

NEW CALIBRATION METHOD APPLICABLE TO SIGNIFICANT WAVE HEIGHTS OBTAINED BY X-BAND RADAR

Kyungmo Ahn (Handong Global University) H. Chun (GeoSystem Research) Se-Hyun Cheon (Seoul National University)

New Calibration Procedure of Wave Heights for X-band Marine Radar 1 Outline 1. Motivation of the Research 2. Wave measurement systems (X-band Marine Radar) 3. Calibration of Wave Heights for X-band Marine Radar 4. Conclusions

Motivation of the Research

影

Comparison of Different Directional Wave Gages

	Buoys	P-u-v gage	ADCP	Radar
Accuracy	high	medium high	high	very low
Durability	low	medium high	medium high	very high
Initial Cost	high (\$80,000)	low (\$25,000)	low (\$30,000)	very high (\$120,000)
Maintenance Cost	high	medium	medium	very low
Water Depth	20~100 m	< 20 m	< 50 m	distance from the system
Spectrum	frequency	frequency	frequency	frequency & wave number
Currents	No	bottom currents	current profile	surface currents
Data transmission	direct	data link to shore	data link to shore	direct

3S-system Scanning

Sea Surface Scanning

6

Time series of measured Hs and wind velocity

Bragg Resonance Condition

$$\lambda_{w} = \frac{\lambda_{e}}{2\sin\theta}$$

where

 λ_{w} = ripple wave length

 λ_e = electromagnetic wave wavelength

Correlations between wave parameters

Correlation between Tp and Tm

$$T_m = 0.8203T_p + 0.2678$$

Correlation between Hs and Tm

$$H_{s} = 0.8497T_{m} - 4.997$$

 $H_{s} = 0.0076 e^{0.8657 T_{m}}$

Correlations between wave parameters

Correlation between Hs and Tm

Linear relationship

$$H_s = 0.6970T_p - 4.7695$$

Noninear relationship

 $H_s = 0.007568e^{(0.6657(0.8203T_p + 0.2678))}$

Conclusion

- 1. New calibration procedure is suggested based on the measured peak frequency and mean frequency
- New calibration procedure of significant wave heights for
 X-band marine radar was shown to improve the
 accuracy of the wave height estimation

Acknowledgement :

This study was performed by a project of "investigation of large swell waves and rip currents and development of the disaster response system (No. 20140057)" sponsored by the Ministry of Oceans and Fisheries.

