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NONLINEAR WAVE PRESSURES GIVEN BY EXTREME WAVES ON AN UPRIGHT 
BREAKWATER: THEORY AND EXPERIMENTAL VALIDATION 

Alessandra Romolo1 and Felice Arena2

An analytical nonlinear theory is presented for the interaction between three-dimensional sea wave groups and a 
seawall during the occurrence of an exceptionally high crest or deep trough of the water elevation. The solution to the 
second order of the free surface displacement and of the velocity potential is derived by considering an irrotational, 
inviscid, incompressible flow bounded by a horizontal seabed and a vertical impermeable seawall. The analytical 
expression of the nonlinear wave pressure is derived. The resulting theory is able to fully describe the mechanics at 
the seawall and in front of it, which represents a strongly nonhomogeneous wave field, then demonstrating that it is 
influenced by characteristic parameters and wave conditions. The theoretical results are in good agreement with 
measurements carried out during a small-scale field experiment at the Natural Ocean Engineering Laboratory in 
Reggio Calabria (Italy). The theoretical and experimental comparisons show that some distinctive phenomena 
regarding wave pressures of very high standing wave groups at a seawall, in the absence of either overturning or 
breaking waves, may be associated with nonlinear effects.  
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INTRODUCTION 
Early studies on nonlinear standing sea waves in irrotational flow focused on periodic gravity waves. 

Penny and Price (1952) calculated a numerical solution up to the fifth order for the two-dimensional 
case in infinite depth through a perturbation series, using the wave amplitude as a small parameter. The 
solution provided important information about the shape of the highest crests of the water surface that 
was in agreement with later experiments of Taylor (1953), Fultz (1962). By considering standing waves 
on a finite depth fluid, Tadjbakhsh and Keller (1960) developed a third-order perturbation series, and 
Goda (1967) later extended the series up to the fourth order. In subsequent research that considered sea 
waves of finite amplitude, several solutions were found using different approaches. A complete review 
of the literature dealing with nonlinear water waves, including standing waves, is given in Schwartz 
and Fenton (1982). Tsai and Jeng (1994) defined a Fourier series for a finite water depth. Schultz et al. 
(1998) considered a time-marching spectral boundary integral method for potential flow to obtain a 
highly accurate resolution that takes into account both the gravity and surface tension. 

Moreover, considering the behaviour of wave pressures acting on a seawall when extreme waves are 
realised at the structure the basic studies have been investigated the formation of falling vertical jets at 
the seawall that are caused by either overturning or breaking waves. This problem was investigated by 
Jiang et al. (1996), Longuet-Higgins (2001), Longuet-Higgins and Dommermuth (2001) and Cooker and 
Peregrine (1995).  

On the whole, it has been proved that the mechanics of sea waves impacting a seawall can be well 
described by a wave model of irrotational, inviscid, incompressible flow, as was explained in a 
complete review of the phenomenon by Peregrine (2003). However, few contributions are found in the 
literature that consider the mechanics of nonlinear irregular sea waves in the absence of overturning or 
breaking waves. 

Diffracted random wave fields with a linear approach have more recently been analyzed by Ohl et 
al.(2001),  Walker and Eatock Taylor (2005),  and Arena (2006; see also Romolo et al., 2009) analysed  
the interaction between random wave groups interacting with a horizontal submerged cylinder.  

Boccotti (1982, 2000) proposed the linear quasi-determinism (QD) theory for the highest sea waves 
in a Gaussian sea. The QD is able to describe the mechanics of three-dimensional wave groups when a 
very high sea wave occurs, and it can be applied to both homogeneous and nonhomogeneous wave 
fields. For random sea waves in an undisturbed field, a number of models that are exact to the second 
order in a Stokes expansion are given by Sharma and Dean (1981). For wave groups propagating in an 
undisturbed wave field, the QD theory was extended to the second order by Arena (2005) and Arena et 
al. (2008). Boccotti (1997, 2000) applied his linear theory to investigate the mechanics of sea wave 
groups interacting with a reflective seawall. Later, Romolo and Arena (2008, 2010) derived a 
correction of this theory up to the second order for the case of long-crested (two-dimensional) sea wave 
groups.  
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The paper presents a close-form solution to this theory, up to the second order, for three-dimensional 
(short-crested) sea wave groups interacting with a seawall during the occurrence of an exceptionally 
high crest or deep trough of water elevation. One of the most important results of the second-order 
theory discussed in this paper concerns the behaviours of wave pressures when either the highest crest 
or the deepest trough of the water surface impacts the structure. In order to validate the proposed theory 
up to the second order for wave groups in reflection, a small-scale field experiment on an upright 
seawall was carried out at the Natural Ocean Engineering Laboratory in Reggio Calabria (Italy). The 
results of the experiment shown a good confirmation of the analytical predictions.  
ANALYTICAL MODEL 
The linear quasi-determinism theory for wave groups in reflection 

When an extremely high individual crest of given height HC ),( 000 yxx ≡ occurs at a fixed point  at 
time instant t0 in a random wind-generated sea state, which is assumed to be a stationary as well as a 
Gaussian process of time, the first formulation of the quasi-determinism theory (Boccotti 1982, 2000) 
allows us to predict, with very high probability, the expected configuration of the wave field in the time 
domain, before and after t0 0x, and in the space domain, in the area surrounding . 

Under the assumption that  HC is very high with respect to the standard deviation σ of the wave field 
where it is realized (that is to say HC

 

/σ→∞), the theory proves that the configuration of the water 
surface tends, with a probability approaching 1, to assume a well-defined average feature in space and 
time, 
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which is associated with the following velocity potential: 

 
)0,0(

),,(),,( 00 Ψ
Φ

=++
TzXHTtzXx Cφ . (2) 

In Equations (1) and (2), Ψ  is the autocovariance of the surface displacement of the random wave field 
in which the exceptionally high crest elevation occurs and it is defined as 

 >++=<Ψ ),(),(),( 00 TtXxtxTX ηη , (3) 

and Φ  is the cross-covariance of the surface displacement η and the velocity potential φ:  

 >++=<Φ ),,(),(),,( 00 TtzXxtxTzX φη . (4) 

The main properties of the theory are that it can be applied to a nearly arbitrary bandwidth of the 
spectrum, and to sea waves propagating either in an undisturbed wave field or in a diffracted wave 
field. 

In this paper, we consider three-dimensional (short-crested) standing sea waves resulting from the 
full reflection of progressive three-dimensional waves impacting a seawall at an arbitrary angle. Under 
these conditions, by the application of the quasi-determinism theory (Boccotti 1997, 2000) conditional 
to the occurrence of the exceptionally high wave crest HC 0t of the surface elevation at time  at 0x , 
which can be either at or in front of the reflective seawall, the linear deterministic solution for the 
surface displacement at location ),( 0 zXx +  at time instant Tt +0  gives 
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with the associated velocity potential at level z defined by 
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Figure 1:  Sketch diagram of three-dimensional wave groups in reflection: axonometric projection (a) and 
horizontal plan (b). An absolute Cartesian coordinate system (x,z) = (x,y,z) is fixed at the structure and a 
relative Cartesian coordinate system (x0,z) = (x0,y0,0) is set at the point at which either an exceptionally high 
crest or trough amplitude for the surface displacement occurs [x0

Here, g is the acceleration due to gravity,

 = 0, if it occurs on the seawall].   

),( θωS  is the directional wave spectrum of the incident 
waves, and 2

Rσ  is the variance of the surface displacement of the wind-generated wave field in the 
reflection (which is as a whole assumed to be random, stationary and Gaussian), given by 
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where wave frequency ω  and wavenumber k  both satisfy the linear dispersion rule  
 )tanh(2 kdgk=ω . (8) 
Solutions (5) and (6) refer to a frame of reference depicted in Figure 1.  

From the linear Bernoulli equation: )( 11 RR Twp φρ ∂−= , the first-order wave pressure acting on the 

seawall through the quasi-determinism theory is calculated from Equation (6) 
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where ρ denotes the water density. 
The second-order solution of wave groups in reflection through the quasi-determinism theory 

By adopting the framework of a potential flow in which the fluid is incompressible and inviscid and 
the flow is irrotational, and by further assuming the fluid in a constant depth d bounded by an 
impermeable seabed and a rigid vertical seawall, the second-order closed-form solution for both the 
free surface displacement 

R2η and the velocity potential 
R2φ has been derived by solving the nonlinear 

partial differential system given by the continuity equation (Laplace’s equation), the kinematics free 
surface boundary condition,  the dynamic free surface boundary condition (the Bernoulli equation), the 
bottom boundary condition and the wall boundary condition (Romolo and Arena 2008, 2010). 

The complete solution for 
R2η and 

R2φ  (Romolo and Arena 2008, 2010) is given by 
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where HC
2
Rσ  is  the  exceptionally linear high crest elevation,  is expressed by relation (7), and 

nA  

and 
nC  (n =1,2) parameters are the so called interaction kernels respectively of the nonlinear free 

surface and of the velocity potential related to their quadratic transfer functions (the expressions are 
reported in the Appendix). S(ωn, θ  n) (n =1,2 ) is the directional wave spectrum of the incident waves 
and φn, αn, λn

 

 (n =1,2) are defined by relations  
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Retaining the terms up to the second-order by the Bernoulli’s equation,  the nonlinear deterministic 
wave pressure is achieved  
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In solutions (10), (11) and (13), the parameter Ξ  is expressed by relation  
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THEORETICAL RESULTS 
The theory derived in this paper is able to fully describe the mechanics of nonlinear sea waves 

interacting with a vertical seawall, by assuming the occurrence of an exceptionally large wave (either a 
high crest or a deep trough) of the surface displacement or of the wave pressure at a fixed point at a 
given time instant. As a result, the behaviour in space and in time of the nonlinear wave groups may be 
investigated by assuming the realisation of a very high amplitude HC at the structure (y0 = 0) or in front 
of it (y0

In detail, in this section, the deterministic closed-form solutions up to the second order of 
 < 0). 

Rη  and 
of 

Rwp  are applied in order to analyse the effects of nonlinearity when a very high crest amplitude HC 
of the surface displacement is realised at time instant T = 0 at the structure (y0

The theoretical solutions are evaluated by assuming for the directional wave spectrum of the 
incident waves given by the JONSWAP frequency spectrum (Hasselmann et al., 1973) with the 
directional spreading function of Mitsuyasu (Mitsuyasu et al., 1975). 

 = 0) at (X, Y) = (0,0).  

By defining the dimensionless frequency pw ωω /= , with pω  being the peak frequency of the 
spectrum, the JONSWAP spectrum may be expressed as: 
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where PHα  is the Phillip’s parameter (ranging between 0.008 and 0.02 for wind waves), and γ  and σ

 are the shape parameters. σ  can be assumed to be equal to 0.08 and

 

γ

 

equal to 3.3 for the mean 
JONSWAP, and equal to 1 for the Pierson-Moskowitz spectrum (Pierson and Moskowitz, 1964). 

As for the directional spreading function D(θ,ω) of Mitsuyasu, its mathematical form is 
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where domθ  is the angle between the Y-axis and the dominant direction of the spectrum, and K(n) is the 
normalizing factor, 
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with n depending on the dimensionless wave frequency (such that  5wnn p=  if 1≤w

 

and 

  5.2−= wnn p  if

 

1>w ), and on the fetch Fe

825.023 )/(105.7 ugFn ep
−⋅=

 and the wind speed u through the shape parameter 

 . 

In the applications we shall assume a Phillip’s parameter PHα  equal to 0.012 and a parameter of 
the directional spreading function, np

Effects of Ursell parameter 
, equal to 25.    

The effects associated with the frequency wave spectrum, the water depth and the wave steepness 
upon the nonlinear solution are evaluated next, using the Ursell number Ur

 

, which is defined as  
32

1r / dkHU S= . (20) 

For the feature of wave groups at a seawall, in Eq. (20) HS is the significant wave height of the incident 
waves, d the water depth at the seawall and k1

 

 is the wave number in deep water given by 
21

1 )/2(
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with 10 / 2
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mmTm π=  the mean wave period related to the zeroth and the first-order moments of the 

frequency spectrum (the related wave length on deep water is )2/(2
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which, assuming the JONSWAP frequency spectrum, can be expressed as 
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with pw ωω /=
 
dimensionless frequency and pω  the peak frequency of the spectrum. 

Thus, for the JONSWAP spectrum, using Eqs. (23) and (24), the mean wave period 
01mT  is made 

explicit as   /
1001 wwpm mmTT = , and the following general relation between the significant wave height 

HS and the peak period Tp pωπ /2≡ ( ) is introduced: 

 5.022 )(
0wpS mTgH PHαπ −= . (25) 

The Ursell number can be stated (Arena e Pavone, 2006) as  
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In the last equation, 
0

/ pLd  is the relative water depth,
 0pL  is the wavelength on deep water related to 

the peak period ))2/(( 2
0

πpp gTL =  and the ratio 45.4
10

/ ww mm  is equal to 0.16 for the Pierson-Moskowitz 

(γ=1) and 0.27 for the mean JONSWAP (γ=3.3).  
The free-surface displacement and the wave pressure at some depth along the cross-section of the 

seawall are represented in the time domain in Figure 2 for three values of the Ursell number that are 
equal to 0.08, 0.01 and 0.004. The theoretical time series are evaluated at point 00 =+ Xx , assuming at 
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that point the occurrence of an exceptionally high crest HC 1Rη of , of elevation 4σR (see Eq. 7), at time 

instant T=0. The dominant direction of the spectrum with respect to the Y-axis is θdom

On the water surface profiles, the nonlinear component 

=0, which implies 
that the wave groups approach the seawall orthogonally.  

2Rη  is responsible for the increment in 
elevation of the highest crests and for the reduction in depth of the greatest troughs. The nonlinear 
water surface shows a significant asymmetry, with the heights of the highest crests exceeding the 
depths of the deepest troughs. The greatest nonlinear results are found for higher Ursell numbers (that 
is to say, at lower relative water depths d/Lp0 for a fixed wave spectrum). At d/Lp0

As regards the wave pressure on the time domain, the linear theory (lower panels of Figure 2, 
dotted lines) shows that the maxima exceed the minima at every water depth. Moreover, the positive 
peak of the process (absolute maximum) is always in phase with the maximum elevation at the surface. 
In other words, the positive peaks of the wave pressures to the first-order are realised when the highest 
crest H

 = 0.15, the highest 
crest is increased by a nonlinear contribution of about 36% and the deepest trough is reduced by about 
24%, with respect to the linear prediction. When the water depth increases, these effects are reduced.  

C
The nonlinear  theory  strongly  affects  the  behaviour  of  the  wave  pressure profiles in the time 
domain highlighting some of the main results at every Ursell number: 

 of the surface displacement occurs at time instant T = 0 at the structure.  

i) the absolute maxima of the nonlinear process (positive peaks) are reduced in elevation with 
respect to those produced using linear predictions; this difference decreases as the Ursell 
number is reduced;  

ii) at the same time, the absolute minima of the nonlinear wave pressures (negative peaks) are 
significantly increased in depth with respect to those of the linear; 

iii) as a consequence of i) and ii), the nonlinear profiles show a significant asymmetry between the 
positive and negative peaks, with the negative ones greatly exceeding the positive ones; finally, 
moving from the surface to the bottom, another important feature is found: at time instant T = 0, 
when the exceptionally high crest of Rη  impacts the structure, a drop in pressure takes place, 

 
Figure 2. The surface displacement (upper panels) and the wave pressures at different depths, z/d, along the 
cross section of the structure are represented to the first-order (dotted lines) and up to the second-order 
(continuous lines) in time domain for different Ursell number, Ur, by assuming a Pierson-Moskowitz-
Mitsuyasu directional wave spectrum. The theoretical time series are achieved by assuming the occurrence 
of an exceptionally high crest, HC Rη, of the surface displacement  at T=0 at x0
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with the appearance of characteristic double-humped profiles. Two maxima (positive peaks) of 
the nonlinear wave pressure are produced that are equal in value and out of phase with the 
maximum elevation at the surface; they occur before and after the realisation of the highest 
wave crests of the surface waves.  

These results of nonlinearity on wave pressures were evaluated by defining a number of 
characteristic parameters, which are represented versus the relative water depth d/Lp0 in Figure 3, for 
two different dominant wave directions θdom (coinciding with the wave group propagation with respect 
to the Y-axis) equal to 0° and 30° and for the Pierson-Moskowitz and a mean JONSWAP frequency 
spectrum. The theoretical results were computed assuming the occurrence of the highest crest of the 
surface displacement (HC = 4σR

We focus the attention on the absolute maximum of the linear wave pressure, which is  
) at point (X, Y) = (0,0) at time instant T = 0.  

max1−Rwp . 
That is always realised at time instant T=0 of the highest elevation of the surface waves at the seawall, 
while the absolute maximum of the nonlinear process may occur at some time before T=0, depending 
upon the wave conditions. Thus, we considered 

max−Rwp  , which is the absolute maximum of the 
nonlinear wave pressure and, moreover, the second-order wave pressure at T=0, that is )0(

max
=

−
Tp

Rw . 
Through these different quantities, some characteristic parameters describing the effects of nonlinearity 
on wave pressures at the seawall are introduced, which are shown versus d/Lp0

First, we will focus upon the dominant wave direction when it is equal to zero (see the left-hand 
side of Figure 3). In considering the results in panel (a.1) in Figure 3, we observe that at z/d=–0.3, the 
nonlinear positive peaks of the wave pressures are always smaller than those produced using a linear 
solution. When d/L

 in Figure 3.  

p0

Moving from the surface towards the bottom (z/d=–1), this trend is maintained only for lower 
d/L

 is greater than 0.15, the nonlinear theory reduces the positive peaks by about 
30%.  

p0. An important result is thus found: at z/d=–1 for increasing water depth d/Lp0

We said earlier that the highest crest of surface waves impacts the seawall at time instant T =0, at 
which point the nonlinear theory would predict a drop in the wave pressure, while the greatest 
maximum of the process will occur a few times before and after T=0. In panel (c.1) it is evident that the 
nonlinear wave pressure at T=0 regularly turns out to be smaller than its maximum, with the greatest 
differences taking place at the deepest depths. For example, at the bottom depth, the absolute maxima 
of the nonlinear wave pressure are greater than 4 times that one realized at time instant T=0, assuming 
the Pierson-Moskowitz frequency spectrum. Therefore, the theory up to the second-order highlights the 
fact that, when wave groups impact the structure orthogonally, the realisation of the maximum 
elevation on the surface corresponds to a strong attenuation of the wave pressures at the seawall (see 
panel (b.1)). 

, the maxima of the 
nonlinear wave pressures increase constantly, and at a deeper water depth, they become of the same 
order of magnitude as those achieved using a linear approach. 

Near the surface, at z/d=–0.3, the wave pressure up to the second-order is about half of that 
predicted using a linear solution. At the bottom, the linear wave pressures are reduced by the second-
order contributions by up to 75% for the Pierson-Moskowitz spectrum and by up to 90% for a mean 
JONSWAP spectrum, since the nonlinear wave pressures approach zero.  
As regards the nonlinear negative peaks (panel (e.1)), it was found that at the bottom they are about 
1.30 times those of the positive peaks for every water depth for the Pierson-Moskowitz spectrum, and 
increase by about 23% when the frequency spectrum is the mean JONSWAP. For a lower depth (at 
z/d=–0.3), this trend is maintained, with the exception of a lower depth. Thus, it is confirmed that the 
nonlinear theory predicts a wave pressure process characterised by a strong asymmetry, with the depth 
of the deepest troughs significantly exceeding the heights of the highest crests. This result is due 
mainly to the fact that, for wave groups in reflection, the theory that is exact to the second-order 
underlines the fact that the deepest troughs are strongly increased with respect to the linear solution 
(panel (d.1)) by about 30%, and up to 70% in deep water at the bottom depth for a narrower frequency 
spectrum.  

Comparing the results in the left- and right-hand sides of Figure 3, we observe that the influence 
of the dominant wave direction θdom is exerted mainly on the positive maxima of the wave pressures. 
From panels (a.2), (b.2) and (c.2) it is clear that, for increasing values of |θdom |, the greatest maximum 
of the nonlinear wave pressure occurs at the instant T=0, in phase with the highest crests of the surface 
waves, and at the same time instant of the greatest linear wave pressure at the seawall. That is the main 
results  
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Figure 3 . Some characteristic parameters describing the effects of nonlinearity on wave pressures at the 
seawall are shown versus the relative water depth d/Lp0. For all quantities make reference to the upper 
panels. The theoretical results are achieved by assuming the occurrence of an exceptionally high crest, of 
elevation HC=4σR, of the surface displacement, ηR, at time T=0 at x0

associated to the change of θ

+ X = 0.  

dom

Effects of wave direction  
 .  

In Figure 4, on the left-hand side, a comparison of the nonlinear water surface 21 RRR ηηη +=  and 
wave pressure 

21 RRR www ppp +=  in the time domain is shown; it considers wave groups that are 

approaching the structure orthogonally (θdom=0, dotted lines), with the direction of their advance 
making an angle of 30° with respect to the Y-axis (θdom=30°, continuous lines). The theoretical time 
series are relative to a water depth, d/Lp0
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Figure 4. The nonlinear free surface displacement (upper panels) and the nonlinear wave pressures at 
different depths along the cross section of the structure  are represented in time domain. In the left-
hand side, the effects of dominant wave direction are investigated, the second-order profiles for θdom=0° 
(dotted lines) and for θdom=30° (continuous lines) are shown. In the right-hand side, the profiles when 
HC goes from 4.0σR to 5.2σR

They were computed by assuming the occurrence of an exceptionally high crest H

 are illustrated. 

C Rηof  at time 
instant T=0 at the point x0 + X

The comparison points out that the directionality does not influence the behaviour of the surface 
displacement. With the nonlinear wave pressures, the directionality is mainly responsible for the 
disappearance of the humped profiles, with the realisation of the local minimum at time instant T=0, 
which is preceded and followed by two absolute maxima. For dominant wave direction in absolute 
value greater than zero, the highest maximum of the nonlinear pressure is realised at time instant T=0, 
in phase with the occurrence of the highest crest of the surface waves at the seawall.  

 = 0.  

Finally, it is well known that nonlinear effects are amplified for larger wave steepness. It is 
interesting to observe that for a dominant wave direction different from zero, when, for fixed wave 
conditions, the high crest HC of the surface waves at the seawall increases, the nonlinear effects are 
more remarkable, both on the surface displacement and on the wave pressures. This results is shown on 
the right-hand side of Figure 4 for d/Lp0=0.15 with θdom=15°, when HC goes from 4.0σR to 5.2σR

 VALIDATION OF NONLINEAR THEORY WITH A SMALL-SCALE FIELD EXPERIMENT 
.  

Description of experiment 
The nonlinear theory for sea wave groups interacting with a vertical seawall that is proposed in this 
paper was validated in a small-scale field experiment carried out at the Natural Ocean Engineering 
Laboratory (NOEL) in Reggio Calabria (Italy). In this laboratory, located on the waterfront of Reggio 
Calabria on the east coast of the Strait of Messina, it is possible to carry out experiments directly in the 
sea using techniques associated with the laboratory tanks (Boccotti et al. (1993, 2012), Boccotti (2000).  

A small fully reflective upright seawall with a frame set in reinforced concrete was built. The 
structure, which consisted of 9 caissons, had a total length of 16.2 m and a height of 3.0 m, and was 
placed at a depth of 1.9 m with respect to the mean water level (MWL). 16 pressure transducers were 
placed on the sea-beaten side along the vertical cross section of the central caisson forming the seawall, 
in order to measure the fluctuation of the wave pressures acting on it (the layout of the instruments is 
shown  in Figure 5).  The  incident  waves  (in the  undisturbed field)  were  evaluated by  means of  
two  
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Figure 5. Field experiment carried out on the sea of Reggio Calabria in the NOEL laboratory: map of the 
gauges at the structure (left-hand side) and on the piles in an undisturbed field (right-hand side) are 
shown. 

ultrasonic probes and two pressure transducers. One of each instrument was assembled on a thin pile 
with a diameter of 0.05 m, and was positioned 13 m from the seawall (Figure 5).  

Each gauge recorded continuously for five minutes at a sampling rate of 10Hz. Among all 
records, only those of pure wind waves without overturning or breaking waves were considered in the 
present analyses. In all, there were 94 records that were characterised by the following wave 
conditions: significant wave height HS in the undisturbed field, between 0.21m and 0.41m, and peak 
period Tp between 1.9s and 2.7s. Thus, the relative water depth was 0.16≤d/Lp0

The considered records represent, in a hydraulic Froude similitude, a small-scale model of sea 
states during severe storms. Because of the change in the mean water level caused by the tide, the water 
depth d ranged between 1.76m and 1.95m. The dominant wave direction θ

≤0.32. 

dom

*ψ

 had a range of [-9°, 15°] 
and it was positive when clockwise with respect to the normal outgoing to the structure.  In the 
analysed records, the spectral shape in the frequency domain was evaluated using Boccotti’s  
narrow bandedness parameter (Boccotti 1982, 2000), defined as  

 )0()( ** ψψψ T= ,  (27) 

which is the quotient between the absolute value of the first minimum, that occurs at *TT = , and the 
absolute maximum of the autocovariance function. The values of *ψ  range in )1 ,0( : it is equal to 1 for 
an infinitely narrow spectrum, 0.73 for a mean JONSWAP spectrum and 0.65 for a Pierson-Moskowitz 
spectrum. In the 94 records that were considered, *ψ  was within )0.76 ,65.0(  at the surface, and the 
Ursell number varied from 0.08 to 0.01.  
Comparison between theoretical and experimental results 

The 94 records considered for validation of the theory are identified by a full sea wave reflection 
given by the seawall, and by the resulting pattern of standing wave groups close to the structure.  

In this section, the nonlinear theory is tested by considering as input in the theoretical 
computations the values of the wave parameters, such as the significant wave height HS, the peak 
period Tp, the tide level, the dominant wave direction θdom and the relative water depth d/Lp0

*ψ

 of the 
record being compared. As regards the theoretical directional spectrum, the JONSWAP-Mitsuyasu 
spectrum is assumed, with spectral shape parameters γ  such that  parameter related to the theoretical 
spectrum is equal to the one of the considered records.  

The theory can be applied when either an exceptionally high crest HC or trough HT

(absolute minimum) peak of the wave pressure at the bottom of the seawall may be produced by the 
occurrence on the surface of either an exceptionally high crest amplitude H

 of the surface 
displacement  is realised.  It is  noteworthy to  observe that  a positive (absolute maximum) or negative 

C or trough amplitude HT

Figures 6–8 present a number of comparisons between the theoretical and analytical results. In 
each figure, lower panels represent the wave pressures in the time domain at the depth of the pressure 
transducers assembled along the cross section of the tested seawall (see Figure 5); the dots are the  
measurements given by the gauges and the continuous lines are the theoretical profiles that are exact to  

 of 
the surface displacement.  
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Table 1. Wave field conditions of the five records of the experiment during which the greatest peaks of the 

66
/

wpwp σ  process occurred. 

 
 
the second order. The second-order analytical profiles were computed by assuming the occurrence of 
either a very high wave crest HC or a wave trough HT

Figures 6 and 7 show the records of the experiment, in which the two highest positive peaks of the 
wave pressure process

 
at the bottom 

 of the surface displacement, such that the 
absolute maximum (or minimum) of the analytical wave pressures at the bottom depth turns out to be 
equal in value to the one recorded by gauge n°6. The instants of the wave crests of the surface waves at 
the structure were identified by the signals transmitted by the upper pressure transducers. Therefore, in 
Figures 6–8, only the nonlinear water elevation that is computed using the theory is shown. Moreover, 
the recorded wave force per unit length at the midsection of the structure, which is computed by the 
integration of the measured wave pressures at different water depths, is depicted (in the upper panels, 
by dots). The theoretical wave force (upper panels, a continuous line) is computed by considering the 
following. i) During the crest elevation phase of the water surface, a linear trend was assumed between 
the total wave pressure up to the second order at the mean water level and the nonlinear wave elevation 
of the free-surface displacement. ii) During the trough amplitude phase of the water surface, the 
pressure was assumed to be equal to the hydrostatic pressure if it was greater than the nonlinear wave 
pressure.  

66
/

wpwp σ , are realised (
6wpσ  being the standard deviation of the 

wave pressure 
6wp  recorded at the bottom depth by gauge n°6). Figure 8 refers to the first negative 

peak of the 
66

/
wpwp σ

 
process. 

For the comparisons shown in Figures 6 and 7, the theory was applied by assuming the realisation of an 
exceptionally high crest HC Rη of  at time instant t = 0 at the structure. Records 1 and 2, which are 
analysed in Figures 6 and 7, are almost homogenous in terms of wave characteristics, except for the 
dominant wave direction, which is null for record number 1 and greater than zero for record number 2 
(see Table 2). The recorded time series in Figures 6 and 7 are centred (t = 0) at the time instant of the 
maximum elevation measured at the seawall on the surface. For the comparisons between the analytical 
and experimental results, we supposed at the same time instant the occurrence of an exceptionally high 
crest HC of the theoretical nonlinear surface displacement (that is, HC equal to 4.54σR and 3.84σR, 
respectively, for records 1 and 2, with σR being the standard deviation of the measured surface waves 
at the seawall). As predicted by the nonlinear theory (see Figures 2 and 4), when the wave groups 
approach the structure orthogonally (the dominant wave direction θdom

In record 2, even though it is characterised by an Ursell number smaller than those in record 1, the 
wave groups show a direction of advance equal to 8° with respect to normal to the seawall. According 
to the nonlinear theory,  the  recorded  wave pressure  profiles under the mean  water level  are smooth, 
without the formation of two humps (the dots in Figure 7). The absolute maximum of the recorded 
wave  

 is zero) the greatest maximum 
of the wave pressures beneath the mean water level is out of phase with respect to the highest elevation 
on the surface,  at  which  a  local minimum  of the wave  pressures  is realised. This phenomenon  can 
be seen in record 1 (the dots in Figures 6). If we focus upon the recorded wave pressure at the bottom 
depth (gauge n°6), we find that the process is a very asymmetric, with the highest maximum being 
about 0.82 times the greatest minimum. The differences between the positive peak of the wave pressure 
and the wave pressure at the time instant of the highest elevation at the surface is quite important; in the 
record 1 the positive peak exceeds the pressure by about 56% at time instant t = 0. The theory up to the 
second order (the continuous lines in Figure 6) shows a very good agreement with the experimental 
data in terms  of  both  trends  and  values,  close to  the realisation  of the  exceptionally high crest of 
water displacement.  The theory  is able  to fully  describe  the main  phenomena  under the mean water 
level; namely the drop in pressure at t=0, and the highest maximum being out of phase with the 
maximum elevation at the surface. Above the mean water level, a number of differences are found in 
the predictions of the highest elevation with respect to the experimental data; in this case the theoretical 
results are more conservative with regard to positive extreme values.  

Record H S  (m) T p  (s) Tide (m) U r

1 3.37 0.0788 0.41 2.54 -0.06 0 0.18 0.66 0.07
2 3.17 0.0571 0.31 2.37 -0.05 8 0.21 0.65 0.04

3 -5.62 0.0444 0.31 2.21 -0.05 3 0.24 0.67 0.03

66
/

wpwp σα = ]0[* =zψ0/ pLddeg)( domθ)( 
6

m
wpσ
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Figure 6.  Record n.1 of Table 1 . The recorded time series (dots) are centred at time instant of the highest 
elevation on the surface at seawall. The theoretical second-order wave pressures (continuous lines) are 
computed at every depth by assuming at the previous time instant the occurrence at the structure of an 
exceptional high crest HC(=4.54σR

pressures is in phase with the maximum water elevation along the cross section of the seawall. The 

) of the surface displacement. 

wave pressures turn out to describe a peculiar asymmetry with greater minima in this case as well; at 
the bottom (gauge n°6) the ratio between the positive and negative peaks of the measured wave 
pressures is equal to 0.73. The nonlinear theory (the continuous lines in Figure 9) fully agrees with the 
experimental data, as it is able to describe all the results highlighted here.  

Finally, Figure 8 presents the record where the greatest negative peaks of the wave pressure at the 
bottom (gauge n°6) occurred during the experiment. The record are centred (t = 0) at the time instant of 
the realisation of the greatest minimum of wave pressure at the seawall at the bottom depth. In our 
application of the nonlinear theory, we have supposed at the same time instant the occurrence of an 
exceptionally  high  trough HT  of  the theoretical nonlinear  surface  displacement (that is,  HT

3.74σ
 equal to  

R, with σR

Figure 8 considers record 3 (see Table 2), which was identified as having one of the lowest Ursell 
number values  recorded during the experiment, and by a θ

 being the standard deviation of the measured surface waves at the seawall). With 
respect to records 1 and 2, an enhancement of the asymmetry of the wave pressure profiles is found. 
The deepest troughs are about twice as deep as the heights of the highest crests of the wave pressures in 
records 1 and record 2.  

dom close to zero. From the signals of the 
highest gauges (dots in Figure 8) we recognise the realisation of two crests of surface waves at the 
seawall at time instants t = -0.43Tp and t = 0.48Tp
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, respectively, for gauge n. 17, which are before and 
after the occurrence of the deepest trough of the surface waves, which is fixed at time instant t = 0. For 
each of these wave crests on the surface, the formation of humped profiles on the wave pressures is 
observed at the lower gauges, with the positive peaks being out of phase with the highest elevation of  
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Figure 7. Record n.2 of Table 1. The recorded time series (dots) are centred at time instant when the 
absolute maximum of the measured wave pressure occurs at bottom. By assuming at the same time instant 
the occurrence at the structure of an exceptional high crest HC(=3.84σR

the upper gauges. These peaks occur, for gauge n. 6, at ±0.61T

) of the surface displacement, the 
theoretical second-order wave pressures (continuous lines) are computed at every depth. 

p, and the drop in the positive pressure is 
quite important: the ratio between the greatest positive pressure (at t=±0.61Tp

Finally, Figure 9 shows, for every record in the experiment, the ratio (upper panel) between the wave 
pressures recorded by gauges n°12 and n°6 at time instant t, when the highest maximum of the wave 
pressure at gauge n°12 (located above the mean water level) is realised; in the lower panel, the ratio 
between the maximum positive wave pressures recorded by gauges n°12 and n°6 is shown (the two 
maxima may occur at different time instants, depending upon the wave conditions). These behaviours 
confirm the distinct phenomenon predicted by nonlinear theory (Table 1): that is the strong reduction in 
wave  pressure  at the bottom  depth  corresponds to  the realisation  of the greatest positive peak on the 
surface when the dominant direction of advance of the wave groups is zero, while under the same 
conditions, the absolute positive maxima varies gradually along the cross section of the seawall. This 
effect is enhanced as the relative water depth increases. For example, at d/L

) and the positive 
pressure at the time of the highest crest of the surface waves is about 2.6 in both cases. The theory up to 
the second order (the continuous lines in Figure 8) is able to well describe the characteristics of the 
record, in terms of both the positive and negative peaks of the wave pressure in a process characterised 
by asymmetry.  

p0 = 0.3, the highest 
maximum recorded at gauge n°12 was 6.2 times the positive pressure recorded at the same time instant 
at the bottom, and 2.5 times the highest maximum recorded at gauge n°6. This trend is distinct for 
θdom=0. For increasing values of |θdom
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|, the quotient between the highest positive maximum realised on 
the surface steadily remains about twice the quotient recorded at the bottom. This parameter is about 
equal in value if we consider the variation of the absolute maxima along the cross section of the seawall  
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Figure 8.  Record n.3 of Table 1. The recorded time series (dots) are centred at time instant when the absolute 
minimum of the measured wave pressure occurs at bottom. By assuming at the same time instant the 
occurrence at the structure of an exceptional high trough  HT(=3.74σR

(see both panels in Figure 9). This confirms the fact that, for all the data collected during the 
experiment when θ

) of the surface displacement, the 
theoretical second-order wave pressures (continuous lines) are computed at every depth. 

dom

 CONCLUSIONS 

 differs from zero, the greatest positive maximum at the bottom is in phase with 
the highest positive maximum on the surface. 

In this paper, an analytical close-form solution was derived, up to the second order, for three-
dimensional wave groups that are fully reflected by an upright seawall. The theory revealed that the 
second-order contributions strongly affect the mechanics of wave groups when an exceptionally high 
crest or deep trough of the free-surface displacement process impacts the structure, both on the water 
surface and on the wave pressure acting on the structure. Distinctive phenomena of nonlinearity has 
been identified on the wave pressures in time domain, which are strongly influenced by the wave 
conditions.  

The proposed nonlinear theory for three-dimensional wave groups interacting with a vertical 
seawall in the absence of overturning or breaking waves was tested using data from a small-scale field 
experiment carried out at the Natural Ocean Engineering Laboratory in Reggio Calabria (Italy)., 
demonstrating that the theory is able to capture the main distinctive phenomena that characterise the 
nonhomogeneous wave field of very high wave groups at a seawall, which can be associated with the 
effects of nonlinearity.  
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APPENDIX 
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