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Physical and numerical modeling of initially monochromatic wave propagation on stepwise opposite current in conditions 

of deep water was carrying out. The physical experiments demonstrated two steps of downshifting of spectral maximum in 

the regions of increasing of opposite current. Freak waves arise at the moments of downshifting, when several peaks of 

spectrum exist, due to superposition of waves, provided by each of spectral peaks. To explain the phenomena of 

downshifting the dynamical evolution set of equations are constructed. Their solutions perfectly described the main 

qualitative features of wave transformation during the physical experiments. 
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INTRODUCTION  

The time-space evolution of storm wave spectrum is still incompletely solved problem. It is 

proved by existing of numerous nowadays wave models.  

The downshifting of wave spectra during the wave propagation is well known empirical fact, but 

details of this process are the subject of the investigation still now. In depends on initial and external 

condition the downshifting could be continuous or discreet in frequency space. The samples of 

discreet downshifting (DD) with frequency step like the step of modulation instability of Benjamin-

Feir was discovered in field and laboratory conditions as reported by few authors (for example, 

Chawla, Kirby, 2002; Kuznetsov et al., 2006; Kuznetsov, Saprykina, 2008, Ma et al., 2010).  

All of the reports highlight the fact that the frequency step of DD coincides with frequency step of 

modulation instability – after some distance of wave run the maximum of wave spectra is shifted to 

the frequency of lower sideband. The modulation instability occurs in enough steep waves at the 

moments of waves steepening under the influence of wind increasing or opposite current increasing or 

immediately after the generation of steep waves by wavemaker.  

Explanations of mechanism of DD are various: some authors declare that higher sidebands are 

dissipated during wave breaking due to frequency selectivity of dissipation that saves the lowest 

sideband only, others explain DD on opposite current as that only lower sidebands pass through the 

blocking point. But the DD had taken a place in case of absence of breaking and in absence of current 

for mechanically generated waves (Kuznetsov, Saprykina, 2010). So the physical explanation of DD 

effect was not clear up to now.  

The influence of opposite current on waves is practically important problem in the coastal zones 

at tidal inlets and river mouths. The DD strongly affects on wave blocking or unblocking and can 

accompanied with abnormally high wave arising. For example, recent investigation had shown that 

interaction of wave with currents can leads to formation of extremely high (or freak) waves that is 

very important to be taken in account in many applied tasks of coastal engineering and of navigation. 

As was shown by many researches, abnormal waves can be formed due to evolution of narrow banded 

spectra of steep waves (for example, Kuznetsov, Saprykina, 2006, 2008; Saprykina, Kuznetsov, 2009). 

Opposing currents can be considered as "natural source" of wave steepening.  

The main aim of this work is to investigate the details of frequency downshifting process, the 

same as details and mechanism of arising of freak waves. For the last purpose we use the space 

varying opposing current that can be considered as easiest way for realization "natural” steepening of 

waves in the laboratory conditions. 

EXPERIMENT 
Experiment was carried out in middle size flume of Tainan Hydraulics Laboratory: 200 m long, 2 

m wide and 2 m deep. Setup of experiment is shown on Fig. 1. A current was generated by pump. A 

space variety of current was provided by decreasing of water depth above underwater bar, placed in 
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the middle of the flume. Mechanically generated wave propagate initially on still water, then on slow 

opposite current 0.21 m/s and then on opposite current 0.45 m/s. Waves were synchronously 
registered by 35 capacity type gauges at sampling rate 50 Hz. The current was measured by three 
components ADV and two components EMC gauges. In total an evolution of 33 series of initially 
monochromatic, bichromatic and irregular JONSWAP spectrum waves was investigated. 
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Figure 1. Setup of experiment in THL middle size flume. 

DISCUSSION 

Results of experiment 

It was revealed that according the stepwise increasing of opposite current the steepness of waves 

increase also (Fig.2).  

 
Figure 2. Evolution of r.m.s. amplitudes of initially monochromatic waves H=0.1 m, T=1 s, without current 

(dashed line) and with opposing current (solid line). 

At each step of current/steepness increasing the same scenarios was realized: a growth of side 

bands of Benjamin-Feir modulation instability and then downshift of frequency of maximum of wave 

spectrum to low-frequency band (Fig.3, lower). This process does not strongly depend from intensity 

of wave breaking. For more steep initially waves this scenario is developed faster.  

For the comparison the evolution of wave spectra and wave amplitude (root mean squared) in case 

of absence of current are shown on Fig.3 (upper) and on Fig. 2. The evolution of amplitudes with 

distance in both cases is similar, wave breaking affects only on total decreasing of amplitude but not 

on its space variability.  
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Figure 3. Evolution of spectra of initially monochromatic waves H=0.1 m, T=1 s, without current (upper) and 

with opposing current (lower). Wavemaker was at 100 m, waves propagate on still water at distances 100-75 m, 

on current 0.25 m/s at distances 75-19 m and on current 0.41 m/s at distances 19 m and further. 

 

Freak waves arise at the moments of DD, when several peaks of spectrum exist. A superposition 

of waves, provided by each of spectral peaks, forms the extreme waves, exceeding of significant wave 

height in twice (Fig.4).  

On Fig. 5 the  wavelets transform of wave chronogram that contained the freak waves, shown on 

Fig. 4, demonstrate the of intermittence the frequency structure. Around time sample 1600 the “high 

frequency” packet exists. Around 2100 – the low frequency packet exist. At the coincidence in time 

the high and low frequency packets at 3240 time sample the freak waves occur due to superposition of 

waves, provided by each of this frequency scales .  
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Figure 4. Example of freak wave, arising at frequency downshifting. Record 5, distance 6 m from the center of 

flume, initially monochromatic waves H=0.1 m, T=1 s. The dashed lines are the significant wave height.  

The coincidence in time their crests at 3240 time sample provide the freak wave formation as 

shown on Fig.6. The slope of local maxima lines demonstrate that coincidence in time the crest and 

through of waves of different scales: the vertical local maxima lines –the freak waves; the inclined – 

no freak waves. The reasons of space-time variability of relative crest positions of waves of different 

scale are the difference in their wave lengths and in their celerities due to the dispersion.  

 

 
 

Figure 5. Wavelet transform of chronogram shown on Figure 4. 

 

After the two cascades of downshifting the waves becomes almost linear and their propagation 

well described by the linear theory that confirmed by coincidence the measured and calculated 

celerities, as demonstrated at Fig.7.  
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So on the base of physical experiments results we can conclude that non-uniform opposing 

current significantly increases steepness of waves and evolution of a spectrum of steep waves on 

current, in general, does not strongly depend from breaking processes and occurs approximately at the 

same scenario: a growth of side bands of Benjamin-Feir modulation instability and then downshift of 

frequency of maximum of wave spectrum in low-frequency band. With increasing of wave steepness 

this scenario is developed faster and several cascades of downshift of frequency can be observed. 

Considered downshifting is discrete both on space, and in time. Freak waves arise at the moments of 

downshifting, when several peaks of spectrum exist.  

 
 

Figure 6. The wavelet transform and it maxima lines around 3240 time sample provide the freak wave. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Celerities measured and linear theory at distances 6 and 5 m, wave spectra and coherence function.  
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Theoretical model of the near-neighbour wave resonances  

To explain the phenomena of downshifting, the dynamical evolution set of equations are 

constructed. Initially constant nonlinear Stokes waves with the amplitude, wave number and 

frequency ( 0 0 0, ,a k  ) is unstable to the perturbation in the form of pair small waves with the closed 

frequencies and wave numbers: superharmonic ( 1 1 0 1 0, ,a k k k       ) and subharmonic 

( 1 1 0 1 0, ,a k k k         ). Most unstable modes are the following 0 0/ ; / 2k k       , 

where 0 0a k  - initial steepness of the Stokes wave (Benjamin and Feir 1967). That is the Benjamin-

Feir or modulation instability of Stokes wave. For surface gravity waves, resonant interactions occur at 

the third order between four wave components. Three monochromatic wave trains form a nearly 

resonant “quartet” for one particular configuration, which occurs when two of waves coincide (one 

has to “count” the carrier wave twice) (Phillips 1967; Shemer et. al. 2002): 

  

 

                      (1)                                                                                                                                

                                                                                                                                      

                                                                                                                                                                                                                                                                                                                                                                   

 

where 22  ck   is a slight mismatch of the wave number from Phillips' four wave resonance 

conditions for infinitesimal waves. Due to the cancellation of this resonant de-tuning in the presence 

of Stokes amplitude dispersion, sideband waves grow exponentially (Phillips, 1967).  

 Initially exponential growth of the sidebands corresponds to the linear phase of the instability. 

The space scale for development of the modulation instability is 2/l  , where the characteristic surface 

wavelength is l .   

 The dynamical equations for these almost resonance waves look like follows: 
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where ( , )i iA A X T are slowly varying complex amplitudes of interacting waves, Cgi
- constant 

group velocities of waves, F  and ij are real - valued interaction coefficients, ( , )X x T t    are slow 

space and time variables, respectively. 

 First terms in the right side of these equations describe the Stocks amplitude dispersion and next 

terms – almost resonance interactions of waves. 

 Dynamical equations [2] describe instability of the Stokes wave. Initially exponential growth of 

the sidebands corresponds to the linear phase of the instability and the energy transfer from the 

primary wave to the sidebands. On the next stage solutions [2] describe the energy recollection back 

into the primary wave mode. These modulation-demodulation cycles involved into the evolution of an 

unstable wave train in the absence of dissipation is known as the Fermi-Pasta-Ulam recurrence 

phenomenon (FPU). It is theoretically and experimentally confirmed in a numerous number of works 

(see Lake et al., 1978, Tulin & Waseda, 1999).  

 Equations [2] describe the interaction of the fundamental three modes, but on the later stages 

together with growing sidebands additional wave resonances begin to play the significant role. The 

energy is redistributing to higher and lower harmonics for free and bound waves in the most effective 

way.  

 Consequently we will consider multi N wave resonance system including the most effective 

resonances which are characterized by the minimum detuning from the exact resonance conditions. It 

is easy to show that the minimum of resonance mismatch in the one-dimensional space case have 

near-neighbor resonance triads: 
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where all set of frequencies and wave numbers have the equal difference step: 

0 0,i ii k k i k         . 

 Correspondingly, the dynamical set of equations for the five main resonance waves, for example, 

takes a form: 
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where ( , )i iA A X T are slowly varying complex amplitudes of interacting waves, Cgi - constant 

group velocities of waves, , ,G F H  and ij are real - valued interaction coefficients. 

All waves interact with each other consequently in a chain manner, through the connection with 

the neighbor waves. 

Interaction with current and wave breaking dissipation 

How does the modulation instability develop in non-conservative media were waves beside 

interchange also exchange energy with the slowly changed horizontal current? We have to analyze the 

corresponding set of wave modulations evolution equations in stationary form in the presence of space 

variable current.  

 We will analyze the problem assuming the wave motion phase ( , )i i x t   exists for each of 

resonance waves in the presence of a slowly varying current 2( )U x , and we define the local wave 

number 
ik  and observed frequency 

i  for each of the wave as:   

 

                                                                                                                                             (4) 

  

It is evident that, for the stationary modulation, the intrinsic frequency i and wave number ik  for 

each of the wave is no more constant. They all slowly change in the presence of variable current 
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will remain valid in the entire region of waves propagation due to the stationary value of the 
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 The main kinematics wave parameters ( , )i ik  are considered as slowly varying functions with 

the typical scale, 1( )O   , longer than the primary wavelength and period (Whitham, 1974):  

( , ), ( , )i i i ik k x t x t        . 

On this basis, we will recover the effects of long-scaled current and nonlinear wave dispersion 

additional (having the same order) to the Stokes’ term with the wave steepness squared.  

 The dynamical equations [3] will have the same form, but represent “intrinsic” dispersion 

relations for each of the resonant harmonics in the moving system of coordinate and wave action law 

with the wave action flux speed shifted by the current velocity ( )U X . Modulation equations [3] are 

closed by the equations of waves phase conservation [4] for each of the waves. 

The Stokes waves with high enough initial steepness   or under influence of the strong adverse 

current will inevitably reach the breaking threshold for steepness of the water waves. So we have also 

to include the breaking dissipation effects into the consideration for this case. We will engage the 

adjusted dissipative model of Tulin (1996), Huang, Yang, Chiang and Shugan (2011) to describe the 

impact of breaking on water wave’s dynamics. An analysis of fetch laws parameterized by Tulin leads 

to the conclusion that the energy losses rate due to breaking is of the fourth order in the wave 

amplitude: 
2 2/aD e Da k     , 

where e is the wave energy density and 1(10 )D O  is the small empirical constant. 

 Sink of energy and momentum due to wave breaking process leads to the additional terms in the 

right side of the wave action and dispersive equations following from [3] for each of the wave. We 

will use the wave dissipation function for the adjusted model (Huang et al., 2011) includes also the 

wave steepness threshold function  

1
X

S

A
H

A

 
 

 
        , 

 where H  is the Heaviside unit step function, and 
SA  is the threshold value of the characteristic 

steepness X i iA a k  to take into account the dissipation. 

Model simulations and comparison with experiment 

Let us consider some results of the model simulations, corresponding to experiments on wave-

current interaction described above. For the demonstration of capability of the model we choose the 

five main resonance harmonics, shown of Fig.8. The system of 5 evaluation ordinary differential 

equations was solved. 

 

 
Figure 8. Wave amplitudes along the wave tank in stationary regime of wave propagation, ( kx ) is the non 

dimensional coordinate along the wave tank, k is the wave number of the initial carrier wave, initial steepness 

ε=ak=0.18. 
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Results of simulations for the initially uniform Stokes wave propagation with the steepness 

0.18 along the wave tank is presented in Fig. 8.  

We note the following distinctive features of the wave modeling reasonably corresponding to the 

results of experiments: 

- initial symmetrical grows of the main sidebands with the frequencies difference of the order of 

wave steepness at the distances up to ~ 50kx ; 

- asymmetrical growth of sidebands ( 70kx  ) and first downshifting of energy to the lower 

sideband at the distances ~120 180kx  ; 

- depressing of higher frequency modes ( 180kx  ); 

- almost permanent increasing of the lowest sub harmonic along the tank; 

- sharp accumulating of energy by the lowest sub harmonic during interaction with increasing 

opposite current ~ 320 360kx  ; 

- final permanent second downshifting of the wave energy; 

- permanent second downshifting and total prevailing of the lower frequency modes in the wave 

spectrum 360kx  . 
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