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The certainly goal of this study is to present the better way from terms of cost and experimenting duration, instead using experimental 

ways for investigates the wave run-up (Ru) over rubble-mound breakwater and examines the effect of placement pattern of Antifer units 
on the amount of wave run-up. In order to, it is suggested utilizing the Artificial Neural Networks (ANNs). For the sake of comparison, 

the proposed modeling is put into contrast by the ones obtained via other approaches in the literature. The Multi-Layer Perceptron (MLP) 

is selected as the artificial neural network exerted in this study. In the designed neural network, the numbers of inputs and outputs are 
selected as four and one, respectively. Additionally, the number of neurons in the single hidden layer of the network are appointed by 

trial and error. The Mean Square Error (MSE) of the training and correlating data set are investigated so that, seven hidden neurons is 

selected. This study has presented the regression equations and MSE for the results obtained by ANN are compared with other models. 
In conclusion, the regular placement would have offered to other placement patterns for the reason that its less MSE obtained by ANN. 
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INTRODUCTION 

 

          Wave run-up is one of the main physical processes which are taken into account in the design of rubble mound 

breakwater covered by armor units. The wave run-up on rubble mound breakwaters have been investigated by many 

researchers.In previous studies, many researchers have explored the wave run-up on breakwaters through laboratory 

experiments which are inappropriate in terms of cost and experimenting duration. Some of investigations were mainly 

concentrated on the wave run-up on various kinds of armor as well as Antifer, Tetrapod, Accropod, Xblock and Cube 

[1], and Yagci and Kapdasli have offered alternative placement technique for antifer units [2] 

Synolakis has verified variation of wave run-up for breaking and non-breaking solitary waves [3]. Also, Hughes has 

re-examined exiting wave run up data for regular, irregular and solitary waves on smooth and impermeable plane [12]. 

         Bakhtyar et al. have indicated which a main benefit of neural networks are recognizing the relations in system 

thus, the neural networks are modern technique for solving complicated problems. In addition, they have presented an 

appropriate prognostication method for wave run-up on each armor unit with using neural network [4]. 

Between 1976 and 1978, the researches on the design of armor have showed that blocks with   simple   shape   did   

not   protect   sufficiently   the stability of the armor layer, thus the scientists have carried out on the blocks   grooved   

on   four   sides.   These grooved   cubes, Antifer-blocks called [5, 6]. Among other works important documents were 

“wave run-up’’ Battjes (1971) [7], van der meer (1992) [8], Van de Walle (2003) [9], Shanker et al. (2003) [10], 

Hughes (2004) [12], , Dentale et al. (2012) (2013) [14, 15],  Najafi-Jilani et al. (2014) [16], Altomare et al. (2014) 

[17], Crespo Alejandro [18], and Dong-Soo et al. (2014) [19]. Furthermore, some of investigations have used SPH 

model to simulate wave run-up [18, 19]. 

      In the present study, by utilizing the Artificial Neural Networks (ANNs), the objective of the investigation is to 

determine the importance of a placement pattern of Antifer units and its effect over the amount of wave run-up. The 

results can be obtained which reduces the computational time and the experiment costs. For the sake of comparison, 

the proposed modeling is put into contrast by the ones obtained via other approaches in the literature. 

      In the other hand, for the validation of conclusions, the wave run-up on virtual breakwater (armor in Antifer) were 

compared with some practical formulae and some laboratory tests. It will be presented based on the complete 

experiments of Najafi-Jilani and Monshizadeh [11].  The result of this approach are fantastic due to having at least 

errors (calculated MSE), at present, however this numerical approach can be used instead of to innovate the new 

formulae or to obtain some laboratory tests. 
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DATABASE 

 

In the present work, practical results of Najafi Jilani and Monshizadeh [11] in hydro-environmental laboratory of 

the Water Research Institute in Iran have been utilized. They have designed a wave flume which was concluded the 

virtual breakwater at end of the flume and regular waves were made by wave maker. This flume was 2.5 m high, 1 m 

wide and 25 m long (fig 1). 

 

 

 
Figure 1. Experimental set-up in the laboratory tests of Jilani's experiments [11]. 

 

 

The some of certain variables were considered as the main variable parameters in the experiments. These variables 

were as follows: the placement patterns of antifer units, the front slope angle of the rubble-mound breakwater (cot 𝛼), 

the incident wave height (𝐻𝑖), incident wave period (T) and mean water depth (ℎ0). 
 

 

Table 1. The range of parameters influencing over the wave run-up in the samples of Jilani [11]. 

Variables Range  dimension 

Placement Patterns Regular, Irregular A & B [-] 

Slope of breakwater (cot 𝛼) 1, 1.5, 2, 2.5 [-] 

wave height (𝐻𝑖) 8, 12, 16, 20 [cm] 

wave period (T) 0.0017 [s] 

water depth (h0) 80 [cm] 

 



 

 
Figure 2. Various placement of the Antifer units; (a) Regular, (b) Irregular-Type A, and (c) Irregular Type B, were used in 

Jilani’s experiments. 

 

They [11] have offered the outcome of laboratory tests, then have estimated the wave run-up on the slopes covered 

by Antifer blocks in regular and irregular placement patterns: 
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Where R is the wave run-up, ℎ0 is the still water depth, 𝐻𝑖  is incident wave height, 𝐿𝑖 is wave length and 𝐾𝑝 is a 

coefficient which is based on the placement pattern of antifer units that is equal to 1.25 for Regular, 1.1 for Irregular- 

Type A and 0.85 for Irregular-Type B.(Figure 1) 

 

The some of researchers have investigated over impermeable smooth bed such as Hughes [12] who have 

prognosticated non-breaking wave run-up as: 
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Where γω is the water density, 𝑀F is momentum flux of the incident wave. Dimensionless momentum flux was 

given as:  
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Where M and N are empirical coefficients which were introduced as: 
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Large distinction of researches have been behaved on wave run-up, some of empirical formulae have been flesh out 

with laboratory observations. Synolakis [13] has expended a particular model for the analysis of maximum run-up 

which its position was non-breaking wave on smooth and impermeable plane slopes, then the below function was 

presented: 
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Furthermore, maximum run-ups have been predicted by Li & Raichlen [13]. They have denoted inconsiderable 

adjustment in the above equation, have appeared with: 
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Conclusively, the outcomes of neural network model are evaluated, after that are compared with the regression 

estimates, criterion of mean squared error (MSE) normalized are used [4], that as follows: 
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Where 𝑦𝑖  is a prognosticated value; 𝑦̂𝑖 is an observable value; N is the number of observation. 

 

 
NEURAL NETWORK MODELLING 

 

Due to the rather large amount of parameters that affect wave run-up at breakwaters it is difficult to describe the 

effects of all pertinent parameters. For such processes in which the interrelationship of parameters is unclear while 

adequate experimental data are available, Artificial Neural Network (hereafter “ANN”) modelling may be a suitable 

alternative. ANNs are data analyses techniques widely used in artificial intelligence. This technique has been 

successfully used in the past for solving difficult modelling problems in a variety of technical and scientific fields 

[20]. 

ANN is an abstract simulation of a real nervous system. It can foresee diverse nonlinear relations among 

experimental parameters, optimization, classification, control, etc. [21]. 

ANN includes; input layer, hidden layer, and output layer. There are one or more processing nodes that are called 

‘neurons’. Each neuron in each layer takes information from the front layer through connectivity. The input of neuron 

includes of a weighted sum of the outputs of the front layer. A neural network consists of several interconnected 

neurons; each neuron is composed of independent units of computation per unit of input [21]. Output is calculated 

from the following equation:  

  

𝐲𝐤 = 𝐟[∑ 𝐱𝐢𝐰𝐢𝐣 + 𝛃]                                         ( 9 ) 

 

Where 𝑥𝑖   is the input unit, 𝑤𝑖𝑗  is the network weight (from input unit 𝑥𝑖 to hidden unit 𝑧𝑗), and  β is bias. The above 

equation (𝑦𝑘) is activation function [16]. One of the important activation functions is bipolar sigmoid function, which 

is defined as: 

 

𝒇(𝒙)= 
𝟏−𝐞𝐱𝐩(−𝒙)
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      Where 𝑓(𝑥) is activation function, and exp (-x) is exponential function. 

The input layer include (i) neurons that code for the (i) pieces of input signal (𝑋1 … 𝑋𝑖) of the net. The number of 



neurons of the hidden layer is empirically chosen by the operator. At the end, the output layer comprises K neurons 

for the K classes. Each relation between two neurons is associated with a weight factor; this weight is altered by 

successive repetition during the training of the network according to input and output data.  

Figure 1 shows the diagram of a one-hidden-layered MLP network structure that where 𝑌𝑘 is output unit,  𝑤𝑗𝑘 is the 

network weight (from  𝑧𝑗 to 𝑌𝑘). 

 

Figure 3. MLP network structure [16]. 

 

 

 

A multilayer neural network is trained with the Back Propagation (BP) algorithm, Multi-Layer Perceptron (MLP) 

network is called. The BP algorithm is to plan the process inputs to the desired outputs by minimizing the errors 

between the desired outputs and the calculated outputs driven from the inputs and network learning. In this study, the 

network will be trained Levenberg-Marqurdt backpropagation algorithm, unless there is not enough memory, in which 

case scaled conjugate gradient backpropagation will be used.  

 

The data set of Jilani's experiments [11] have been exerted in this work, there are 192 data which; 70% (134 data) 

for training, 15% (29 data) for validation, and 15 % (29 data) to test the trained network. These data set have been 

chosen according to random in each cycle the trained ANN. In during to train, the data of training use to back 

propagation algorithm for to update network’s weights. The data of validation employ for optimization algorithm and 

to stop training when generalization stops improving. The data of testing provide an independent measure of network 

performance during and after training meanwhile it's out of network training's affect. 

After training, the conducting of the network has to be tested. As in explicit analysis, a first suggestion is given 

by the percentage of correct arrangement of the training set records. Nevertheless, the performance of the network 

with a test set is more related .The present investigation focuses in the advance of a neural network for estimating 

wave run-up. One of ways is an essential addition since the neural network method results in a tool acts for operators 
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as a kind of black box [22]. Figure 4 is indicated this respect. 

 
RESULTS AND DISCUSSION 
 

      Firstly, after training, the number of hidden neurons should have chosen. As illustrated in Table 2, by 

increasing the number of hidden neurons, MSE of training data set decreases while MSE of validating data reduces 

up to seven neurons and increases from seven neurons onwards. Thus, to avoid over-fitting, the number of seven 

hidden neurons is chosen in the hidden layer of the neural network.  

The testing data set are used to investigate the performance of ANN to be appropriate. In the other words, the 

main reason for utilizing the testing data are to evaluate the model validity is that after some point in the training 

method, over-fitting starts on the training data set. 

 The testing data set have got no effect on training and so provide an independent measure of network performance 

during and after training. The validating data set are used to measure network generalization, and to halt when 

generalization stops improving. 

      An epoch is equivalent of one cycle the complete set of training vectors. Generally, many epochs are needed for 

training a back propagation neural network. [15] 

Figure 4 portrays the decrease of mean squared error (MSE) for the training, validating and testing data set versus 

training replication (Epoch). It can be seen that up to epoch 4, MSE of validation data decreases, then it does not take 

any other less value in the following epochs. The training process stops in epoch 4 (MSE=0.001655) in order to avoid 

over-fitting in training data set. The number of best epoch denotes after this epoch, changes become inconsiderable, 

slope of changes approximately become horizontal and weights update stop. 

 

furthermore, after to train the model, the linear regression have obtained, then the best fitting lines for the training, 

validating, and test set have acquired. 

 Correlation is computed into what is known as the correlation coefficient, which ranges between -1 and +1. As 

can be seen in figure 5 the calculated correlation of training, validating and testing data are too identical that it's one 

of the signs of reliability of model. In this figure the predicted values of ANN model have been called "Output", the 

measured data set of Jilani’s examination have been introduced "Target". 

 

 

 
Table 2. MSE of training, test and validating data set for the various hidden neurons. 

Hidden neurons 5 6 7 8 10 

Training 0.0029 0.0022 0.0022 0.0015 0.0012 

Validation 0.0019 0.0017 0.0016 0.0045 0.0046 

Testing 0.0032 0.0016 0.0023 0.0019 0.0049 

Epochs 4 6 4 6 10 

  

Figure 4. Neural Network Diagram 



  
    Figure 5. The decrease of (MSE) for the training, validating and testing data set versus training replication. 

 

 
Figure 6.  The correlation between the predicted values of ANN and experimental values for validating, training and test 

data set. 



 

 

 
Figure 7. The measured data versus the predicted wave run-up (Ru) in the obtained results of ANN, and experiments of 

(A) Hughes [12], (C) Li&Riachlen [13] over the breakwater covered by Antifer units with difference placement pattern. 

 

 

Eventually, the laboratory and experimental outcomes of Hughes [12], and Li&Riachlen [13] were used as a result 

of calibration of trained model (ANN). The measured data set of Jilani for wave run-ups on a breakwater front slope 

covered by different types of Antifer were utilized for the verification of the provided model (ANN) (figure 6). In the 

other words, acceptable agreement can be observed in these Figures (A, C) between predicted values and measured 

data set, also the reliability of the provided model, especially for Antifer units, was obtained. 

As can be seen in figure 7, the best fitting lines have been obtained from models of (a) ANN, (b) Hughes [12], 

and (c) Li&Riachlen [13], also shows correlation of ANN data set (R=0.9844) more than other researches in the 

literature. Considering y=x as the ideal line, one can conclude the appropriate performance of the ANN by observing 

the approximately coincidence of the best-fitting line obtained for ANN outputs with the ideal line y=x.  

In conclusion, the obtained correlation these researches and comparison with the ANN model in listed in Table 3, 

thus represent that correlation of obtained results of the ANN model is higher than other studies, So the ANN model 

is acceptable for to calculate wave run-up on the breakwater protected by Antifer units with difference placement 

pattern.  

 



 

 

 

Figure 8.  The best fitting line to data for models of (a) ANN, (b) Hughes [12], and (c) Li&Riachlen [13]. 

 
 

Table 3. Comparing the obtained correlation between ANN modeling, and models of Hughes [12], and Li&Riachlen [13]. 

 

 

 

 

 

 

 

 

 

researches Calculated Correlation (R)  

Hughes[12] 0.8892  

Li& Riachlen [13] 0.8357  

ANN  0.9844  

a 

b c 



 Table 4 and 5 demonstrate the Regression equations and MSE for the obtained results by ANN are compared 

with other models in the literature. With respect to the obtained results, it can be concluded that, the regular placement 

should be preferred to other placement patterns due to its less MSE obtained by ANN. Moreover from  the  evaluation  

of  the  ANN model  can  be  concluded  that  the  regular  placement  methods behave  more  stable  than  the  irregular  

placement. 
 
 
Table 4. The regression equations and the calculated MSE in the experiments of Hughes [12], and Li& Riachlen [13] over 

the breakwater covered by Antifer units with difference placement pattern. 

 

 

 

 

 

Table 5. The regression equations and the calculated MSE of the results of ANN, and compare with the obtained results 
of table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Hughes [12] MSE Li& Riachlen [13] MSE 

Regular Y=0.54X+0.044 0.0139 Y =0.64 X– 0.036 0.0202 

Irregular Type A Y= 0.47X+0.033 0.0223 Y =0.52 X– 0.054 0.0316 

Irregular Type B Y= 0.37X+0.035 0.0398 Y =0.38 X – 0.072 0.0506 

 ANN MSE (ANN)  

Regular Y = 0.99X+0.005 0.0001  

Irregular Type A Y =0.97X+0.011 0.0003  

Irregular Type B Y =0.97X+0.010 0.0004  



 
NOMENCLATURE 

 

The following symbols are used in this paper: 

𝛼         front slope angle of the breakwater (deg) 

β         bias  

γ
ω

        water density (M𝑇−2𝐿−2) 

𝑓        function defined to related inputs and their weight in the neural network   (equation 9)  

h0         still water depth (L) 

𝐻𝑖          incident wave height 

𝐾𝑝       empirical coefficient indicated the placement of antifer units (-) in run-up estimation    (-)  

𝐿𝑖           incoming wave length (L) 

M, N      empirical coefficients to estimate incoming wave moment flux (equation 4 and 5) 

𝑀F          moment flux of the incident wave (equation 3) 

n             number of observation for calculating MSE 

T             incoming wave period (T) 

R             value of correlation (-) 

Ru           wave run-up on the breakwater (L) 

𝑤𝑖𝑗         weight in the neural network 

𝑥𝑖            input unit in the neural network 

𝑦𝑖              predicted value for calculating MSE 

𝑦̂𝑖             observed value for calculating MSE 

𝑦𝑘             activation function in the neural network (equation) 

𝑧𝑗             hidden unit in the neural network 
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