproduce with 
acceptable accuracy salient processes such as the balance between pore pressure generation and 
dissipation and subsequent soil failure. Only few publications can be found with implementations of 
non-elastic models (e.g. Jeng and Ou 2010; Stickle et al., 2012). Nevertheless, the implementations do 
not consider the acceleration of the pore fluid which was proven necessary for the problem at hand 
(e.g. Ülker et al., 2012). A geotechnical model for the sand foundation is presented as a part of the 
development of a coupled CFD-CSD model system to reproduce numerically large-scale experiments 
from Kudella et al. (2006). 

In this paper, a numerical model for the poro-mechanical behaviour of seabed is developed using 
the fully coupled formulation of Biot’s governing equations as described in Zienkiewicz et al. (1999) 
and considers coupling between the solid skeleton and the pore fluid using a segregated approach. The 
model accounts for the dynamic behaviour of the solid skeleton and the pore fluid. It has been shown 
(e.g. Ülker et. al, 2012 ) that considering the pore fluid acceleration (dynamic effect) is relevant to soil 
foundations subject to high frequency cyclic loading (i.e. caisson motion due to breaking wave 
impact). The pore fluid acceleration is less significant for lower frequency cyclic loading (e.g. seismic 
action).  

Two approximations are presented: (i) fully neglecting the pore pressure acceleration (i.e. the u-p 
approximation), and (ii) neglecting only the convective part of the pore fluid acceleration. A 
comparison is made among the three solutions to investigate possibilities of simplifying the model by 
neglecting the convective part of the pore fluid acceleration. 

SEABED AS A POROUS MEDIUM 
Modelling the seabed as a porous medium is essential to realise the interaction between the 

skeleton and the pore fluid. Few approaches are available for describing the behaviour of porous media 
(all leading to the same results). Nevertheless, Biot’s original formulation is the most widely applied in 
geotechnical engineering, especially by using the physical approach to the formulation provided in 
Zienkiewicz et al. (1999), which is used in this study. 
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Fully Dynamic Formulation 
An overall equilibrium equation (momentum balance) for the solid-fluid mixture, considering a 

control volume (dV = dx . dy . dz), can be written as Zienkiewicz et al. (1999):  
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Where σ is the total stress tensor, u is the displacement vector and w is the average Darcy’s 
velocity vector of the percolating fluid. The third term in the LHS of Eq. 1 represents the pore fluid 
acceleration relative to the solid phase. The underlined term represents convective pore fluid 
acceleration. Further, (ρf) is the density of the fluid, b is the body force per unit mass tensor (mostly 
gravity) and ρ is the density of the mixture defined as: Sf nn ρρρ )1( −+= , where (ρs) is the solid 
particles density and (n) is the porosity. In Eq. 1, the stress is defined in a generic incremental fashion 
that will permit later the implementation of constitutive model for any material as Iσσ p−′=  (tensile 

stresses are positive) and eεEσ dd :=′ , where σ′  is the effective stress tensor and E  is the elasticity 

tensor and Ι is the identity tensor. The strain-displacement relationship is considered for the assumption 
of small-strain (further extension to large strain condition is feasible) as ( ) )(2

1 Tuuε ∇+∇= . 

The momentum balance of the fluid phase alone considering the same control volume and 
assuming that the solid phase to be the reference is written as Zienkiewicz et al. (1999): 
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Where p is the pore pressure and R is the viscous drag force vector (resistance). The viscous drag 

force can be defined according to the Darcy seepage law assuming an isotropic medium as 
K

gfρw
R = , 

where K is the hydraulic conductivity (m/s). Mass conservation of the fluid flow is achieved as 
Zienkiewicz et al. (1999): 
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where )(εtrεv =  is the volumetric strain of the solid skeleton, [1/Q = n / Kf ] and 
[

Wf KSK =1 0)1( pS−+ ] where Kf and Kw are the bulk moduli for pore fluid and pure water 
respectively, S is the degree of saturation (S = Vw/Vv), Vw is volume of pore water, Vv is volume of 
voids and p0 is the absolute zero pore pressure (under atmospheric pressure ≈ 105 Pa).  
 

Approximations 
The governing Eq. 1-3 are always approximated for numerical solution to reduce the number of 

governing equations from three to two. This includes the (u-p), (u-U) and (u-p-U) formulations 
presented in Zienkiewicz and Shiomi (1984) and Zienkiewicz et al. (1999). These approximations 
prevent the solution of the pore fluid momentum balance. Instead, the momentum balance is presented 
implicitly in the pore fluid mass conservation. Therefore, the pore fluid pressure calculated always 
represents the “excess” pore pressure instead of the total pore pressure. 

The (u-p) approximation fully neglects the pore fluid acceleration with reference to the solid 
skeleton. The (u-U) approximation includes the pore fluid acceleration but solves for two variables: the 
solid displacement vector (u) and the total pore fluid displacement vector (U). The (u-p-U) 
approximation introduces the pore pressure to the equations as a dependant variable to enhance 
numerical stability. 

In this model, the (u-p) approximation is presented in a segregated approach to allow for 
comparison with the fully dynamic formulation. The (u-p) approximation is realised by neglecting the 
pore fluid acceleration and substituting the pore fluid velocity divergence in the pore fluid mass 
conservation with the divergence of terms from the pore fluid momentum balance. The Eq. 1-3 reduce 
to Zienkiewicz et al. (1999): 
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THE “geotechFoam” SOLVER 
The OpenFOAM framework/toolbox is used to develop the geotechFoam solver. OpenFOAM is 

an open source collection of applications/libraries written in C++ that provide infrastructure for 
developing numerical models (that can be inherently three-dimensional and run in parallel) as well as 
pre-/post processing utilities.   

Algorithm 
The geotechFoam solver uses a segregated algorithm for solving the coupled equations (Fig. 1) 

using the finite volume method. The segregated approach uncouples the equations at the iteration level. 
The governing equations are discretized into implicit terms, which are used for solution of current 
iteration, and explicit terms, which are updated from the previous iteration. The (u-p) approximation is 
implemented in a straightforward manner. Nonetheless, the fully dynamic formulation and the dynamic 
formulation neglecting the pore fluid convective acceleration need an approach to resolve the velocity-
pressure (w-p) coupling for the pore fluid. The same problem exists for CFD models. Therefore, the 
PISO algorithm (Pressure Implicit with Splitting of Operators) is adapted from incompressible Navier-
Stokes solvers to solve the momentum balance and diffusion equations for the pore fluid (cf. Jasak, 
1996).     

Discretization of Equations 
The governing Eq. 1-3 are decomposed into implicit and explicit parts in a fashion similar to that 

in Jasak and Weller (2000a). The equilibrium equation is discretized as:   
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where G is the shear modulus and λ is Lame’s constant. This infers that only isotropic linear 
elasticity is supported by the solver. Nevertheless, nonlinear elasticity is introduced by assigning 
different values for the elasticity parameters at each cell (normally as a function of confinement). 
Anisotropy is assumed to result from plasticity that is introduced explicitly to the stress term. In this 
manner, several material models can be incorporated with the solver.  

In Eq. 6, the first term of the explicit part is completely neglected for the u-p approximation. 
However, for the fully dynamic solution without pore fluid convection, only the underlined part 
( )ww ∇⋅  is ignored. 

Considering the (u-p) approximation, the pore fluid mass conservation is discretized as: 
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Figure 1. Algorithm for the geotechFoam solver 
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The underlined term is the convective acceleration that is neglected in one of the present 
formulations (the u-p approximation). To calculate the pressure using the PISO algorithm, the 
momentum balance Eq. 2 is rewritten in a semi-discretized manner, pressure gradient is not discretized 
at this stage (Jasak, 1996):  

 paP ∇−= wP Hw  (9)  

Eq. 9 is obtained from the integral form of the momentum Eq. 2. The parameters Pa  (the central 
coefficient) and wH  (a vector including the transport part and source part of the momentum balance 
equation) are functions of the velocity w . The velocity from (9) is: 
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Substituting the velocity from Eq. 10 into the continuity Eq. 3: 
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 wH  are face interpolates at cell faces. Eq. 11 is solved to get the 

total pore pressure. More information about the geotechFoam solver can be found in El Safti and 
Oumeraci (2012). 

MODEL VERIFICATION 
Two simple problems were simulated to verify the implementation of the equilibrium equation. A 

three dimensional bar fixed from one side and free from the other was tested under uniform uniaxial 
load at the free end with and without activation of gravity. The results are in agreement with hand 
calculations.  

One-Dimensional Poro-Elastic Problems 
To verify the solid-fluid coupling, the analytical solution of Terzaghi’s one-dimensional 

consolidation of a soil layer is considered as shown in Verruijt (2001), which represents an uncoupled 
quasi-static solution. In this problem, the soil is initially considered undrained with an internal pore 
pressure equal to the external uniform surcharge (assuming incompressible pore fluid); afterwards the 
soil is allowed to drain upwards from the surface. The solution can be adjusted to describe the 
accumulation of pore pressure as a result of the sudden loading by a fluid on the soil surface 
(Detournay and Cheng, 1993). In the second problem the initial pore pressure is set to zero and the 
fluid pressure at the surface is set to an arbitrary value (pi). The configurations of both problems are 
illustrated in Table 1, where T is the external traction vector and pi is a predefined arbitrary pressure 
value. 

Fig. 2 shows the results from different formulations as compared to Terzaghi’s analytical solution. 
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consolidation coefficient cv is used to calculate the time values for sampling the results from the 
numerical simulations. The fluid bulk modulus in cv is considered for pure water (2200 MPa) because 
Terzaghi’s model assumes incompressible fluid. It is worth stressing that the degree of saturation (S = 
Vw/Vv) has a great influence on the numerical model results (implicitly present in the fluid bulk 
modulus). An applicable value of S = 98.83% is considered, which best compares to the analytical 
solution and causes a reduction of Kf by a factor ≈ 260 from that of pure water (S = 100%).  

As shown in Fig. 2, the three formulations compare well to the 1D Terzaghi’s consolidation model 
and the 1D loading by fluid case (adapted from the consolidation problem). It was observed that the 
fully dynamic Biot formulation (using the PISO algorithm) is affected by the ratio of the excess pore 
pressure to the hydrostatic pore pressure (more apparent for higher air content). The effect is 
significantly less apparent when the convective acceleration is neglected. At the beginning of the 
simulation, the change in pore pressure agrees relatively well with the analytical solution until the 
simulation reaches a certain time (dependent on ratio of excess to total pore pressure) then the pore 
pressure change is reduced significantly. Therefore, a higher value for the arbitrary pressure pi was 
considered for the PISO algorithm based simulations.   

Wave-Induced Seabed Response 
The effect of wave loading on an elastic seabed is studied using the three approaches (the fully 

dynamic solution, neglecting pore pressure convective acceleration and the u-p approximation). The 
configuration of the problem is shown in Fig. 3. Properties of the wave loading are given in Table 3. 
The excess pore pressure ratio (pore pressure to wave pressure amplitude q) in the horizontal section 
(A-A) is shown in Fig. 4. In Fig. 5, the excess pore pressure ratio for the vertical section (B-B) is 
presented.  
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As shown in Fig. 4 and 5, the three approaches give identical results for the pore pressure ratio. 
This means that direct seabed response is insensitive to dynamic effects of the pore fluid. 

 
 

Figure 2. Comparative analysis of the three approaches with Terzaghi’s 1D consolidation model (S = 98.83%): 
(a) Consolidation of a soil layer and (b) Loading by fluid 
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Table 1.  Configurations of the consolidation and loading by fluid 1-D problems 
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Soil properties used for the simulations are shown in Table 2. 

 
Table 2.  Soil properties  

Layer thick. (h) 10 m 
Arbitrary pressure (pi) variable 
Saturated density (ρsat) 2000 kg/m3 
Submerged density (ρsub) 1000 kg/m3 
Fluid density (ρf) 1000 kg/m3 
Porosity (n) 0.42 
Hydraulic conductivity (K) 10-5m/s 
Elasticity modulus (E)   15 MPa 
Poission’s ratio (ν) 0.3 
Degree of saturation (Sw) 0.9883 
Fluid bulk modulus (Kf) 8.514 MPa 

h =10 m.

Seabed surface

Cyclic (periodic)
boundary

Cyclic (periodic)
boundary

60 m.

A A

B

B

0.95 h

d p, w, u = 0

d w, T  = 0 p =
 ρ g H

2 cosh(kd)
w ei(kx-ωt)

 Figure 3. Computational domain of the seabed subject to wave action (see results of corresponding sections 
A-A in Fig. 4 and section B-B in Fig. 5)   

Table 3. Wave loading conditions 

Wave height (H) 1 m. 
Wave length (L) 34.907 m. 
Wave period (Τ ) 5 s. 
Water depth (dw) 8 m. 
Wave steepness. (H/L) 0.0286 
Ratio of water depth to wave length (dw/L) 0.2292 
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Figure 4. Pore pressure inside the seabed foundation (section A-A) 

 
Figure 5. Pore pressure ratio to wave pressure amplitude (section B-B) 

SOIL-STRUCTURE INTERACTION 
Several strategies are available for modelling soil-structure interaction. These methods include the 

introduction of special springs or special elements at the interface. These simplifications are acceptable 
for small and continuous relative displacements of the interface. Nevertheless, the introduction of 
realistic contact constraints (boundary conditions) is essential for highly dynamic conditions.    

For the structure-soil interface, a contact model was implemented which can simulate the 
separation and reattachment of soil and structure adjacent surfaces. The contact also accounts for 
friction between caisson surface and sand foundation. The non-linearity of the system is caused by the 
fact that the boundary condition is solution-dependant. The contact interface is updated via a penalty 
method algorithm.       

A mixed boundary condition (Dirichlet-Neuman) is defined for the displacement at the contact 
boundary. A fixed value (Dirichlet) is used for displacement component normal to contact surface 
while a fixed displacement gradient (Neumann) is used for tangential components (friction). This 
mixed boundary condition is defined for the surface normal. Three values are defined: (i) the 
displacement, (ii) the displacement gradient and (iii) the value-fraction to define which part of the 
boundary is in contact and consequently which fraction of the displacement value and gradient is 
assigned for the calculation. 

Different (potential) pairs of contact surfaces are defined by the user and one of them is assigned a 
mixed boundary condition and the other is assigned a fixed-gradient boundary condition. Both 
boundaries are updated together when the contact surfaces overlap (during iterations).  

A generalized procedure is used to find the overlapping parts of the contact surfaces according to 
Jasak and Weller (2000b). The normal contact constraint can be represented as (Sheng et al., 2007): 
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Where gn is the relative displacement in normal direction (separation) and σn is the normal stress 
component. The contact adopts Coulomb’s law of friction for tangential constrains (Sheng et al., 
2007), as: 

 0=tg , when 0>−′ tn σσµ ; 0>tg , when 0=−′ tn σσµ ; 

  ( ) 0=−′ tntg σσµ  (13)  

Where gt is the relative displacement in tangential direction (slide). The tangential stress at contact 
is σt and the coefficient of friction is µ. No adhesion is simulated by the contact. 

SOIL CONSTITUTIVE MODEL 
  Modelling the soil foundation as a continuum dictates the introduction of a material constitutive 

model for the solid phase of soil (i.e. the skeleton). Implementing simple material models (e.g. linear 
elasticity) in a fully coupled and fully dynamic poro-mechanical model can only reproduce the 
transient pore pressure in the soil. To model residual pore-pressure accumulation underneath 
monolithic breakwaters, the residual deformation of soil must be accounted for. Classical elasto-plastic 
models (where an elastic region of soil behaviour is enclosed by a plastic yielding envelope) are 
capable of reproducing soil behaviour when subject to monotonic loading. Nevertheless, in case of 
cyclic loads (especially with small amplitudes) classic elasto-plastic models tend to behave like elastic 
models (with load fluctuations occurring inside the elasticity region). Therefore, more sophisticated 
material constitutive models are needed to capture plasticity due to small changes in load-time history. 

Unfortunately, no soil constitutive model exists, yet, that can be considered as standard for soil 
dynamic analysis. Nevertheless, several promising models exist with advantages and disadvantages in 
reproducing behaviour of soil under specific conditions. Densification models decouple the soil strain 
into monotonic part and a densification part (damage) caused by cyclic loading. Densification models 
are relatively simple but may suffer on the accuracy side. Multi-yield surface (kinematic) models 
approximate the stress-strain curve for soil into small linear segments (e.g. Elgamal et al., 2003). 
Bounding surface models use only two surfaces from which the inner surface can translate inside the 
outside “failure” surface eliminating the need for other yield surfaces and reducing calculation time. 
Some other models need no explicit definition of a yield (failure) surface like the generalized plasticity 
models (e.g. Jeng and Ou, 2010; Stickle et al., 2012) and hypoplastic models. 

An interface for material models implementation in the geotechFoam solver has been developed. 
Different material models can be considered simultaneously for different regions of the domain. A 
multi-surface plasticity model (Prévost, 1985; Elgamal et al., 2003; Yang et al., 2003) has been 
implemented in the geotechFoam solver. The model uses an incremental stress-strain relationship so 
Hooke’s law applies. The strain is conveniently decomposed into elastic and plastic components and 
the stress-strain relationship is: 

 ( )pddd εεEσ −=′ :  (14)  

Where dσ is the effective stress rate tensor, E is the fourth order elasticity tensor, dε is the strain 
rate tensor and dεp is the plastic strain rate tensor. Anisotropy is considered to be due to plasticity; 
therefore, any elastic anisotropy is omitted. Consequently, the former relation is simplified to: 
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Nonlinear elasticity can be introduced by considering elastic parameters to be functions of 
confinement (Prévost, 1985): 
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Where (Gr) and (Kr) are the reference shear modulus and reference bulk modulus, which 
correspond to the reference effective mean normal stress ( rp ), 3/)(σtrp =′  is the mean effective 
stress and a small positive constant ( 0p′ ) is considered for numerical convenience. The parameter a 
equals 0.5 for most cohesionless soils. The plastic strain is calculated as: 

 Ld p Pε =  (17)  

P is a symmetric second-order tensor which defines the direction of plastic deformation in stress 
space. The  are MacCauley’s brackets, so L (the plastic loading function) is set to zero if it has a 
negative value. L is calculated as: 

 ):(1 σQ ′
′

= d
H

L  (18)  

H ′ is the plastic modulus and Q is a symmetric second-order tensor that denotes the outer normal 
to yield surfaces. P and Q are decomposed into deviatoric ( P′ and Q′ ) and volumetric ( P ′′ and Q ′′ ) 
parts, as: 

 3)(PtrP =′′     and    IPP P ′′−=′  (19)  

 3)(QtrQ =′′     and   IQQ Q ′′−=′  (20)  

The Q tensor is normalized as: 

 
σ
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f
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Where (fm ) is the yield function of the mth surface, and ′∂∂ σmf is its gradient in the stress space. 
The model employs the pressure dependent Drucker-Prager yield criterion (Prévost, 1985; Elgamal et 
al., 2003; Yang et al., 2003): 
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The deviatoric stress tensor s is calculated as Iσs )( p′−′= . The kinematic deviatoric tensor mα  
defines coordinates of the mth yield surface’s centre in stress subspace (stress deviatoric plane/view) 
and Mm is a scalar that defines the mth surface size and, therefore, is a material parameter for the most 
outer surface (failure surface) and obtained for inner surfaces from piecewise linearization of the 
octahedral shear stress-strain curve (triaxial-stress plane) retrieved from lab experiments or soil’s 
backbone curve (Fig. 6). 

The flow rule determines how the outer normal to the plastic potential function (P) is calculated. 
Generally, a non-associative flow rule is considered for cohesionless soils to better model shear-
volumetric strain interaction. In this model, the deviatoric part of the flow rule is associative (P’ = Q’) 
while the volumetric part (P’’ ≠ Q’’) is non-associative (consequently the flow rule as a whole is 
nonassociative; P ≠ Q). According to the stress state position (in the effective principal stress space) 
relative to the phase-transformation surface (defined by soil properties) three formulae are used to 
calculate P’’. If the soil is in the contractive phase, P’’ is calculated by (Yang et al., 2003): 

 
3
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(a)                                                                                  (b) 

Figure 6. (a) Conical yield surfaces in principal stress space and (b) Hyperbolic backbone curve for soil 
nonlinear shear stress-strain response and piecewise-linear representation in multi-surface plasticity (after 
Prevost 1985 and Yang et al., 2003) 
 

If the soil is in the dilative phase, P’’ is calculated as (Yang et al., 2003):  
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η  (25)  

; Where c1-3 and d1-3 are material parameters. 
If the stress state lays on the phase transformation surface, is considered zero. The hardening 

rule is a pure deviatoric kinematic one. Consequently, all surfaces do not change size. They do, 
however, translate except for the outermost surface which is considered as a failure surface (the stress 
state cannot lay outside it). The direction of translation is selected independently of any formal 
plasticity constraints to ensure no overlapping between yield surfaces (Elgamal et al., 2003; Prevost, 
1985; Mroz, 1967). To translate the active surface (fm) so that the new (deviatoric) stress state (s) lies 
on its new position, a conjugate stress state (sT) that lies on the outer yield surface (fm+1) and thus 
satisfies its yield function (Fig. 7) is defined as:  

 ( ) mmT ppx ααss ′+′−=  (26)  

 
Figure 7. Deviatoric hardening rule (after Parra, 1996) 
 

The unknown is (x). Solving for (x) yields a quadratic equation (Drucker-Prager criterion). The 
direction of the surface translation is given as (Parra, 1996): 

 ( ) ( )1

1

+

+

′−−′−= mT

m

mmT p
M
Mp αsαsμ  (27)  

The implemented constitutive model has been calibrated and validated for medium sand in several 
publications (e.g. Elgamal et al., 2003; Yang et al., 2003). It has shown to reproduce, adequately, sand 
behaviour under cyclic loading. 

LARGE-SCALE PHYSICAL EXPERIMENTS 
  Large-scale physical experiments of a caisson breakwater resting on a sandy foundation were 

carried out in the large wave flume (GWK) in the Coastal Research Centre (FZK) in Hanover. The 
flume is about 330 m long, 5 m wide and 7 m deep. The wave paddle is driven by a 900 kW maximum 
power engine. After a horizontal bottom of 250 m. the flume is limited by an impermeable 
embankment with a slope of 1:6.  
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Experimental Set-Up 
The investigated model construction includes the sand body beneath the breakwater, the rubble 

foundation with a seaward berm and the caisson breakwater. The configurations of the flume and wave 
gauges are shown in Fig. 8 (Oumeraci and Kudella, 2004; Kudella et al., 2006). The sand profile 
consists of a beach profile with a 1:25 slope, starting at x = 169.6 m and ending at x = 230.5 m with a 
height of 2.45 m above the flume bottom. The profile continues horizontally up to the (1:6) 
embankment. 

 

 
Figure 8. Caisson breakwater model with locations of wave gauges in the Large Wave Flume (Oumeraci and 
Kudella, 2004) 

 
The sand foundation was placed with a special procedure to reduce the initial air content. The test 

programme was composed of two phases. The first phase was focused on the direct loading of soil 
foundation by smaller water waves without the existence of any structure in order to compact the loose 
sand (due to installation procedure). The second phase was carried out after the construction of the 
caisson breakwater. The largest part of the profile consists of a medium sand with a grain size of D50 = 
0.35 mm. However, underneath the breakwater model finer sand with D50 = 0.21 mm was chosen. The 
finer sand was separated from the rest of the sand profile by two walls made of geotextile bags filled 
with sand. In addition the part with the finer sand was separated from the adjacent sand profile by an 
impermeable PE-sheet on the bottom and at the sides to prevent drainage and thus the dissipation of the 
expected excess pore pressure generated during the tests. 

 
Figure 9. Cross section of the model with locations of measuring devices (Oumeraci and Kudella, 2004) 

 
The locations of the deployed measurement devices are shown in Fig. 9. The pore pressure 

transducers are positioned on a wooden frame that is buried inside the sand foundation.  The response 
of the caisson due to wave load was recorded directly by 3 displacement meters. Due to the expected 
large residual motions, the measuring system was planned to measure simultaneously the small 
vibrations of the caisson as well as the larger residual settlements and horizontal sliding. Each gauge 
measured the elongation at the structure top (2 vertical & 1 horizontal). Based on the measurements of 
the three devices the different types of motions of the caisson were calculated. 

Numerical Simulations 
The idealization for the geometry of the experiments for numerical simulations with the 

geotechFoam solver is shown in Fig. 10. The contact surfaces are defined between the caisson and the 
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rubble foundation as well as between the shutter beam and surrounding sand/rubble. The impermeable 
PE-Sheet is approximated as a volume of arbitrary thickness and given an equivalent modulus of 
elasticity based on its original thickness. Two gaps of arbitrary height are defined in the PE-sheet to 
allow seepage of pore fluid as the PE-Sheets are separated at these locations. The geotextile sand bags 
are averaged as a sand continuum with a slight increase in material elasticity modulus and angle of 
internal friction to account for the bags confinement effect for walls on both sides of the PE-sheet.  

For the purpose of preliminary testing of the solver, the displacements at the top of the caisson 
(retrieved from measurements) are imposed to the caisson breakwater instead of directly introducing 
the hydrodynamic loads (wave pressure transferred directly to the soil foundation beneath the caisson 
are not considered). This is justified by the observation that pore pressure build-up in sand foundations 
underneath caisson breakwaters is substantially due to caisson motion (Kudella et al., 2006). The 
displacements at the top of the structure (points B and C in Fig. 10) are calculated from the recorded 
elongations of the displacement meters at top of caisson (Fig. 9). The characteristics of the boundary 
conditions (as illustrated in Fig. 10) are presented in Table 4.         

 

 
Figure 10: Idealized geometry for the caisson breakwater and its foundation as tested in GWK 

Table 4. Boundary Conditions 

 Description u p w 
Γ1 Bottom of geometry 0=u - “Fixed bottom” 0=∇p  0=w   

Γ2 Sides of geometry Mixed – “Allows vertical settlement” 0=∇p  0=∇w  

Γ3 Caisson top (input of experimental disp.) Value – “Experiments” Value 0=∇w  
Γ4 Top and left side of shutter beam 0=u  Value 0=∇w  
Γ5 Other outer boundaries (e.g. rubble surface) 0=∇u  Value 0=∇w  
 

By introducing a sudden displacement at the caisson top followed by random oscillations, the 
solver results indicate its ability to reproduce accumulation and further dissipation of pore pressure. 
This is shown for point A in Fig. 11. Considering one of the tests from the large-scale caisson 
breakwater experiments, the pore pressure at point “A” retrieved from numerical simulations is 
comparable to experimental measurements (Fig. 12). The results are promising and it is expected that 
further adjustments of the model parameters and configurations of the simulation will enhance the 
model results. The figure also shows a difference in results when the pore fluid acceleration is 
considered. 

 
Figure 11: Computed (build-up) and dissipation of residual pore pressure underneath caisson breakwater’s 
seaside edge (point A).  
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Figure 12: Comparison of measured pore pressure (point A) and numerically retrieved values for fully and 
partially dynamic formulations (H = 0.4 m. & T = 5.5 s.). 

WORK IN PROGRESS AND OUTLOOK 
Adjustments of the configurations and parameters to enhance comparison of the solver results to 

the large-scale model data from the GWK tests will be presented in a forthcoming paper. The solver 
will be coupled with a CFD solver to provide an integrated tool for the numerical analysis of the 
loading and response of caisson breakwater foundations. The coupled CFD-CSD will be applied to 
perform a more systematic parameter study which will extend the conditions tested in GWK, thus 
allowing us to develop more simple formulae for the prediction of the foundation response to the 
structure motions induced by breaking and non-breaking wave loads.  Further, the use of the PISO 
algorithm to resolve pore fluid pressure-velocity coupling will allow us to introduce a closer coupling 
(equation level) for CSD-CFD solvers.  

SUMMARY AND CONCLUDING REMARKS 
A new finite volume model is introduced to model seabed as porous media using Biot’s fully 

dynamic formulation using a segregated algorithm. It is found that neglecting the pore fluid convective 
acceleration increases time needed for conversion and hence not favoured. As expected, the model is 
very sensitive to air content in pore fluid (introduced to the fluid phase bulk modulus).  

The fluid momentum balance is solved in the PISO based approach instead of being considered 
implicitly in the mass conservation equation in other approaches. Hence, the PISO based model 
calculates the total pore pressure instead of calculating the excess pore pressure in other 
approximations. It is further observed that for the fully dynamic model the generation/dissipation of 
excess pore pressure is affected by the ratio of the excess pore pressure to the hydrostatic pore 
pressure.  

Seabed response to direct wave action is identical for all formulations implying indifference to 
dynamic terms (in absence of any structure). Difference between the fully dynamic and the u-p 
formulation is observed for the dynamic response of seabed underneath the caisson breakwater and 
will be further studied with emphasis on caissons subject to breaking wave impact.  

Different material models can be explicitly introduced to the model. A multi-surface plasticity 
model is implemented to reproduce the behaviour of sand foundation under cyclic loading imposed by 
caisson motions. The use of the elastic-plastic model enables the simulation of pore pressure 
accumulation (build-up) and dissipation. Further, a frictional contact model is implemented in the 
solver to simulate soil-structure interaction. Preliminary validation with large-scale experiments from 
the GWK shows promising results. 
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